1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-09-03 20:43:15 +03:00

WiFi library to the new format

This commit is contained in:
Fede85
2013-07-19 16:20:34 +02:00
parent e7ef38e27c
commit fd7e9c6d90
340 changed files with 167023 additions and 3927 deletions

View File

@@ -0,0 +1,309 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Cycle counter driver.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32UC devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _CYCLE_COUNTER_H_
#define _CYCLE_COUNTER_H_
#include "compiler.h"
//! Structure holding private information, automatically initialized by the
//! cpu_set_timeout() function.
typedef struct
{
//! The cycle count at the begining of the timeout.
unsigned long delay_start_cycle;
//! The cycle count at the end of the timeout.
unsigned long delay_end_cycle;
//! Enable/disable the timout detection
unsigned char timer_state;
#define CPU_TIMER_STATE_STARTED 0
#define CPU_TIMER_STATE_REACHED 1
#define CPU_TIMER_STATE_STOPPED 2
} t_cpu_time;
/*!
* \brief Convert milli-seconds into CPU cycles.
*
* \param ms: Number of millisecond.
* \param fcpu_hz: CPU frequency in Hz.
*
* \return the converted number of CPU cycles.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ U32 cpu_ms_2_cy(unsigned long ms, unsigned long fcpu_hz)
{
return ((unsigned long long)ms * fcpu_hz + 999) / 1000;
}
/*!
* \brief Convert micro-seconds into CPU cycles.
*
* \param us: Number of microsecond.
* \param fcpu_hz: CPU frequency in Hz.
*
* \return the converted number of CPU cycles.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ U32 cpu_us_2_cy(unsigned long us, unsigned long fcpu_hz)
{
return ((unsigned long long)us * fcpu_hz + 999999) / 1000000;
}
/*!
* \brief Convert CPU cycles into milli-seconds.
*
* \param cy: Number of CPU cycles.
* \param fcpu_hz: CPU frequency in Hz.
*
* \return the converted number of milli-second.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ U32 cpu_cy_2_ms(unsigned long cy, unsigned long fcpu_hz)
{
return ((unsigned long long)cy * 1000 + fcpu_hz-1) / fcpu_hz;
}
/*!
* \brief Convert CPU cycles into micro-seconds.
*
* \param cy: Number of CPU cycles.
* \param fcpu_hz: CPU frequency in Hz.
*
* \return the converted number of micro-second.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ U32 cpu_cy_2_us(unsigned long cy, unsigned long fcpu_hz)
{
return ((unsigned long long)cy * 1000000 + fcpu_hz-1) / fcpu_hz;
}
/*!
* \brief Set a timer variable.
*
* Ex: t_cpu_time timer;
* cpu_set_timeout( cpu_ms_2_cy(10, FOSC0), &timer ); // timeout in 10 ms
* if( cpu_is_timeout(&timer) )
* cpu_stop_timeout(&timer);
* ../..
*
* \param delay: (input) delay in CPU cycles before timeout.
* \param cpu_time: (output) internal information used by the timer API.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void cpu_set_timeout(unsigned long delay, t_cpu_time *cpu_time)
{
cpu_time->delay_start_cycle = Get_system_register(AVR32_COUNT);
cpu_time->delay_end_cycle = cpu_time->delay_start_cycle + delay;
cpu_time->timer_state = CPU_TIMER_STATE_STARTED;
}
/*!
* \brief Test if a timer variable reached its timeout.
*
* Once the timeout is reached, the function will always return TRUE,
* until the cpu_stop_timeout() function is called.
*
* Ex: t_cpu_time timer;
* cpu_set_timeout( 10, FOSC0, &timer ); // timeout in 10 ms
* if( cpu_is_timeout(&timer) )
* cpu_stop_timeout(&timer);
* ../..
*
* \param cpu_time: (input) internal information used by the timer API.
*
* \return TRUE if timeout occured, otherwise FALSE.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ unsigned long cpu_is_timeout(t_cpu_time *cpu_time)
{
unsigned long current_cycle_count = Get_system_register(AVR32_COUNT);
if( cpu_time->timer_state==CPU_TIMER_STATE_STOPPED )
return FALSE;
// Test if the timeout as already occured.
else if (cpu_time->timer_state == CPU_TIMER_STATE_REACHED)
return TRUE;
// If the ending cycle count of this timeout is wrapped, ...
else if (cpu_time->delay_start_cycle > cpu_time->delay_end_cycle)
{
if (current_cycle_count < cpu_time->delay_start_cycle && current_cycle_count > cpu_time->delay_end_cycle)
{
cpu_time->timer_state = CPU_TIMER_STATE_REACHED;
return TRUE;
}
return FALSE;
}
else
{
if (current_cycle_count < cpu_time->delay_start_cycle || current_cycle_count > cpu_time->delay_end_cycle)
{
cpu_time->timer_state = CPU_TIMER_STATE_REACHED;
return TRUE;
}
return FALSE;
}
}
/*!
* \brief Stop a timeout detection.
*
* Ex: t_cpu_time timer;
* cpu_set_timeout( 10, FOSC0, &timer ); // timeout in 10 ms
* if( cpu_is_timeout(&timer) )
* cpu_stop_timeout(&timer);
* ../..
*
* \param cpu_time: (input) internal information used by the timer API.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void cpu_stop_timeout(t_cpu_time *cpu_time)
{
cpu_time->timer_state = CPU_TIMER_STATE_STOPPED;
}
/*!
* \brief Test if a timer is stopped.
*
* \param cpu_time: (input) internal information used by the timer API.
*
* \return TRUE if timer is stopped, otherwise FALSE.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ unsigned long cpu_is_timer_stopped(t_cpu_time *cpu_time)
{
if( cpu_time->timer_state==CPU_TIMER_STATE_STOPPED )
return TRUE;
else
return FALSE;
}
/*!
* \brief Waits during at least the specified delay (in millisecond) before returning.
*
* \param delay: Number of millisecond to wait.
* \param fcpu_hz: CPU frequency in Hz.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void cpu_delay_ms(unsigned long delay, unsigned long fcpu_hz)
{
t_cpu_time timer;
cpu_set_timeout( cpu_ms_2_cy(delay, fcpu_hz), &timer);
while( !cpu_is_timeout(&timer) );
}
/*!
* \brief Waits during at least the specified delay (in microsecond) before returning.
*
* \param delay: Number of microsecond to wait.
* \param fcpu_hz: CPU frequency in Hz.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void cpu_delay_us(unsigned long delay, unsigned long fcpu_hz)
{
t_cpu_time timer;
cpu_set_timeout( cpu_us_2_cy(delay, fcpu_hz), &timer);
while( !cpu_is_timeout(&timer) );
}
/*!
* \brief Waits during at least the specified delay (in CPU cycles) before returning.
*
* \param delay: Number of CPU cycles to wait.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void cpu_delay_cy(unsigned long delay)
{
t_cpu_time timer;
cpu_set_timeout( delay, &timer);
while( !cpu_is_timeout(&timer) );
}
#define Get_sys_count() ( Get_system_register(AVR32_COUNT) )
#define Set_sys_count(x) ( Set_system_register(AVR32_COUNT, (x)) )
#define Get_sys_compare() ( Get_system_register(AVR32_COMPARE) )
#define Set_sys_compare(x) ( Set_system_register(AVR32_COMPARE, (x)) )
#endif // _CYCLE_COUNTER_H_

