* Enable I2C_BUFFER_LENGTH definition for Wire lib
Based on
375a89ed58
We should have been very careful when #defining things to not use a name
that could conflict with the user's own code, so this marks that old
define as deprecated.
If you opt-into the new behavior, you do not get the old BUFFER_LENGTH
constant.
As a bonus, changing these uint8_ts to size_t both reduces the code
size & improves performance.
* Increase buffer indexing variable size
I looked over the users of these variables and they should be fine with
no additional changes. The existing methods already have an option to
use size_t rather than uint8_t.
There's a few methods which return int instead of size_t, which isn't
great from a portability perspective but will be fine since this only is
designed to run on the ESP8266.
* Reduce the IRAM (and heap) usage of I2C code
The I2C code takes a large chunk of IRAM space. Attempt to reduce the
size of the routines without impacting functionality.
First, remove the `static` classifier on the sda/scl variables in the
event handlers. The first instructions in the routines overwrite the
last value stored in them, anyway, and their addresses are never taken.
* Make most variables ints, not uint8_ts
Where it doesn't make a functional difference, make global variables
ints and not unit8_t. Bytewide updates and extracts require multiple
instructions and hence increase IRAM usage as well as runtime.
* Make local flag vars int
Sketch uses 270855 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27940 bytes (34%) of dynamic memory, leaving 53980 bytes for local variables. Maximum is 81920 bytes.
./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_9615/*elf | sort -k1 | head -20
401000cc l F .text1 00000014 twi_delay
401000ec l F .text1 00000020 twi_reply$part$1
4010010c g F .text1 00000035 twi_reply
4010014c g F .text1 00000052 twi_stop
401001a0 g F .text1 0000003b twi_releaseBus
40100204 g F .text1 000001e6 twi_onTwipEvent
40100404 l F .text1 000001f7 onSdaChange
40100608 l F .text1 000002fd onSclChange
40100908 l F .text1 0000003b onTimer
* Factor out !scl in onSdaChange
If SCL is low then all branches of the case are no-ops, so factor that
portion outo to remove some redundant logic in each case.
Sketch uses 270843 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes.
401000cc l F .text1 00000014 twi_delay
401000ec l F .text1 00000020 twi_reply$part$1
4010010c g F .text1 00000035 twi_reply
4010014c g F .text1 00000052 twi_stop
401001a0 g F .text1 0000003b twi_releaseBus
40100204 g F .text1 000001e6 twi_onTwipEvent
40100404 l F .text1 000001e7 onSdaChange
401005f8 l F .text1 000002fd onSclChange
401008f8 l F .text1 0000003b onTimer
0x0000000040107468 _text_end = ABSOLUTE (.)
* Make tiny twi_reply inline
twi_reply is a chunk of code that can be inlined and actually save IRAM
space because certain conditions acan be statically evaluated by gcc.
Sketch uses 270823 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes.
401000cc l F .text1 00000014 twi_delay
401000f4 g F .text1 00000052 twi_stop
40100148 g F .text1 0000003b twi_releaseBus
401001b0 g F .text1 00000206 twi_onTwipEvent
401003d0 l F .text1 000001e7 onSdaChange
401005c4 l F .text1 000002fd onSclChange
401008c4 l F .text1 0000003b onTimer
40100918 g F .text1 00000085 millis
401009a0 g F .text1 0000000f micros
401009b0 g F .text1 00000022 micros64
401009d8 g F .text1 00000013 delayMicroseconds
401009f0 g F .text1 00000034 __digitalRead
401009f0 w F .text1 00000034 digitalRead
40100a3c g F .text1 000000e4 interrupt_handler
40100b20 g F .text1 0000000f vPortFree
0x0000000040107434 _text_end = ABSOLUTE (.)
* Inline additional twi_** helper functions
Sketch uses 270799 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes.
401000cc l F .text1 00000014 twi_delay
401000f4 w F .text1 0000003b twi_releaseBus
4010015c g F .text1 00000246 twi_onTwipEvent
401003bc l F .text1 000001e7 onSdaChange
401005b0 l F .text1 000002f9 onSclChange
401008ac l F .text1 0000003b onTimer
0x000000004010741c _text_end = ABSOLUTE (.)
