* Upgrade to 2.5.0-4 toolchain w/improved pgm_read_x
Rebuild the entire toolchain (including standard libraries) with the
latest pgm_read_xxx headers included (which fix unaligned dword reads
from progmem and run faster/smaller, and a pgm_read_byte change which
removes an instruction on each read saving flash).
Pull in latest bearssl while we're at it, too, which speeds up EC
handshakes and reduced ROM usage, too.
* Fix C++ exceptions
Exception code now only does 32b aligned reads from progmem to access
the eh_table (some via -mforce-l32, some via hand-inserted pgm_read_x
macros).
Fixes#6151Fixes#6305Fixes#6198
Cleans up all warnings seen w/GCC 9.1 to allow it to track the main
branch more easily until 3.x.
Does not include Ticker.h "fix" of pragmas around a function cast we're
doing that GCC9 doesn't like, that will be addressed separately and
maybe only in the 3.0 branch.
Does not include GDB hook fix, either, because the pragmas required
to disable the GCC9.1 warnings don't exist in 4.8 at all.
Apply most compatible changes needed to get the core compiling under GCC
7.2 to the main gcc 4.8 tree to ease porting for 3.0.0.
Update pgmspace.h with corrected and optimized unaligned pgm_read
macros. Now pgm_read_dword in the unaligned case gives proper results
even if optimization is enabled and is also written in assembly and only
1 instruction longer than the pgm_read_byte macro (which also has been
optimized to reduce 1 instruction). These changes should marginally
shrink code and speed up flash reads accordingly.
The toolchain should/will be rebuilt at a later time with this
optimization to ensure it's used in the libc.a/etc. files.
* Unaligned access support for pgm_read_word/dword
* Fix pgm_read_ptr_aligned() per #5735
* Allow users to use aligned-only via a #define
Adding -DPGM_READ_UNALIGNED=0 or #define PGM_READ_UNALIGNED 0 will
change the default at compile-time to only aligned (faster, but less
compatible) macro implementations.
Default is still to allow unaligned accesses.
In some cases the printf implememtation would call an internal puts()
implementation which did not use pgm_read_byte() to access the format
string. In many operating modes this would work, but in interrupts or
when flash was disabled you'd get crashes.
Updated newlib to use pgm_read_byte in that one spot and recompiled.
The complete toolchain, including mkspiffs, esptool, C, C++, newlib,
and others (BearSSL excluded) is now built and uploaded with a single
command to ensure repeatability and minimize manual mistakes. All
OSes and architectures are built at a time.
Update to 2.5.0-2 throught the chain.
* Fix the template.json with latest core patches
* Add 64-bit %ll printf format support
Adds support for %lld, %llx, etc. 64-bit integer printing, useful
for logging timestamps and other things.
Fixes#5430
* Remove unwanted updated JSON
* Add %z and %x to printf backend
%z is a C99 format used for size_t and was not included in any printf.
On the 8266 it's a no-op as size_t==int, so ignore it and things just
work.
%x lowercase support added back in (wasn't present in nano-printf).
* Update to toolchain built newlib, fix link error
Previous commit was a hand build and copy, this one used the full
toolchain and should not include atexit().
Looks like the pgm_read_(32bit) defines were not used in the main core, and
they contained syntax errors when invoked due to some bad bracket/parens.
Fix the macros
* Move to PROGMEM aware libc, allow PSTR in printf()
A Newlib (libc) patch is in progress to move the _P functions from inside
Arduino into first-class citizens in libc. This Arduino patch cleans up
code that's been migrated there. Binaries for the new libs are included
because it seems they're part of the Arduino git tree, and should be
replaced with @igrr built ones when/if the Newlib changes are accepted.
Notable changes/additions for Arduino:
Allow for use of PROGMEM based format and parameter strings in all
*printf functions. No need for copying PSTR()s into RAM before printing
them out (transparently saves heap space when using _P functions) and
makes it easier to print out constant strings for applications.
Add "%S" (capital-S) format that I've been told, but cannot verify,
is used in Arduino to specify a PROGMEM string parameter in printfs,
as an alias for "%s" since plain "%s" can now handle PROGMEM.
Optimized the memcpy_P, strnlen_P, and strncpy_P functions to use 32-bit
direct reads whenver possible (source and dest alignment mediated), but
there is still room for improvement in others.
Finally, move several constant arrays from RODATA into PROGMEM and
update their accessors. Among these are the ctype array, ~260 bytes,
mprec* arrays, ~300 bytes, and strings/daycounts in the time
formatting functions, ~200 bytes. All told, sketches will see from
300 to 800 additional RAM heap free on startup (depending on their
use of these routines).
* Fix merge error in #ifdef/#endif
* Fix host test using the newlib generic pgmspace.h
Host tests now use the sys/pgmspace.h for compiles instead of the
ESP8266-specific version.
* Update with rebuilt libraries using latest newlib
* Include binaries built directly from @igrr repo
Rebuild the binaries using a git clone of
https://github.com/igrr/newlib-xtensa
Build commands for posterity:
````
rm -rf ./xtensa-lx106-elf/
./configure --prefix=<DIR>/esp8266/tools/sdk/libc --with-newlib \
--enable-multilib --disable-newlib-io-c99-formats \
--disable-newlib-supplied-syscalls \
--enable-newlib-nano-formatted-io --enable-newlib-reent-small \
--enable-target-optspace \
--program-transform-name="s&^&xtensa-lx106-elf-&" \
--disable-option-checking --with-target-subdir=xtensa-lx106-elf \
--target=xtensa-lx106-elf
rm -f etc/config.cache
CROSS_CFLAGS="-fno-omit-frame-pointer -DSIGNAL_PROVIDED -DABORT_PROVIDED"\
" -DMALLOC_PROVIDED" \
PATH=<DIR>/esp8266/tools/xtensa-lx106-elf/bin/:$PATH \
make all install
````
* Fix merge define conflict in c_types.h
* Fix strlen_P misaligned source error
Include fix from newlib-xtensa/fix-strlen branch cleaning up misaligned
access on a non-aligned source string.