View File

@@ -0,0 +1,995 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief SMC on EBI driver for AVR32 UC3.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a SMC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "compiler.h"
#include "preprocessor.h"
#include "gpio.h"
#include "smc.h"
// Configure the SM Controller with SM setup and timing information for all chip select
#define SMC_CS_SETUP(ncs) { \
U32 nwe_setup = ((NWE_SETUP * hsb_mhz_up + 999) / 1000); \
U32 ncs_wr_setup = ((NCS_WR_SETUP * hsb_mhz_up + 999) / 1000); \
U32 nrd_setup = ((NRD_SETUP * hsb_mhz_up + 999) / 1000); \
U32 ncs_rd_setup = ((NCS_RD_SETUP * hsb_mhz_up + 999) / 1000); \
U32 nwe_pulse = ((NWE_PULSE * hsb_mhz_up + 999) / 1000); \
U32 ncs_wr_pulse = ((NCS_WR_PULSE * hsb_mhz_up + 999) / 1000); \
U32 nrd_pulse = ((NRD_PULSE * hsb_mhz_up + 999) / 1000); \
U32 ncs_rd_pulse = ((NCS_RD_PULSE * hsb_mhz_up + 999) / 1000); \
U32 nwe_cycle = ((NWE_CYCLE * hsb_mhz_up + 999) / 1000); \
U32 nrd_cycle = ((NRD_CYCLE * hsb_mhz_up + 999) / 1000); \
\
/* Some coherence checks... */ \
/* Ensures CS is active during Rd or Wr */ \
if( ncs_rd_setup + ncs_rd_pulse < nrd_setup + nrd_pulse ) \
ncs_rd_pulse = nrd_setup + nrd_pulse - ncs_rd_setup; \
if( ncs_wr_setup + ncs_wr_pulse < nwe_setup + nwe_pulse ) \
ncs_wr_pulse = nwe_setup + nwe_pulse - ncs_wr_setup; \
\
/* ncs_hold = n_cycle - ncs_setup - ncs_pulse */ \
/* n_hold = n_cycle - n_setup - n_pulse */ \
/* */ \
/* All holds parameters must be positive or null, so: */ \
/* nwe_cycle shall be >= ncs_wr_setup + ncs_wr_pulse */ \
if( nwe_cycle < ncs_wr_setup + ncs_wr_pulse ) \
nwe_cycle = ncs_wr_setup + ncs_wr_pulse; \
\
/* nwe_cycle shall be >= nwe_setup + nwe_pulse */ \
if( nwe_cycle < nwe_setup + nwe_pulse ) \
nwe_cycle = nwe_setup + nwe_pulse; \
\
/* nrd_cycle shall be >= ncs_rd_setup + ncs_rd_pulse */ \
if( nrd_cycle < ncs_rd_setup + ncs_rd_pulse ) \
nrd_cycle = ncs_rd_setup + ncs_rd_pulse; \
\
/* nrd_cycle shall be >= nrd_setup + nrd_pulse */ \
if( nrd_cycle < nrd_setup + nrd_pulse ) \
nrd_cycle = nrd_setup + nrd_pulse; \
\
AVR32_SMC.cs[ncs].setup = (nwe_setup << AVR32_SMC_SETUP0_NWE_SETUP_OFFSET) | \
(ncs_wr_setup << AVR32_SMC_SETUP0_NCS_WR_SETUP_OFFSET) | \
(nrd_setup << AVR32_SMC_SETUP0_NRD_SETUP_OFFSET) | \
(ncs_rd_setup << AVR32_SMC_SETUP0_NCS_RD_SETUP_OFFSET); \
AVR32_SMC.cs[ncs].pulse = (nwe_pulse << AVR32_SMC_PULSE0_NWE_PULSE_OFFSET) | \
(ncs_wr_pulse << AVR32_SMC_PULSE0_NCS_WR_PULSE_OFFSET) | \
(nrd_pulse << AVR32_SMC_PULSE0_NRD_PULSE_OFFSET) | \
(ncs_rd_pulse << AVR32_SMC_PULSE0_NCS_RD_PULSE_OFFSET); \
AVR32_SMC.cs[ncs].cycle = (nwe_cycle << AVR32_SMC_CYCLE0_NWE_CYCLE_OFFSET) | \
(nrd_cycle << AVR32_SMC_CYCLE0_NRD_CYCLE_OFFSET); \
AVR32_SMC.cs[ncs].mode = (((NCS_CONTROLLED_READ) ? AVR32_SMC_MODE0_READ_MODE_NCS_CONTROLLED : \
AVR32_SMC_MODE0_READ_MODE_NRD_CONTROLLED) << AVR32_SMC_MODE0_READ_MODE_OFFSET) | \
+ (((NCS_CONTROLLED_WRITE) ? AVR32_SMC_MODE0_WRITE_MODE_NCS_CONTROLLED : \
AVR32_SMC_MODE0_WRITE_MODE_NWE_CONTROLLED) << AVR32_SMC_MODE0_WRITE_MODE_OFFSET) | \
(NWAIT_MODE << AVR32_SMC_MODE0_EXNW_MODE_OFFSET) | \
(((SMC_8_BIT_CHIPS) ? AVR32_SMC_MODE0_BAT_BYTE_WRITE : \
AVR32_SMC_MODE0_BAT_BYTE_SELECT) << AVR32_SMC_MODE0_BAT_OFFSET) | \
(((SMC_DBW <= 8 ) ? AVR32_SMC_MODE0_DBW_8_BITS : \
(SMC_DBW <= 16) ? AVR32_SMC_MODE0_DBW_16_BITS : \
AVR32_SMC_MODE0_DBW_32_BITS) << AVR32_SMC_MODE0_DBW_OFFSET) | \
(TDF_CYCLES << AVR32_SMC_MODE0_TDF_CYCLES_OFFSET) | \
(TDF_OPTIM << AVR32_SMC_MODE0_TDF_MODE_OFFSET) | \
(PAGE_MODE << AVR32_SMC_MODE0_PMEN_OFFSET) | \
(PAGE_SIZE << AVR32_SMC_MODE0_PS_OFFSET); \
smc_tab_cs_size[ncs] = (U8)EXT_SM_SIZE; \
}
static U8 smc_tab_cs_size[6];
static void smc_enable_muxed_pins(void);
void smc_init(unsigned long hsb_hz)
{
unsigned long hsb_mhz_up = (hsb_hz + 999999) / 1000000;
//! Whether to use the NCS0 pin
#ifdef SMC_USE_NCS0
#include SMC_COMPONENT_CS0
// Setup SMC for NCS0
SMC_CS_SETUP(0)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
//! Whether to use the NCS1 pin
#ifdef SMC_USE_NCS1
#include SMC_COMPONENT_CS1
// Enable SM mode for CS1 if necessary.
AVR32_HMATRIX.sfr[AVR32_EBI_HMATRIX_NR] &= ~(1 << AVR32_EBI_SDRAM_CS);
AVR32_HMATRIX.sfr[AVR32_EBI_HMATRIX_NR];
// Setup SMC for NCS1
SMC_CS_SETUP(1)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
//! Whether to use the NCS2 pin
#ifdef SMC_USE_NCS2
#include SMC_COMPONENT_CS2
// Setup SMC for NCS2
SMC_CS_SETUP(2)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
//! Whether to use the NCS3 pin
#ifdef SMC_USE_NCS3
#include SMC_COMPONENT_CS3
// Setup SMC for NCS3
SMC_CS_SETUP(3)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
//! Whether to use the NCS4 pin
#ifdef SMC_USE_NCS4
#include SMC_COMPONENT_CS4
// Setup SMC for NCS4
SMC_CS_SETUP(4)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
//! Whether to use the NCS5 pin
#ifdef SMC_USE_NCS5
#include SMC_COMPONENT_CS5
// Setup SMC for NCS5
SMC_CS_SETUP(5)
#ifdef SMC_DBW_GLOBAL
#if (SMC_DBW_GLOBAL < SMC_DBW)
#undef SMC_DBW_GLOBAL
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#else
#if (SMC_DBW == 8)
#define SMC_DBW_GLOBAL 8
#elif (SMC_DBW == 16)
#define SMC_DBW_GLOBAL 16
#elif (SMC_DBW == 32)
#define SMC_DBW_GLOBAL 32
#else
#error error in SMC_DBW size
#endif
#endif
#ifdef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS_GLOBAL < SMC_8_BIT)
#undef SMC_8_BIT_CHIPS_GLOBAL
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#else
#if (SMC_8_BIT_CHIPS == TRUE)
#define SMC_8_BIT_CHIPS_GLOBAL TRUE
#elif (SMC_8_BIT_CHIPS == FALSE)
#define SMC_8_BIT_CHIPS_GLOBAL FALSE
#else
#error error in SMC_8_BIT_CHIPS size
#endif
#endif
#ifdef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE_GLOBAL < NWAIT_MODE)
#undef NWAIT_MODE_GLOBAL
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#else
#if (NWAIT_MODE == AVR32_SMC_EXNW_MODE_DISABLED)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_DISABLED
#elif (NWAIT_MODE == AVR32_SMC_EXNW_MODE_FROZEN)
#define NWAIT_MODE_GLOBAL AVR32_SMC_EXNW_MODE_FROZEN
#else
#error error in NWAIT_MODE size
#endif
#endif
#undef EXT_SM_SIZE
#undef SMC_DBW
#undef SMC_8_BIT_CHIPS
#undef NWE_SETUP
#undef NCS_WR_SETUP
#undef NRD_SETUP
#undef NCS_RD_SETUP
#undef NCS_WR_PULSE
#undef NWE_PULSE
#undef NCS_RD_PULSE
#undef NRD_PULSE
#undef NCS_WR_HOLD
#undef NWE_HOLD
#undef NWE_CYCLE
#undef NCS_RD_HOLD
#undef NRD_CYCLE
#undef TDF_CYCLES
#undef TDF_OPTIM
#undef PAGE_MODE
#undef PAGE_SIZE
#undef NCS_CONTROLLED_READ
#undef NCS_CONTROLLED_WRITE
#undef NWAIT_MODE
#endif
// Put the multiplexed MCU pins used for the SM under control of the SMC.
smc_enable_muxed_pins();
}
/*! \brief Puts the multiplexed MCU pins used for the SMC
*
*/
static void smc_enable_muxed_pins(void)
{
static const gpio_map_t SMC_EBI_GPIO_MAP =