* Convert state machine to 1-hot for faster lookup
GCC won't use a lookup table for the TWI state machine, so it ends up
using a series of straight line compare-jump, compare-jumps to figure
out which branch of code to execute for each state. For branches that
have multiple states that call them, this can expand to a lot of code.
Short-circuit the whole thing by converting the FSM to a 1-hot encoding
while executing it, and then just and-ing the 1-hot state with the
bitmask of states with the same code.
Sketch uses 270719 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27944 bytes (34%) of dynamic memory, leaving 53976 bytes for local variables. Maximum is 81920 bytes.
401000cc l F .text1 00000014 twi_delay
401000f4 w F .text1 0000003b twi_releaseBus
4010015c g F .text1 00000246 twi_onTwipEvent
401003c0 l F .text1 000001b1 onSdaChange
40100580 l F .text1 000002da onSclChange
4010085c l F .text1 0000003b onTimer
0x00000000401073cc _text_end = ABSOLUTE (.)
Saves 228 bytes of IRAM vs. master, uses 32 additional bytes of heap.
* Factor out twi_status setting
twi_status is set immediately before an event handler is called,
resulting in lots of duplicated code. Set the twi_status flag inside
the handler itself.
Saves an add'l ~100 bytes of IRAM from prior changes, for a total of
~340 bytes.
earle@server:~/Arduino/hardware/esp8266com/esp8266/tools$ ./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_849115/*elf | sort -k1 | head -20
401000cc l F .text1 00000014 twi_delay
401000f4 w F .text1 0000003b twi_releaseBus
40100160 g F .text1 0000024e twi_onTwipEvent
401003c8 l F .text1 00000181 onSdaChange
40100558 l F .text1 00000297 onSclChange
* Use a struct to hold globals for TWI
Thanks to the suggestion from @mhightower83, move all global objects
into a struct. This lets a single base pointer register to be used in
place of constantly reloading the address of each individual variable.
This might be better expressed by moving this to a real C++
implementaion based on a class object (the twi.xxxx would go back to the
old xxx-only naming for vars), but there would then need to be API
wrappers since the functionality is exposed through a plain C API.
Saves 168 additional code bytes, for a grand total of 550 bytes IRAM.
earle@server:~/Arduino/hardware/esp8266com/esp8266/tools$ ./xtensa-lx106-elf/bin/xtensa-lx106-elf-objdump -t -j .text1 /tmp/arduino_build_849115/*elf | sort -k1 | head -20
401000cc l F .text1 00000014 twi_delay
401000e8 w F .text1 00000032 twi_releaseBus
40100128 g F .text1 00000217 twi_onTwipEvent
4010034c l F .text1 00000149 onSdaChange
4010049c l F .text1 00000267 onSclChange
40100704 l F .text1 00000028 onTimer
* Use enums for states, move one more var to twi struct
Make the TWI states enums and not #defines, in the hope that it will
allow GCC to more easily flag problems and general good code
organization.
401000cc l F .text1 00000014 twi_delay
401000e8 w F .text1 00000032 twi_releaseBus
40100128 g F .text1 00000217 twi_onTwipEvent
4010034c l F .text1 00000149 onSdaChange
4010049c l F .text1 00000257 onSclChange
401006f4 l F .text1 00000028 onTimer
Looks like another 16 bytes IRAM saved from the prior push.
Sketch uses 267079 bytes (25%) of program storage space. Maximum is 1044464 bytes.
Global variables use 27696 bytes (33%) of dynamic memory, leaving 54224 bytes for local variables. Maximum is 81920 bytes.
* Save 4 heap bytes by reprdering struct
* Convert to C++ class, clean up code
Convert the entire file into a C++ class (with C wrappers to preserve
the ABI). This allows for setting individual values of the global
struct(class) in-situ instead of a cryptic list at the end of the struct
definition. It also removes a lot of redundant `twi.`s from most class
members.