* Fix strlen_P and strcpy_P edge cases
Ran the included test suite on ESP8266 tstring.c with the following defines:
#define MAX_1 50
#define memcmp memcmp_P
#define memcpy memcpy_P
#define memmem memmem_P
#define memchr memchr_P
#define strcat strcat_P
#define strncat strncat_P
#define strcpy strcpy_P
#define strlen strlen_P
#define strnlen strnlen_P
#define strcmp strcmp_P
#define strncmp strncmp_P
Uncovered edge case and return value problems in the optimized versions of
the strnlen_P and strncpy_P functions. Corrected.
* Fix memcpy_P return value
memcpy-1.c test suite showed error in return value of memcpy_P. Correct it.
* Fix strnlen_P/strlen_P off-by-4 error
Random crashes, often on String constructors using a PSTR, would occur due
to the accelerated strnlen_P going past the end of the string. Would make
debug builds fail, too (ESP.getVersionString() failure).
Fix to fall through to normal copy on a word that's got a 0 byte anywhere
in it.
* Add device tests for libc functional verification
Add test suite used to debug libc optimized _P functions to the device
tests.
* Rebuild from igrr's repo (same source as prior)
Rebuild .a from igrr's repo at 347260af117b4177389e69fd4d04169b11d87a97
* WIP - add exceptions
* Fix exception to have 0-terminator
* Move some exception constants to TEXT from RODATA
* Remove throw stubs
* Move more exception stuff to ROM
* Enable exceptions in platform.io
* Remove atexit, is duplicated in rebuilt lib
Need to look at the quick-toolchain options, there seems to be a definition
for atexit defined there (libgcc?) that needs to be excised. For now,
remove our local do-nothing copy.
* Update libgcc to remove soft-fp functions
The esp-quick-toolchain generated libgcc.a needed to have the soft-FP routines
that are in ROM removed from it. Remove them in the new esp-quick-toolchain
and update.
* Fix merge typos in Makefile
* Add unhandled exception handler to postmortem
* Return our atexit() handler
* Latest stdc++, minimize exception emercengy area
* Remove atexit from newlib
atexit was defined in newlib strongly, but we also define a noop atexit in core.
Since we never exit, use the core's noop and delete the atexit from libc.a
Updated in esp-quick-toolchain as well.
* Move __FUNCTION__ static strings to PROGMEM
__FUNCTION__ is unlikely to be a timing sensitive variable, so move it to
PROGMEM and not RODATA (RAM) using linker magic.
asserts() now should take no RAM for any strings.
* Clean up linker file, update to latest stdc++
* Update to latest stdc++ which doesn't call strerror
* Update to GCC5.1 exception emergency allocator
Using GCC 5.1's emergency memory allocator for exceptions, much less
space is required in programs which do not use exceptions and when
space is allocated it is managed more efficiently.
* Initial try with new compiler toolchain
* Include newlib built from esp-quick-toolchain
* Update JSON with all new esp-quick-toolchain builds
* Use 64bit Windows compiler on 64bit Windows
* Dump std::exception.what() when possible
When doing the panic on unhandled exceptions, try and grab the
.what() pointer and dump it as part of the termination info.
Makes it easy to see mem errors (std::bad_alloc) or std::runtime_error
strings.
* Use scripted install from esp-quick-toolchain
Makes sure proper libraries and includes are present by using a
scripted installation from esp-quick-install instead of a manual
one.
* Update eqk to remove atexit, fix packaging diff
Move all exception strings to IRAM and out of both PMEM (illegal) and add
output of any assert() failinf conditions.
The exception handler may be called while the SPI interface is in a bad
state. This means no PROGMEM reads are allowed, and all data and functions
used must be in system RAM or IRAM.
Add a new helper macro, ets_printf_P(), which places a constant string in
IRAM and copies it to the stack before calling the real ets_printf().
This makes the code simpler to read as no unwieldy combinations of
ets_putc/ets_printf/... are required to output anything.
The old handler also mistakenly used PSTR() strings in some places, so
fix those with this patch as well.
Gives back ~180 bytes of heap to every sketch built as the exception handler
is always included an application.
Every assert() includes a __FILE__ constant string to RODATA which
can be quite large as it includes the complete path as well as
the filename.
Move that string into PMEM, and update the postmortem to work with
either PMEM or RAM strings for dumping abort/assert/exception
information.
* Use newlib libc library
This change adds libcmin.a, which is created from newlib libc by selectively removing some of the object files (mostly related to heap management).
The list of files is available in tools/sdk/lib/make_libcmin.sh. Files which are not needed are commented out.
This change adds support for various functions which were missing, like sscanf, strftime, etc.
* Fix some of the time functions
* Redirect stdout to serial
* Implement __putc_r
* Switch to custom newlib build
Built from https://github.com/igrr/newlib-xtensa using:
./configure --with-newlib --enable-multilib --disable-newlib-io-c99-formats --enable-newlib-supplied-syscalls --enable-target-optspace --program-transform-name="s&^&xtensa-lx106-elf-&" --disable-option-checking --with-target-subdir=xtensa-lx106-elf --target=xtensa-lx106-elf --enable-newlib-nano-formatted-io --enable-newlib-reent-small --prefix=path-to-arduino-core/tools/sdk/libc
CROSS_CFLAGS="-DMALLOC_PROVIDED -DSIGNAL_PROVIDED -DABORT_PROVIDED" make
make install
* Update tests