{
// Enable data pins.
#ifdef EBI_DATA_0
{ATPASTE2(EBI_DATA_0,_PIN),ATPASTE2(EBI_DATA_0,_FUNCTION)},
#endif
#ifdef EBI_DATA_1
{ATPASTE2(EBI_DATA_1,_PIN),ATPASTE2(EBI_DATA_1,_FUNCTION)},
#endif
#ifdef EBI_DATA_2
{ATPASTE2(EBI_DATA_2,_PIN),ATPASTE2(EBI_DATA_2,_FUNCTION)},
#endif
#ifdef EBI_DATA_3
{ATPASTE2(EBI_DATA_3,_PIN),ATPASTE2(EBI_DATA_3,_FUNCTION)},
#endif
#ifdef EBI_DATA_4
{ATPASTE2(EBI_DATA_4,_PIN),ATPASTE2(EBI_DATA_4,_FUNCTION)},
#endif
#ifdef EBI_DATA_5
{ATPASTE2(EBI_DATA_5,_PIN),ATPASTE2(EBI_DATA_5,_FUNCTION)},
#endif
#ifdef EBI_DATA_6
{ATPASTE2(EBI_DATA_6,_PIN),ATPASTE2(EBI_DATA_6,_FUNCTION)},
#endif
#ifdef EBI_DATA_7
{ATPASTE2(EBI_DATA_7,_PIN),ATPASTE2(EBI_DATA_7,_FUNCTION)},
#endif
#ifdef EBI_DATA_8
{ATPASTE2(EBI_DATA_8,_PIN),ATPASTE2(EBI_DATA_8,_FUNCTION)},
#endif
#ifdef EBI_DATA_9
{ATPASTE2(EBI_DATA_9,_PIN),ATPASTE2(EBI_DATA_9,_FUNCTION)},
#endif
#ifdef EBI_DATA_10
{ATPASTE2(EBI_DATA_10,_PIN),ATPASTE2(EBI_DATA_10,_FUNCTION)},
#endif
#ifdef EBI_DATA_11
{ATPASTE2(EBI_DATA_11,_PIN),ATPASTE2(EBI_DATA_11,_FUNCTION)},
#endif
#ifdef EBI_DATA_12
{ATPASTE2(EBI_DATA_12,_PIN),ATPASTE2(EBI_DATA_12,_FUNCTION)},
#endif
#ifdef EBI_DATA_13
{ATPASTE2(EBI_DATA_13,_PIN),ATPASTE2(EBI_DATA_13,_FUNCTION)},
#endif
#ifdef EBI_DATA_14
{ATPASTE2(EBI_DATA_14,_PIN),ATPASTE2(EBI_DATA_14,_FUNCTION)},
#endif
#ifdef EBI_DATA_15
{ATPASTE2(EBI_DATA_15,_PIN),ATPASTE2(EBI_DATA_15,_FUNCTION)},
#endif
#ifdef EBI_DATA_16
{ATPASTE2(EBI_DATA_16,_PIN),ATPASTE2(EBI_DATA_16,_FUNCTION)},
#endif
#ifdef EBI_DATA_17
{ATPASTE2(EBI_DATA_17,_PIN),ATPASTE2(EBI_DATA_17,_FUNCTION)},
#endif
#ifdef EBI_DATA_18
{ATPASTE2(EBI_DATA_18,_PIN),ATPASTE2(EBI_DATA_18,_FUNCTION)},
#endif
#ifdef EBI_DATA_19
{ATPASTE2(EBI_DATA_19,_PIN),ATPASTE2(EBI_DATA_19,_FUNCTION)},
#endif
#ifdef EBI_DATA_20
{ATPASTE2(EBI_DATA_20,_PIN),ATPASTE2(EBI_DATA_20,_FUNCTION)},
#endif
#ifdef EBI_DATA_21
{ATPASTE2(EBI_DATA_21,_PIN),ATPASTE2(EBI_DATA_21,_FUNCTION)},
#endif
#ifdef EBI_DATA_22
{ATPASTE2(EBI_DATA_22,_PIN),ATPASTE2(EBI_DATA_22,_FUNCTION)},
#endif
#ifdef EBI_DATA_23
{ATPASTE2(EBI_DATA_23,_PIN),ATPASTE2(EBI_DATA_23,_FUNCTION)},
#endif
#ifdef EBI_DATA_24
{ATPASTE2(EBI_DATA_24,_PIN),ATPASTE2(EBI_DATA_24,_FUNCTION)},
#endif
#ifdef EBI_DATA_25
{ATPASTE2(EBI_DATA_25,_PIN),ATPASTE2(EBI_DATA_25,_FUNCTION)},
#endif
#ifdef EBI_DATA_26
{ATPASTE2(EBI_DATA_26,_PIN),ATPASTE2(EBI_DATA_26,_FUNCTION)},
#endif
#ifdef EBI_DATA_27
{ATPASTE2(EBI_DATA_27,_PIN),ATPASTE2(EBI_DATA_27,_FUNCTION)},
#endif
#ifdef EBI_DATA_28
{ATPASTE2(EBI_DATA_28,_PIN),ATPASTE2(EBI_DATA_28,_FUNCTION)},
#endif
#ifdef EBI_DATA_29
{ATPASTE2(EBI_DATA_29,_PIN),ATPASTE2(EBI_DATA_29,_FUNCTION)},
#endif
#ifdef EBI_DATA_30
{ATPASTE2(EBI_DATA_30,_PIN),ATPASTE2(EBI_DATA_30,_FUNCTION)},
#endif
#ifdef EBI_DATA_31
{ATPASTE2(EBI_DATA_31,_PIN),ATPASTE2(EBI_DATA_31,_FUNCTION)},
#endif
// Enable address pins.
#if SMC_DBW_GLOBAL <= 8
#ifdef EBI_ADDR_0
{ATPASTE2(EBI_ADDR_0,_PIN),ATPASTE2(EBI_ADDR_0,_FUNCTION)},
#endif
#endif
#if SMC_DBW_GLOBAL <= 16
#ifdef EBI_ADDR_1
{ATPASTE2(EBI_ADDR_1,_PIN),ATPASTE2(EBI_ADDR_1,_FUNCTION)},
#endif
#endif
#ifdef EBI_ADDR_2
{ATPASTE2(EBI_ADDR_2,_PIN),ATPASTE2(EBI_ADDR_2,_FUNCTION)},
#endif
#ifdef EBI_ADDR_3
{ATPASTE2(EBI_ADDR_3,_PIN),ATPASTE2(EBI_ADDR_3,_FUNCTION)},
#endif
#ifdef EBI_ADDR_4
{ATPASTE2(EBI_ADDR_4,_PIN),ATPASTE2(EBI_ADDR_4,_FUNCTION)},
#endif
#ifdef EBI_ADDR_5
{ATPASTE2(EBI_ADDR_5,_PIN),ATPASTE2(EBI_ADDR_5,_FUNCTION)},
#endif
#ifdef EBI_ADDR_6
{ATPASTE2(EBI_ADDR_6,_PIN),ATPASTE2(EBI_ADDR_6,_FUNCTION)},
#endif
#ifdef EBI_ADDR_7
{ATPASTE2(EBI_ADDR_7,_PIN),ATPASTE2(EBI_ADDR_7,_FUNCTION)},
#endif
#ifdef EBI_ADDR_8
{ATPASTE2(EBI_ADDR_8,_PIN),ATPASTE2(EBI_ADDR_8,_FUNCTION)},
#endif
#ifdef EBI_ADDR_9
{ATPASTE2(EBI_ADDR_9,_PIN),ATPASTE2(EBI_ADDR_9,_FUNCTION)},
#endif
#ifdef EBI_ADDR_10
{ATPASTE2(EBI_ADDR_10,_PIN),ATPASTE2(EBI_ADDR_10,_FUNCTION)},
#endif
#ifdef EBI_ADDR_11
{ATPASTE2(EBI_ADDR_11,_PIN),ATPASTE2(EBI_ADDR_11,_FUNCTION)},
#endif
#ifdef EBI_ADDR_12
{ATPASTE2(EBI_ADDR_12,_PIN),ATPASTE2(EBI_ADDR_12,_FUNCTION)},
#endif
#ifdef EBI_ADDR_13
{ATPASTE2(EBI_ADDR_13,_PIN),ATPASTE2(EBI_ADDR_13,_FUNCTION)},
#endif
#ifdef EBI_ADDR_14
{ATPASTE2(EBI_ADDR_14,_PIN),ATPASTE2(EBI_ADDR_14,_FUNCTION)},
#endif
#ifdef EBI_ADDR_15
{ATPASTE2(EBI_ADDR_15,_PIN),ATPASTE2(EBI_ADDR_15,_FUNCTION)},
#endif
#ifdef EBI_ADDR_16
{ATPASTE2(EBI_ADDR_16,_PIN),ATPASTE2(EBI_ADDR_16,_FUNCTION)},
#endif
#ifdef EBI_ADDR_17
{ATPASTE2(EBI_ADDR_17,_PIN),ATPASTE2(EBI_ADDR_17,_FUNCTION)},
#endif
#ifdef EBI_ADDR_18
{ATPASTE2(EBI_ADDR_18,_PIN),ATPASTE2(EBI_ADDR_18,_FUNCTION)},
#endif
#ifdef EBI_ADDR_19
{ATPASTE2(EBI_ADDR_19,_PIN),ATPASTE2(EBI_ADDR_19,_FUNCTION)},
#endif
#ifdef EBI_ADDR_20
{ATPASTE2(EBI_ADDR_20,_PIN),ATPASTE2(EBI_ADDR_20,_FUNCTION)},
#endif
#ifdef EBI_ADDR_21
{ATPASTE2(EBI_ADDR_21,_PIN),ATPASTE2(EBI_ADDR_21,_FUNCTION)},
#endif
#ifdef EBI_ADDR_22
{ATPASTE2(EBI_ADDR_22,_PIN),ATPASTE2(EBI_ADDR_22,_FUNCTION)},
#endif
#ifdef EBI_ADDR_23
{ATPASTE2(EBI_ADDR_23,_PIN),ATPASTE2(EBI_ADDR_23,_FUNCTION)},
#endif
#if SMC_DBW_GLOBAL <= 8
#undef SMC_8_BIT_CHIPS
#define SMC_8_BIT_CHIPS TRUE
#endif
// Enable data mask pins.
#if !SMC_8_BIT_CHIPS_GLOBAL
#ifdef EBI_ADDR_0
{ATPASTE2(EBI_ADDR_0,_PIN),ATPASTE2(EBI_ADDR_0,_FUNCTION)},
#endif
#endif
#ifdef EBI_NWE0
{ATPASTE2(EBI_NWE0,_PIN),ATPASTE2(EBI_NWE0,_FUNCTION)},
#endif
#if SMC_DBW_GLOBAL >= 16
#ifdef EBI_NWE1
{ATPASTE2(EBI_NWE1,_PIN),ATPASTE2(EBI_NWE1,_FUNCTION)},
#endif
#if SMC_DBW_GLOBAL >= 32
#ifdef EBI_ADDR_1
{ATPASTE2(EBI_ADDR_1,_PIN),ATPASTE2(EBI_ADDR_1,_FUNCTION)},
#endif
#ifdef EBI_NWE3
{ATPASTE2(EBI_NWE3,_PIN),ATPASTE2(EBI_NWE3,_FUNCTION)},
#endif
#endif
#endif
#ifdef EBI_NRD
{ATPASTE2(EBI_NRD,_PIN),ATPASTE2(EBI_NRD,_FUNCTION)},
#endif
// Enable control pins.
#if NWAIT_MODE_GLOBAL != AVR32_SMC_EXNW_MODE_DISABLED
#ifdef EBI_NWAIT
{ATPASTE2(EBI_NWAIT,_PIN),ATPASTE2(EBI_NWAIT,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS0
#ifdef EBI_NCS_0
{ATPASTE2(EBI_NCS_0,_PIN),ATPASTE2(EBI_NCS_0,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS1
#ifdef EBI_NCS_1
{ATPASTE2(EBI_NCS_1,_PIN),ATPASTE2(EBI_NCS_1,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS2
#ifdef EBI_NCS_2
{ATPASTE2(EBI_NCS_2,_PIN),ATPASTE2(EBI_NCS_2,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS3
#ifdef EBI_NCS_3
{ATPASTE2(EBI_NCS_3,_PIN),ATPASTE2(EBI_NCS_3,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS4
#ifdef EBI_NCS_4
{ATPASTE2(EBI_NCS_4,_PIN),ATPASTE2(EBI_NCS_4,_FUNCTION)},
#endif
#endif
#ifdef SMC_USE_NCS5
#ifdef EBI_NCS_5
{ATPASTE2(EBI_NCS_5,_PIN),ATPASTE2(EBI_NCS_5,_FUNCTION)},
#endif
#endif
};
gpio_enable_module(SMC_EBI_GPIO_MAP, sizeof(SMC_EBI_GPIO_MAP) / sizeof(SMC_EBI_GPIO_MAP[0]));
}
unsigned char smc_get_cs_size(unsigned char cs)
{
return smc_tab_cs_size[cs];
}

