Using a pluggable architecture, allow updates delivered via the Update
class to be verified as signed by a certificate. By using plugins, avoid
pulling either axTLS or BearSSL into normal builds.
A signature is appended to a binary image, followed by the size of the
signature as a 32-bit int. The updater takes a verification function
and checks this signature using whatever method it chooses, and if it
fails the update is not applied.
A SHA256 hash class is presently implemented for the signing hash (since
MD5 is a busted algorithm).
A BearSSLPublicKey based verifier is implemented for RSA keys. The
application only needs the Public Key, while to sign you can use
OpenSSL and your private key (which should never leave your control
or be deployed on any endpoints).
An example using automatic signing is included.
Update the docs to show the signing steps and how to use it in the
automatic and manual modes.
Also remove one debugging line from the signing tool.
Saves ~600 bytes when in debug mode by moving strings to PMEM
Windows can't run the signing script, nor does it normally have OpenSSL
installed. When trying to build an automatically signed binary, warn
and don't run the python.
Make HTTPClient take a WiFiClient parameter, allowing you to pass in a
simple HTTP WiFiClient or a BearSSL or axTLS WiFiClientSecure with
any desired verification options. Deprecate the older, TLSTraits methods.
Add basic HttpsClient example.
Add optional LED feedback to the Update class
BearSSL (https://www.bearssl.org) is a TLS(SSL) library written by
Thomas Pornin that is optimized for lower-memory embedded systems
like the ESP8266. It supports a wide variety of modern ciphers and
is unique in that it doesn't perform any memory allocations during
operation (which is the unfortunate bane of the current axTLS).
BearSSL is also absolutely focused on security and by default performs
all its security checks on x.509 certificates during the connection
phase (but if you want to be insecure and dangerous, that's possible
too).
While it does support unidirectional SSL buffers, like axTLS,
as implemented the ESP8266 wrappers only support bidirectional
buffers. These bidirectional buffers avoid deadlocks in protocols
which don't have well separated receive and transmit periods.
This patch adds several classes which allow connecting to TLS servers
using this library in almost the same way as axTLS:
BearSSL::WiFiClientSecure - WiFiClient that supports TLS
BearSSL::WiFiServerSecure - WiFiServer supporting TLS and client certs
It also introduces objects for PEM/DER encoded keys and certificates:
BearSSLX509List - x.509 Certificate (list) for general use
BearSSLPrivateKey - RSA or EC private key
BearSSLPublicKey - RSA or EC public key (i.e. from a public website)
Finally, it adds a Certificate Authority store object which lets
BearSSL access a set of trusted CA certificates on SPIFFS to allow it
to verify the identity of any remote site on the Internet, without
requiring RAM except for the single matching certificate.
CertStoreSPIFFSBearSSL - Certificate store utility
Client certificates are supported for the BearSSL::WiFiClientSecure, and
what's more the BearSSL::WiFiServerSecure can also *require* remote clients
to have a trusted certificate signed by a specific CA (or yourself with
self-signing CAs).
Maximum Fragment Length Negotiation probing and usage are supported, but
be aware that most sites on the Internet don't support it yet. When
available, you can reduce the memory footprint of the SSL client or server
dramatically (i.e. down to 2-8KB vs. the ~22KB required for a full 16K
receive fragment and 512b send fragment). You can also manually set a
smaller fragment size and guarantee at your protocol level all data will
fit within it.
Examples are included to show the usage of these new features.
axTLS has been moved to its own namespace, "axtls". A default "using"
clause allows existing apps to run using axTLS without any changes.
The BearSSL::WiFi{client,server}Secure implements the axTLS
client/server API which lets many end user applications take advantage
of BearSSL with few or no changes.
The BearSSL static library used presently is stored at
https://github.com/earlephilhower/bearssl-esp8266 and can be built
using the standard ESP8266 toolchain.
* Fix minor typo in spelling of failed. Removed s from http paths.
* add check if we are just updating spiffs to not reboot. example now works with this change.
- use new AutoInterruptLock
- add delay to give the RTOS some time to handle TCP
WiFiClient.cpp
- add stopAllexcepted to cancel all TCP excepted one
ClientContext.h
- add getLocalPort()
ESP8266HTTPUpdate.cpp
- close all not needed TCP and UDP
osapi.h
- missing commit from SDK
On Linux (presumably Mac too), the header of the library
could not be included, caps changed to match the filename.
The line 'architectures=ESP8266' in library.properties caused:
WARNING: library ESP8266httpUpdate claims to run on [ESP8266] architecture(s) and may be incompatible with your current board which runs on [esp8266] architecture(s).