Clean up the code by converting from `#defines` to inline functions, get
rid of ternarys-as-ifs, use real enums, etc.
For slave_receiver.ino, the numbers are:
GIT Master IRAM: 0x723c
This push IRAM: 0x6fc0
For a savings of 636 total IRAM bytes (note, there may be a slight flash
text increase, but we have 1MB of flash to work with and only 32K of IRAM
so the tradeoff makes sense.
* Run astyle core.conf, clean up space/tab/etc.
Since the C++ version has significant text differences anyway, now is a
good time to clean up the mess of spaces, tabs, and differing cuddles.
* Add enum use comment, rename twi::delay, fix SDA/SCL_READ bool usage
Per review comments
* Replace clock stretch repeated code w/inline loop
There were multiple places where the code was waiting for a slave to
finish stretching the clock. Factor them out to an *inline* function
to reduce code smell.
* Remove slave code when not using slave mode
Add a new twi_setSlaveMode call which actually attached the interrupts
to the slave pin change code onSdaChenge/onSclChange. Don't attach
interrupts in the main twi_begin.
Because slave mode is only useful should a onoReceive or onRequest
callback, call twi_setSlaveMode and attach interrupts on the Wire
setters.
This allows GCC to not link in slave code unless slave mode is used,
saving over 1,000 bytes of IRAM in the common, master-only case.
W/o this change, file::write('a'); tries to use the template and fails
since char is a basic type.
The reason it is needed is due to pre 2.5.x behavior, File::write(char)
silently was cast to File::write(uint8_t). With the template write,
though, this is not performed.
* Add Print::write tests and add'l overrides
Ensure that print::write does something sane and doesn't cause a compile
time error about templates when used for Files.
Test using SPIFFS file since Print is an abstract type.
* polledTimeout: add option to use CPU count instead of millis()
* use more "using" alias
* more c++/clear code, using typename (thanks @devyte)
* rename class name to include unit, introduce timeMax() and check it with assert()
* remove useless defines
* improve api readability, add micro-second unit
* update example
* mock: emulate getCycleCount, add/fix polledTimeout CI test
* + nano-seconds, assert -> message, comments, host test
* allow 0 for timeout (enables immediate timeout, fix division by 0)
* typo, set member instead of local variable
* unify error message
* slight change on checkExpired() allows "never expired"
also removed printed message, add YieldAndDelay, simplify calculations
* remove traces of debug.h/cpp in this PR
* include missing <limits> header
* back to original expired test, introduce boolean _neverExpires, fix reset(), getTimeout() is invalid
* fix expiredOneShot with _timeout==0 check
* reenable getTimeout()
* expose checkExpired with unit conversion
* fix timing comments, move critical code to iram
* add member ::neverExpires and use it where relevant
* improve clarity
* remove exposed checkExpired(), adapt LEAmDNS with equivalent
* add API ::resetToNeverExpires(), use it in LEAmDNS
* remove offending constness from ::flagged() LEAmDNS (due do API fix in PolledTimeout)
* simplify "Fast" base classes
* minor variable rename
* Fix examples
* compliance with good c++ manners
* minor changes for consistency
* add missing const
* expired() and bool() moved to iram
* constexpr compensation computing
* add/update comments
* move neverExpires and alwaysExpired
* Wire Examples based on AVR ones of the same name
* Overload for begin(), change in callback arg from int to size_t
* Update master_reader.ino
Astyle
* Update master_writer.ino
Astyle
* Update slave_receiver.ino
Remove warning
* Update slave_receiver.ino
Astyle
I2C slave might stil have something to send when ESP826 starts I2C, thus
keeping the bus stuck.
Happens e.g. when power failure/reset during transmission.
Thanks to work of drmpf there is a solution.
Implemented as separate method so as not to interfere with existing.
Usage:
Wire.begin();
if (Wire.status() != I2C_OK) Serial.writeln("Something wrong with I2C
bus that cannot be recovered. Perform power cycle or search for other
masters on bus.";
this introduces optimistic_yield() used for when standard library
methods are normally used in tight loops waiting for something to
happen, like available().