View File

@@ -0,0 +1,68 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief SMC on EBI driver for AVR32 UC3.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a SMC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _SMC_H_
#define _SMC_H_
#include <avr32/io.h>
#include "compiler.h"
#include "conf_ebi.h"
/*! \brief Initializes the AVR32 SMC module and the connected SRAM(s).
* \param hsb_hz HSB frequency in Hz (the HSB frequency is applied to the SMC).
* \note Each access to the SMC address space validates the mode of the SMC
* and generates an operation corresponding to this mode.
*/
extern void smc_init(unsigned long hsb_hz);
/*! \brief Return the size of the peripheral connected .
* \param cs The chip select value
*/
extern unsigned char smc_get_cs_size(unsigned char cs);
#endif // _SMC_H_

View File

@@ -0,0 +1,183 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief EIC driver for AVR32 UC3.
*
* AVR32 External Interrupt Controller driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an EIC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <avr32/io.h>
#include "compiler.h"
#include "preprocessor.h"
#include "eic.h"
void eic_init(volatile avr32_eic_t *eic, const eic_options_t *opt, unsigned int nb_lines)
{
int i;
for (i = 0; i < nb_lines; i++)
{
// Set up mode level
eic->mode = (opt[i].eic_mode == 1) ? (eic->mode | (1 << opt[i].eic_line)) : (eic->mode & ~(1 << opt[i].eic_line));
// Set up edge type
eic->edge = (opt[i].eic_edge == 1) ? (eic->edge | (1 << opt[i].eic_line)) : (eic->edge & ~(1 << opt[i].eic_line));
// Set up level
eic->level = (opt[i].eic_level == 1) ? (eic->level | (1 << opt[i].eic_line)) : (eic->level & ~(1 << opt[i].eic_line));
// Set up if filter is used
eic->filter = (opt[i].eic_filter == 1) ? (eic->filter | (1 << opt[i].eic_line)) : (eic->filter & ~(1 << opt[i].eic_line));
// Set up which mode is used : asynchronous mode/ synchronous mode
eic->async = (opt[i].eic_async == 1) ? (eic->async | (1 << opt[i].eic_line)) : (eic->async & ~(1 << opt[i].eic_line));
}
}
void eic_enable_lines(volatile avr32_eic_t *eic, unsigned int mask_lines)
{
eic->en = mask_lines;
}
void eic_enable_line(volatile avr32_eic_t *eic, unsigned int line_number)
{
// Enable line line_number
eic->en = 1 << line_number;
}
void eic_disable_lines(volatile avr32_eic_t *eic, unsigned int mask_lines)
{
eic->dis = mask_lines;
}
void eic_disable_line(volatile avr32_eic_t *eic, unsigned int line_number)
{
// Disable line line_number
eic->dis = 1 << line_number;
}
Bool eic_is_line_enabled(volatile avr32_eic_t *eic, unsigned int line_number)
{
return (eic->ctrl & (1 << line_number)) != 0;
}
void eic_enable_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines)
{
eic->ier = mask_lines;
}
void eic_enable_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number)
{
// Enable line line_number
eic->ier = 1 << line_number;
}
void eic_disable_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
eic->idr = mask_lines;
eic->imr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void eic_disable_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
// Disable line line_number
if (global_interrupt_enabled) Disable_global_interrupt();
eic->idr = 1 << line_number;
eic->imr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
Bool eic_is_interrupt_line_enabled(volatile avr32_eic_t *eic, unsigned int line_number)
{
return (eic->imr & (1 << line_number)) != 0;
}
void eic_clear_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
eic->icr = mask_lines;
eic->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void eic_clear_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
// Clear line line_number
if (global_interrupt_enabled) Disable_global_interrupt();
eic->icr = 1 << line_number;
eic->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
Bool eic_is_interrupt_line_pending(volatile avr32_eic_t *eic, unsigned int line_number)
{
return (eic->isr & (1 << line_number)) != 0;
}
#if !defined(AVR32_EIC_301_H_INCLUDED)
void eic_enable_interrupt_scan(volatile avr32_eic_t *eic,unsigned int presc)
{
// Enable SCAN function with PRESC value
eic->scan |= (presc << AVR32_EIC_SCAN_PRESC_OFFSET) | (1 << AVR32_EIC_SCAN_EN_OFFSET);
}
void eic_disable_interrupt_scan(volatile avr32_eic_t *eic)
{
// Disable SCAN function
eic->scan = 0 << AVR32_EIC_SCAN_EN_OFFSET;
}
unsigned long eic_get_interrupt_pad_scan(volatile avr32_eic_t *eic)
{
// Return pad number that causes interrupt
return(eic->scan>>AVR32_EIC_SCAN_PIN_OFFSET);
}
#endif

View File

@@ -0,0 +1,275 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief EIC driver for AVR32 UC3.
*
* AVR32 External Interrupt Controller driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an EIC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _EIC_H_
#define _EIC_H_
#include "compiler.h"
/*! \name External Interrupt lines
*/
//! @{
#if (UC3A || UC3B)
#define EXT_INT0 AVR32_EIC_INT0 //!< Line 0
#define EXT_INT1 AVR32_EIC_INT1 //!< Line 1
#define EXT_INT2 AVR32_EIC_INT2 //!< Line 2
#define EXT_INT3 AVR32_EIC_INT3 //!< Line 3
#define EXT_INT4 AVR32_EIC_INT4 //!< Line 4
#define EXT_INT5 AVR32_EIC_INT5 //!< Line 5
#define EXT_INT6 AVR32_EIC_INT6 //!< Line 6
#define EXT_INT7 AVR32_EIC_INT7 //!< Line 7
#define EXT_NMI AVR32_EIC_NMI //!< Line 8
#else
#define EXT_INT0 AVR32_EIC_INT1 //!< Line 0
#define EXT_INT1 AVR32_EIC_INT2 //!< Line 1
#define EXT_INT2 AVR32_EIC_INT3 //!< Line 2
#define EXT_INT3 AVR32_EIC_INT4 //!< Line 3
#define EXT_INT4 AVR32_EIC_INT5 //!< Line 4
#define EXT_INT5 AVR32_EIC_INT6 //!< Line 5
#define EXT_INT6 AVR32_EIC_INT7 //!< Line 6
#define EXT_INT7 AVR32_EIC_INT8 //!< Line 7
#define EXT_NMI AVR32_EIC_NMI //!< Line 8
#endif
//! @}
/*! \name Mode Trigger Options
*/
//! @{
#define EIC_MODE_EDGE_TRIGGERED AVR32_EIC_EDGE_IRQ //!<
#define EIC_MODE_LEVEL_TRIGGERED AVR32_EIC_LEVEL_IRQ //!<
//! @}
/*! \name Edge level Options
*/
//! @{
#define EIC_EDGE_FALLING_EDGE AVR32_EIC_FALLING_EDGE //!<
#define EIC_EDGE_RISING_EDGE AVR32_EIC_RISING_EDGE //!<
//! @}
/*! \name Level Options
*/
//! @{
#define EIC_LEVEL_LOW_LEVEL AVR32_EIC_LOW_LEVEL //!<
#define EIC_LEVEL_HIGH_LEVEL AVR32_EIC_HIGH_LEVEL //!<
//! @}
/*! \name Filter Options
*/
//! @{
#define EIC_FILTER_ENABLED AVR32_EIC_FILTER_ON //!<
#define EIC_FILTER_DISABLED AVR32_EIC_FILTER_OFF //!<
//! @}
/*! \name Synch Mode Options
*/
//! @{
#define EIC_SYNCH_MODE AVR32_EIC_SYNC //!<
#define EIC_ASYNCH_MODE AVR32_EIC_USE_ASYNC //!<
//! @}
//! Configuration parameters of the EIC module.
typedef struct
{
//!Line
unsigned char eic_line;
//! Mode : EDGE_LEVEL or TRIGGER_LEVEL
unsigned char eic_mode;
//! Edge : FALLING_EDGE or RISING_EDGE
unsigned char eic_edge;
//! Level : LOW_LEVEL or HIGH_LEVEL
unsigned char eic_level;
//! Filter: NOT_FILTERED or FILTERED
unsigned char eic_filter;
//! Async: SYNC mode or ASYNC
unsigned char eic_async;
} eic_options_t;
/*! \brief Init the EIC driver.
*
* \param eic Base address of the EIC module
* \param opt Configuration parameters of the EIC module (see \ref eic_options_t)
* \param nb_lines Number of lines to consider, equal to size of opt buffer
*/
extern void eic_init(volatile avr32_eic_t *eic, const eic_options_t *opt, unsigned int nb_lines);
/*! \brief Enable the EIC driver.
*
* \param eic Base address of the EIC module
* \param mask_lines Mask for current selected lines
*/
extern void eic_enable_lines(volatile avr32_eic_t *eic, unsigned int mask_lines);
/*! \brief Enable the EIC driver.
*
* \param eic Base address of the EIC module
* \param line_number Line number to enable
*/
extern void eic_enable_line(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Disable the EIC driver.
*
* \param eic Base address of the EIC module
* \param mask_lines Mask for current selected lines
*/
extern void eic_disable_lines(volatile avr32_eic_t *eic, unsigned int mask_lines);
/*! \brief Disable the EIC driver.
*
* \param eic Base address of the EIC module
* \param line_number Line number to disable
*/
extern void eic_disable_line(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Tells whether an EIC line is enabled.
*
* \param eic Base address of the EIC module
* \param line_number Line number to test
*
* \return Whether an EIC line is enabled.
*/
extern Bool eic_is_line_enabled(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \name Interrupt Control Functions
*/
//! @{
/*! \brief Enable the interrupt feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param mask_lines Mask for current selected lines
*/
extern void eic_enable_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines);
/*! \brief Enable the interrupt feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param line_number Line number to enable
*/
extern void eic_enable_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Disable the interrupt feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param mask_lines Mask for current selected lines
*/
extern void eic_disable_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines);
/*! \brief Disable the interrupt feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param line_number Line number to disable
*/
extern void eic_disable_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Tells whether an EIC interrupt line is enabled.
*
* \param eic Base address of the EIC module
* \param line_number Line number to test
*
* \return Whether an EIC interrupt line is enabled.
*/
extern Bool eic_is_interrupt_line_enabled(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Clear the interrupt flag.
* Call this function once you've handled the interrupt.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param mask_lines Mask for current selected lines
*/
extern void eic_clear_interrupt_lines(volatile avr32_eic_t *eic, unsigned int mask_lines);
/*! \brief Clear the interrupt flag.
* Call this function once you've handled the interrupt.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param line_number Line number to clear
*/
extern void eic_clear_interrupt_line(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Tells whether an EIC interrupt line is pending.
*
* \param eic Base address of the EIC module
* \param line_number Line number to test
*
* \return Whether an EIC interrupt line is pending.
*/
extern Bool eic_is_interrupt_line_pending(volatile avr32_eic_t *eic, unsigned int line_number);
/*! \brief Enable the interrupt scan feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
* \param presc Prescale select for the keypad scan rate in the range [0,31].
*/
extern void eic_enable_interrupt_scan(volatile avr32_eic_t *eic, unsigned int presc);
/*! \brief Disable the interrupt scan feature of the EIC.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
*/
extern void eic_disable_interrupt_scan(volatile avr32_eic_t *eic);
/*! \brief Return scan pad number that causes interrupt.
*
* \param eic Base address of the EIC (i.e. &AVR32_EIC).
*/
extern unsigned long eic_get_interrupt_pad_scan(volatile avr32_eic_t *eic);
//! @}
#endif // _EIC_H_

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,458 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief GPIO driver for AVR32 UC3.
*
* This file defines a useful set of functions for the GPIO.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a GPIO module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "gpio.h"
//! GPIO module instance.
#define GPIO AVR32_GPIO
/*! \name Peripheral Bus Interface
*/
//! @{
int gpio_enable_module(const gpio_map_t gpiomap, unsigned int size)
{
int status = GPIO_SUCCESS;
unsigned int i;
for (i = 0; i < size; i++)
{
status |= gpio_enable_module_pin(gpiomap->pin, gpiomap->function);
gpiomap++;
}
return status;
}
int gpio_enable_module_pin(unsigned int pin, unsigned int function)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
// Enable the correct function.
switch (function)
{
case 0: // A function.
gpio_port->pmr0c = 1 << (pin & 0x1F);
gpio_port->pmr1c = 1 << (pin & 0x1F);
#if defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
gpio_port->pmr2c = 1 << (pin & 0x1F);
#endif
break;
case 1: // B function.
gpio_port->pmr0s = 1 << (pin & 0x1F);
gpio_port->pmr1c = 1 << (pin & 0x1F);
#if defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
gpio_port->pmr2c = 1 << (pin & 0x1F);
#endif
break;
case 2: // C function.
gpio_port->pmr0c = 1 << (pin & 0x1F);
gpio_port->pmr1s = 1 << (pin & 0x1F);
#if defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
gpio_port->pmr2c = 1 << (pin & 0x1F);
#endif
break;
case 3: // D function.
gpio_port->pmr0s = 1 << (pin & 0x1F);
gpio_port->pmr1s = 1 << (pin & 0x1F);
#if defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
gpio_port->pmr2c = 1 << (pin & 0x1F);
#endif
break;
#if defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
case 4: // E function.
gpio_port->pmr0c = 1 << (pin & 0x1F);
gpio_port->pmr1c = 1 << (pin & 0x1F);
gpio_port->pmr2s = 1 << (pin & 0x1F);
break;
case 5: // F function.
gpio_port->pmr0s = 1 << (pin & 0x1F);
gpio_port->pmr1c = 1 << (pin & 0x1F);
gpio_port->pmr2s = 1 << (pin & 0x1F);
break;
case 6: // G function.
gpio_port->pmr0c = 1 << (pin & 0x1F);
gpio_port->pmr1s = 1 << (pin & 0x1F);
gpio_port->pmr2s = 1 << (pin & 0x1F);
break;
case 7: // H function.
gpio_port->pmr0s = 1 << (pin & 0x1F);
gpio_port->pmr1s = 1 << (pin & 0x1F);
gpio_port->pmr2s = 1 << (pin & 0x1F);
break;
#endif
default:
return GPIO_INVALID_ARGUMENT;
}
// Disable GPIO control.
gpio_port->gperc = 1 << (pin & 0x1F);
return GPIO_SUCCESS;
}
void gpio_enable_gpio(const gpio_map_t gpiomap, unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++)
{
gpio_enable_gpio_pin(gpiomap->pin);
gpiomap++;
}
}
void gpio_enable_gpio_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->oderc = 1 << (pin & 0x1F);
gpio_port->gpers = 1 << (pin & 0x1F);
}
// The open-drain mode is not synthesized on the current AVR32 products.
// If one day some AVR32 products have this feature, the corresponding part
// numbers should be listed in the #if below.
// Note that other functions are available in this driver to use pins with open
// drain in GPIO mode. The advantage of the open-drain mode functions over these
// other functions is that they can be used not only in GPIO mode but also in
// module mode.
#if 0
void gpio_enable_pin_open_drain(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->odmers = 1 << (pin & 0x1F);
}
void gpio_disable_pin_open_drain(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->odmerc = 1 << (pin & 0x1F);
}
#endif
void gpio_enable_pin_pull_up(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->puers = 1 << (pin & 0x1F);
#if defined(AVR32_GPIO_200_H_INCLUDED) || defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
gpio_port->pderc = 1 << (pin & 0x1F);
#endif
}
void gpio_disable_pin_pull_up(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->puerc = 1 << (pin & 0x1F);
}
#if defined(AVR32_GPIO_200_H_INCLUDED) || defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
// Added support of Pull-up Resistor, Pull-down Resistor and Buskeeper Control.
/*! \brief Enables the pull-down resistor of a pin.
*
* \param pin The pin number.
*/
void gpio_enable_pin_pull_down(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->puerc = 1 << (pin & 0x1F);
gpio_port->pders = 1 << (pin & 0x1F);
}
/*! \brief Disables the pull-down resistor of a pin.
*
* \param pin The pin number.
*/
void gpio_disable_pin_pull_down(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->pderc = 1 << (pin & 0x1F);
}
/*! \brief Enables the buskeeper functionality on a pin.
*
* \param pin The pin number.
*/
void gpio_enable_pin_buskeeper(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->puers = 1 << (pin & 0x1F);
gpio_port->pders = 1 << (pin & 0x1F);
}
/*! \brief Disables the buskeeper functionality on a pin.
*
* \param pin The pin number.
*/
void gpio_disable_pin_buskeeper(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->puerc = 1 << (pin & 0x1F);
gpio_port->pderc = 1 << (pin & 0x1F);
}
#endif
int gpio_get_pin_value(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
return (gpio_port->pvr >> (pin & 0x1F)) & 1;
}
int gpio_get_gpio_pin_output_value(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
return (gpio_port->ovr >> (pin & 0x1F)) & 1;
}
int gpio_get_gpio_open_drain_pin_output_value(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
return ((gpio_port->oder >> (pin & 0x1F)) & 1) ^ 1;
}
void gpio_set_gpio_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ovrs = 1 << (pin & 0x1F); // Value to be driven on the I/O line: 1.
gpio_port->oders = 1 << (pin & 0x1F); // The GPIO output driver is enabled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_clr_gpio_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ovrc = 1 << (pin & 0x1F); // Value to be driven on the I/O line: 0.
gpio_port->oders = 1 << (pin & 0x1F); // The GPIO output driver is enabled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_tgl_gpio_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ovrt = 1 << (pin & 0x1F); // Toggle the I/O line.
gpio_port->oders = 1 << (pin & 0x1F); // The GPIO output driver is enabled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_set_gpio_open_drain_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->oderc = 1 << (pin & 0x1F); // The GPIO output driver is disabled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_clr_gpio_open_drain_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ovrc = 1 << (pin & 0x1F); // Value to be driven on the I/O line: 0.
gpio_port->oders = 1 << (pin & 0x1F); // The GPIO output driver is enabled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_tgl_gpio_open_drain_pin(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ovrc = 1 << (pin & 0x1F); // Value to be driven on the I/O line if the GPIO output driver is enabled: 0.
gpio_port->odert = 1 << (pin & 0x1F); // The GPIO output driver is toggled for that pin.
gpio_port->gpers = 1 << (pin & 0x1F); // The GPIO module controls that pin.
}
void gpio_enable_pin_glitch_filter(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->gfers = 1 << (pin & 0x1F);
}
void gpio_disable_pin_glitch_filter(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->gferc = 1 << (pin & 0x1F);
}
/*! \brief Configure the edge detector of an input pin
*
* \param pin The pin number.
* \param mode The edge detection mode (\ref GPIO_PIN_CHANGE, \ref GPIO_RISING_EDGE
* or \ref GPIO_FALLING_EDGE).
*
* \return \ref GPIO_SUCCESS or \ref GPIO_INVALID_ARGUMENT.
*/
static int gpio_configure_edge_detector(unsigned int pin, unsigned int mode)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
// Configure the edge detector.
switch (mode)
{
case GPIO_PIN_CHANGE:
gpio_port->imr0c = 1 << (pin & 0x1F);
gpio_port->imr1c = 1 << (pin & 0x1F);
break;
case GPIO_RISING_EDGE:
gpio_port->imr0s = 1 << (pin & 0x1F);
gpio_port->imr1c = 1 << (pin & 0x1F);
break;
case GPIO_FALLING_EDGE:
gpio_port->imr0c = 1 << (pin & 0x1F);
gpio_port->imr1s = 1 << (pin & 0x1F);
break;
default:
return GPIO_INVALID_ARGUMENT;
}
return GPIO_SUCCESS;
}
int gpio_enable_pin_interrupt(unsigned int pin, unsigned int mode)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
// Enable the glitch filter.
gpio_port->gfers = 1 << (pin & 0x1F);
// Configure the edge detector.
if(GPIO_INVALID_ARGUMENT == gpio_configure_edge_detector(pin, mode))
return(GPIO_INVALID_ARGUMENT);
// Enable interrupt.
gpio_port->iers = 1 << (pin & 0x1F);
return GPIO_SUCCESS;
}
void gpio_disable_pin_interrupt(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ierc = 1 << (pin & 0x1F);
}
int gpio_get_pin_interrupt_flag(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
return (gpio_port->ifr >> (pin & 0x1F)) & 1;
}
void gpio_clear_pin_interrupt_flag(unsigned int pin)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
gpio_port->ifrc = 1 << (pin & 0x1F);
}
//#
//# Peripheral Event System Support.
//#
#if UC3L
int gpio_configure_pin_periph_event_mode(unsigned int pin, unsigned int mode, unsigned int use_igf)
{
volatile avr32_gpio_port_t *gpio_port = &GPIO.port[pin >> 5];
if(TRUE == use_igf)
{
// Enable the glitch filter.
gpio_port->gfers = 1 << (pin & 0x1F);
}
else
{
// Disable the glitch filter.
gpio_port->gferc = 1 << (pin & 0x1F);
}
// Configure the edge detector.
return(gpio_configure_edge_detector(pin, mode));
}
#endif
//! @}

View File

@@ -0,0 +1,583 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief GPIO header for AVR32 UC3.
*
* This file contains basic GPIO driver functions.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a GPIO module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _GPIO_H_
#define _GPIO_H_
#include <avr32/io.h>
#include "compiler.h"
/*! \name Return Values of the GPIO API
*/
//! @{
#define GPIO_SUCCESS 0 //!< Function successfully completed.
#define GPIO_INVALID_ARGUMENT 1 //!< Input parameters are out of range.
//! @}
/*! \name Interrupt Trigger Modes
*/
//! @{
#define GPIO_PIN_CHANGE 0 //!< Interrupt triggered upon pin change.
#define GPIO_RISING_EDGE 1 //!< Interrupt triggered upon rising edge.
#define GPIO_FALLING_EDGE 2 //!< Interrupt triggered upon falling edge.
//! @}
//! A type definition of pins and modules connectivity.
typedef struct
{
unsigned char pin; //!< Module pin.
unsigned char function; //!< Module function.
} gpio_map_t[];
/*! \name Peripheral Bus Interface
*
* Low-speed interface with a non-deterministic number of clock cycles per
* access.
*
* This interface operates with lower clock frequencies (fPB <= fCPU), and its
* timing is not deterministic since it needs to access a shared bus which may
* be heavily loaded.
*
* \note This interface is immediately available without initialization.
*/
//! @{
/*! \brief Enables specific module modes for a set of pins.
*
* \param gpiomap The pin map.
* \param size The number of pins in \a gpiomap.
*
* \return \ref GPIO_SUCCESS or \ref GPIO_INVALID_ARGUMENT.
*/
extern int gpio_enable_module(const gpio_map_t gpiomap, unsigned int size);
/*! \brief Enables a specific module mode for a pin.
*
* \param pin The pin number.\n
* Refer to the product header file `uc3x.h' (where x is the part
* number; e.g. x = a0512) for module pins. E.g., to enable a PWM
* channel output, the pin number can be AVR32_PWM_3_PIN for PWM
* channel 3.
* \param function The pin function.\n
* Refer to the product header file `uc3x.h' (where x is the
* part number; e.g. x = a0512) for module pin functions. E.g.,
* to enable a PWM channel output, the pin function can be
* AVR32_PWM_3_FUNCTION for PWM channel 3.
*
* \return \ref GPIO_SUCCESS or \ref GPIO_INVALID_ARGUMENT.
*/
extern int gpio_enable_module_pin(unsigned int pin, unsigned int function);
/*! \brief Enables the GPIO mode of a set of pins.
*
* \param gpiomap The pin map.
* \param size The number of pins in \a gpiomap.
*/
extern void gpio_enable_gpio(const gpio_map_t gpiomap, unsigned int size);
/*! \brief Enables the GPIO mode of a pin.
*
* \param pin The pin number.\n
* Refer to the product header file `uc3x.h' (where x is the part
* number; e.g. x = a0512) for pin definitions. E.g., to enable the
* GPIO mode of PX21, AVR32_PIN_PX21 can be used. Module pins such as
* AVR32_PWM_3_PIN for PWM channel 3 can also be used to release
* module pins for GPIO.
*/
extern void gpio_enable_gpio_pin(unsigned int pin);
// The open-drain mode is not synthesized on the current AVR32 products.
// If one day some AVR32 products have this feature, the corresponding part
// numbers should be listed in the #if below.
// Note that other functions are available in this driver to use pins with open
// drain in GPIO mode. The advantage of the open-drain mode functions over these
// other functions is that they can be used not only in GPIO mode but also in
// module mode.
#if 0
/*! \brief Enables the open-drain mode of a pin.
*
* \param pin The pin number.
*/
extern void gpio_enable_pin_open_drain(unsigned int pin);
/*! \brief Disables the open-drain mode of a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_open_drain(unsigned int pin);
#endif
/*! \brief Enables the pull-up resistor of a pin.
*
* \param pin The pin number.
*/
extern void gpio_enable_pin_pull_up(unsigned int pin);
/*! \brief Disables the pull-up resistor of a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_pull_up(unsigned int pin);
#if defined(AVR32_GPIO_200_H_INCLUDED) || defined(AVR32_GPIO_210_H_INCLUDED) || defined(AVR32_GPIO_211_H_INCLUDED)
// Added support of Pull-up Resistor, Pull-down Resistor and Buskeeper Control.
/*! \brief Enables the pull-down resistor of a pin.
*
* \param pin The pin number.
*/
extern void gpio_enable_pin_pull_down(unsigned int pin);
/*! \brief Disables the pull-down resistor of a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_pull_down(unsigned int pin);
/*! \brief Enables the buskeeper functionality on a pin.
*
* \param pin The pin number.
*/
extern void gpio_enable_pin_buskeeper(unsigned int pin);
/*! \brief Disables the buskeeper functionality on a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_buskeeper(unsigned int pin);
#endif
/*! \brief Returns the value of a pin.
*
* \param pin The pin number.
*
* \return The pin value.
*/
extern int gpio_get_pin_value(unsigned int pin);
/*! \brief Returns the output value set for a GPIO pin.
*
* \param pin The pin number.
*
* \return The pin output value.
*
* \note This function must be used in conjunction with \ref gpio_set_gpio_pin,
* \ref gpio_clr_gpio_pin and \ref gpio_tgl_gpio_pin.
*/
extern int gpio_get_gpio_pin_output_value(unsigned int pin);
/*! \brief Returns the output value set for a GPIO pin using open drain.
*
* \param pin The pin number.
*
* \return The pin output value.
*
* \note This function must be used in conjunction with
* \ref gpio_set_gpio_open_drain_pin, \ref gpio_clr_gpio_open_drain_pin
* and \ref gpio_tgl_gpio_open_drain_pin.
*/
extern int gpio_get_gpio_open_drain_pin_output_value(unsigned int pin);
/*! \brief Drives a GPIO pin to 1.
*
* \param pin The pin number.
*/
extern void gpio_set_gpio_pin(unsigned int pin);
/*! \brief Drives a GPIO pin to 0.
*
* \param pin The pin number.
*/
extern void gpio_clr_gpio_pin(unsigned int pin);
/*! \brief Toggles a GPIO pin.
*
* \param pin The pin number.
*/
extern void gpio_tgl_gpio_pin(unsigned int pin);
/*! \brief Drives a GPIO pin to 1 using open drain.
*
* \param pin The pin number.
*/
extern void gpio_set_gpio_open_drain_pin(unsigned int pin);
/*! \brief Drives a GPIO pin to 0 using open drain.
*
* \param pin The pin number.
*/
extern void gpio_clr_gpio_open_drain_pin(unsigned int pin);
/*! \brief Toggles a GPIO pin using open drain.
*
* \param pin The pin number.
*/
extern void gpio_tgl_gpio_open_drain_pin(unsigned int pin);
/*! \brief Enables the glitch filter of a pin.
*
* When the glitch filter is enabled, a glitch with duration of less than 1
* clock cycle is automatically rejected, while a pulse with duration of 2 clock
* cycles or more is accepted. For pulse durations between 1 clock cycle and 2
* clock cycles, the pulse may or may not be taken into account, depending on
* the precise timing of its occurrence. Thus for a pulse to be guaranteed
* visible it must exceed 2 clock cycles, whereas for a glitch to be reliably
* filtered out, its duration must not exceed 1 clock cycle. The filter
* introduces 2 clock cycles latency.
*
* \param pin The pin number.
*/
extern void gpio_enable_pin_glitch_filter(unsigned int pin);
/*! \brief Disables the glitch filter of a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_glitch_filter(unsigned int pin);
/*! \brief Enables the interrupt of a pin with the specified settings.
*
* \param pin The pin number.
* \param mode The trigger mode (\ref GPIO_PIN_CHANGE, \ref GPIO_RISING_EDGE or
* \ref GPIO_FALLING_EDGE).
*
* \return \ref GPIO_SUCCESS or \ref GPIO_INVALID_ARGUMENT.
*/
extern int gpio_enable_pin_interrupt(unsigned int pin, unsigned int mode);
/*! \brief Disables the interrupt of a pin.
*
* \param pin The pin number.
*/
extern void gpio_disable_pin_interrupt(unsigned int pin);
/*! \brief Gets the interrupt flag of a pin.
*
* \param pin The pin number.
*
* \return The pin interrupt flag.
*/
extern int gpio_get_pin_interrupt_flag(unsigned int pin);
/*! \brief Clears the interrupt flag of a pin.
*
* \param pin The pin number.
*/
extern void gpio_clear_pin_interrupt_flag(unsigned int pin);
//! @}
#if (defined AVR32_GPIO_LOCAL_ADDRESS)
/*! \name Local Bus Interface
*
* High-speed interface with only one clock cycle per access.
*
* This interface operates with high clock frequency (fCPU), and its timing is
* deterministic since it does not need to access a shared bus which may be
* heavily loaded.
*
* \warning To use this interface, the clock frequency of the peripheral bus on
* which the GPIO peripheral is connected must be set to the CPU clock
* frequency (fPB = fCPU).
*
* \note This interface has to be initialized in order to be available.
*/
//! @{
/*! \brief Enables the local bus interface for GPIO.
*
* \note This function must have been called at least once before using other
* functions in this interface.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_init(void)
{
Set_system_register(AVR32_CPUCR,
Get_system_register(AVR32_CPUCR) | AVR32_CPUCR_LOCEN_MASK);
}
/*! \brief Enables the output driver of a pin.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init must have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin.
* \ref gpio_enable_gpio_pin can be called for this purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_enable_pin_output_driver(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].oders = 1 << (pin & 0x1F);
}
/*! \brief Disables the output driver of a pin.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init must have been called beforehand.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_disable_pin_output_driver(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].oderc = 1 << (pin & 0x1F);
}
/*! \brief Returns the value of a pin.
*
* \param pin The pin number.
*
* \return The pin value.
*
* \note \ref gpio_local_init must have been called beforehand.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int gpio_local_get_pin_value(unsigned int pin)
{
return (AVR32_GPIO_LOCAL.port[pin >> 5].pvr >> (pin & 0x1F)) & 1;
}
/*! \brief Drives a GPIO pin to 1.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init must have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin nor its output
* driver. \ref gpio_enable_gpio_pin and
* \ref gpio_local_enable_pin_output_driver can be called for this
* purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_set_gpio_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].ovrs = 1 << (pin & 0x1F);
}
/*! \brief Drives a GPIO pin to 0.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init must have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin nor its output
* driver. \ref gpio_enable_gpio_pin and
* \ref gpio_local_enable_pin_output_driver can be called for this
* purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_clr_gpio_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].ovrc = 1 << (pin & 0x1F);
}
/*! \brief Toggles a GPIO pin.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init must have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin nor its output
* driver. \ref gpio_enable_gpio_pin and
* \ref gpio_local_enable_pin_output_driver can be called for this
* purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_tgl_gpio_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].ovrt = 1 << (pin & 0x1F);
}
/*! \brief Initializes the configuration of a GPIO pin so that it can be used
* with GPIO open-drain functions.
*
* \note This function must have been called at least once before using
* \ref gpio_local_set_gpio_open_drain_pin,
* \ref gpio_local_clr_gpio_open_drain_pin or
* \ref gpio_local_tgl_gpio_open_drain_pin.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_init_gpio_open_drain_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].ovrc = 1 << (pin & 0x1F);
}
/*! \brief Drives a GPIO pin to 1 using open drain.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init and \ref gpio_local_init_gpio_open_drain_pin must
* have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin.
* \ref gpio_enable_gpio_pin can be called for this purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_set_gpio_open_drain_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].oderc = 1 << (pin & 0x1F);
}
/*! \brief Drives a GPIO pin to 0 using open drain.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init and \ref gpio_local_init_gpio_open_drain_pin must
* have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin.
* \ref gpio_enable_gpio_pin can be called for this purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_clr_gpio_open_drain_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].oders = 1 << (pin & 0x1F);
}
/*! \brief Toggles a GPIO pin using open drain.
*
* \param pin The pin number.
*
* \note \ref gpio_local_init and \ref gpio_local_init_gpio_open_drain_pin must
* have been called beforehand.
*
* \note This function does not enable the GPIO mode of the pin.
* \ref gpio_enable_gpio_pin can be called for this purpose.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_local_tgl_gpio_open_drain_pin(unsigned int pin)
{
AVR32_GPIO_LOCAL.port[pin >> 5].odert = 1 << (pin & 0x1F);
}
//! @}
#endif // AVR32_GPIO_LOCAL_ADDRESS
#if UC3L
//! @{
/*! \name Peripheral Event System support
*
* The GPIO can be programmed to output peripheral events whenever an interrupt
* condition is detected, such as pin value change, or only when a rising or
* falling edge is detected.
*
*/
/*! \brief Enables the peripheral event generation of a pin.
*
* \param pin The pin number.
*
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_enable_pin_periph_event(unsigned int pin)
{
AVR32_GPIO.port[pin >> 5].oderc = 1 << (pin & 0x1F); // The GPIO output driver is disabled for that pin.
AVR32_GPIO.port[pin >> 5].evers = 1 << (pin & 0x1F);
}
/*! \brief Disables the peripheral event generation of a pin.
*
* \param pin The pin number.
*
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void gpio_disable_pin_periph_event(unsigned int pin)
{
AVR32_GPIO.port[pin >> 5].everc = 1 << (pin & 0x1F);
}
/*! \brief Configure the peripheral event trigger mode of a pin
*
* \param pin The pin number.
* \param mode The trigger mode (\ref GPIO_PIN_CHANGE, \ref GPIO_RISING_EDGE or
* \ref GPIO_FALLING_EDGE).
* \param use_igf use the Input Glitch Filter (TRUE) or not (FALSE).
*
* \return \ref GPIO_SUCCESS or \ref GPIO_INVALID_ARGUMENT.
*/
extern int gpio_configure_pin_periph_event_mode(unsigned int pin, unsigned int mode, unsigned int use_igf);
//! @}
#endif
#endif // _GPIO_H_

View File

@@ -0,0 +1,239 @@
/* This file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Exception and interrupt vectors.
*
* This file maps all events supported by an AVR32.
*
* - Compiler: GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an INTC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#if !__AVR32_UC__ && !__AVR32_AP__
#error Implementation of the AVR32 architecture not supported by the INTC driver.
#endif
#include <avr32/io.h>
//! @{
//! \verbatim
.section .exception, "ax", @progbits
// Start of Exception Vector Table.
// EVBA must be aligned with a power of two strictly greater than the EVBA-
// relative offset of the last vector.
.balign 0x200
// Export symbol.
.global _evba
.type _evba, @function
_evba:
.org 0x000
// Unrecoverable Exception.
_handle_Unrecoverable_Exception:
rjmp $
.org 0x004
// TLB Multiple Hit.
_handle_TLB_Multiple_Hit:
rjmp $
.org 0x008
// Bus Error Data Fetch.
_handle_Bus_Error_Data_Fetch:
rjmp $
.org 0x00C
// Bus Error Instruction Fetch.
_handle_Bus_Error_Instruction_Fetch:
rjmp $
.org 0x010
// NMI.
_handle_NMI:
rjmp $
.org 0x014
// Instruction Address.
_handle_Instruction_Address:
rjmp $
.org 0x018
// ITLB Protection.
_handle_ITLB_Protection:
rjmp $
.org 0x01C
// Breakpoint.
_handle_Breakpoint:
rjmp $
.org 0x020
// Illegal Opcode.
_handle_Illegal_Opcode:
rjmp $
.org 0x024
// Unimplemented Instruction.
_handle_Unimplemented_Instruction:
rjmp $
.org 0x028
// Privilege Violation.
_handle_Privilege_Violation:
rjmp $
.org 0x02C
// Floating-Point: UNUSED IN AVR32UC and AVR32AP.
_handle_Floating_Point:
rjmp $
.org 0x030
// Coprocessor Absent: UNUSED IN AVR32UC.
_handle_Coprocessor_Absent:
rjmp $
.org 0x034
// Data Address (Read).
_handle_Data_Address_Read:
rjmp $
.org 0x038
// Data Address (Write).
_handle_Data_Address_Write:
rjmp $
.org 0x03C
// DTLB Protection (Read).
_handle_DTLB_Protection_Read:
rjmp $
.org 0x040
// DTLB Protection (Write).
_handle_DTLB_Protection_Write:
rjmp $
.org 0x044
// DTLB Modified: UNUSED IN AVR32UC.
_handle_DTLB_Modified:
rjmp $
.org 0x050
// ITLB Miss.
_handle_ITLB_Miss:
rjmp $
.org 0x060
// DTLB Miss (Read).
_handle_DTLB_Miss_Read:
rjmp $
.org 0x070
// DTLB Miss (Write).
_handle_DTLB_Miss_Write:
rjmp $
.org 0x100
// Supervisor Call.
_handle_Supervisor_Call:
rjmp $
// Interrupt support.
// The interrupt controller must provide the offset address relative to EVBA.
// Important note:
// All interrupts call a C function named _get_interrupt_handler.
// This function will read group and interrupt line number to then return in
// R12 a pointer to a user-provided interrupt handler.
.balign 4
.irp priority, 0, 1, 2, 3
_int\priority:
#if __AVR32_UC__
// R8-R12, LR, PC and SR are automatically pushed onto the system stack by the
// CPU upon interrupt entry. No other register is saved by hardware.
#elif __AVR32_AP__
// PC and SR are automatically saved in respectively RAR_INTx and RSR_INTx by
// the CPU upon interrupt entry. No other register is saved by hardware.
pushm r8-r12, lr
#endif
mov r12, \priority // Pass the int_level parameter to the _get_interrupt_handler function.
call _get_interrupt_handler
cp.w r12, 0 // Get the pointer to the interrupt handler returned by the function.
#if __AVR32_UC__
movne pc, r12 // If this was not a spurious interrupt (R12 != NULL), jump to the handler.
#elif __AVR32_AP__
breq spint\priority // If this was a spurious interrupt (R12 == NULL), branch.
st.w --sp, r12 // Push the pointer to the interrupt handler onto the system stack since no register may be altered.
popm r8-r12, lr, pc // Restore registers and jump to the handler.
spint\priority:
popm r8-r12, lr
#endif
rete // If this was a spurious interrupt (R12 == NULL), return from event handler.
.endr
// Constant data area.
.balign 4
// Values to store in the interrupt priority registers for the various interrupt priority levels.
// The interrupt priority registers contain the interrupt priority level and
// the EVBA-relative interrupt vector offset.
.global ipr_val
.type ipr_val, @object
ipr_val:
.word (AVR32_INTC_INT0 << AVR32_INTC_IPR_INTLEVEL_OFFSET) | (_int0 - _evba),\
(AVR32_INTC_INT1 << AVR32_INTC_IPR_INTLEVEL_OFFSET) | (_int1 - _evba),\
(AVR32_INTC_INT2 << AVR32_INTC_IPR_INTLEVEL_OFFSET) | (_int2 - _evba),\
(AVR32_INTC_INT3 << AVR32_INTC_IPR_INTLEVEL_OFFSET) | (_int3 - _evba)
//! \endverbatim
//! @}

View File

@@ -0,0 +1,214 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief INTC driver for AVR32 UC3.
*
* AVR32 Interrupt Controller driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an INTC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <avr32/io.h>
#include "compiler.h"
#include "preprocessor.h"
#include "intc.h"
// define _evba from exception.S
extern void _evba;
//! Values to store in the interrupt priority registers for the various interrupt priority levels.
extern const unsigned int ipr_val[AVR32_INTC_NUM_INT_LEVELS];
//! Creates a table of interrupt line handlers per interrupt group in order to optimize RAM space.
//! Each line handler table contains a set of pointers to interrupt handlers.
#if (defined __GNUC__)
#define DECL_INT_LINE_HANDLER_TABLE(GRP, unused) \
static volatile __int_handler _int_line_handler_table_##GRP[Max(AVR32_INTC_NUM_IRQS_PER_GRP##GRP, 1)];
#elif (defined __ICCAVR32__)
#define DECL_INT_LINE_HANDLER_TABLE(GRP, unused) \
static volatile __no_init __int_handler _int_line_handler_table_##GRP[Max(AVR32_INTC_NUM_IRQS_PER_GRP##GRP, 1)];
#endif
MREPEAT(AVR32_INTC_NUM_INT_GRPS, DECL_INT_LINE_HANDLER_TABLE, ~);
#undef DECL_INT_LINE_HANDLER_TABLE
//! Table containing for each interrupt group the number of interrupt request
//! lines and a pointer to the table of interrupt line handlers.
static const struct
{
unsigned int num_irqs;
volatile __int_handler *_int_line_handler_table;
} _int_handler_table[AVR32_INTC_NUM_INT_GRPS] =
{
#define INSERT_INT_LINE_HANDLER_TABLE(GRP, unused) \
{AVR32_INTC_NUM_IRQS_PER_GRP##GRP, _int_line_handler_table_##GRP},
MREPEAT(AVR32_INTC_NUM_INT_GRPS, INSERT_INT_LINE_HANDLER_TABLE, ~)
#undef INSERT_INT_LINE_HANDLER_TABLE
};
/*! \brief Default interrupt handler.
*
* \note Taken and adapted from Newlib.
*/
#if (defined __GNUC__)
__attribute__((__interrupt__))
#elif (defined __ICCAVR32__)
__interrupt
#endif
static void _unhandled_interrupt(void)
{
// Catch unregistered interrupts.
while (TRUE);
}
/*! \brief Gets the interrupt handler of the current event at the \a int_level
* interrupt priority level (called from exception.S).
*
* \param int_level Interrupt priority level to handle.
*
* \return Interrupt handler to execute.
*
* \note Taken and adapted from Newlib.
*/
__int_handler _get_interrupt_handler(unsigned int int_level)
{
// ICR3 is mapped first, ICR0 last.
// Code in exception.S puts int_level in R12 which is used by AVR32-GCC to
// pass a single argument to a function.
unsigned int int_grp = AVR32_INTC.icr[AVR32_INTC_INT3 - int_level];
unsigned int int_req = AVR32_INTC.irr[int_grp];
// As an interrupt may disappear while it is being fetched by the CPU
// (spurious interrupt caused by a delayed response from an MCU peripheral to
// an interrupt flag clear or interrupt disable instruction), check if there
// are remaining interrupt lines to process.
// If a spurious interrupt occurs, the status register (SR) contains an
// execution mode and interrupt level masks corresponding to a level 0
// interrupt, whatever the interrupt priority level causing the spurious
// event. This behavior has been chosen because a spurious interrupt has not
// to be a priority one and because it may not cause any trouble to other
// interrupts.
// However, these spurious interrupts place the hardware in an unstable state
// and could give problems in other/future versions of the CPU, so the
// software has to be written so that they never occur. The only safe way of
// achieving this is to always clear or disable peripheral interrupts with the
// following sequence:
// 1: Mask the interrupt in the CPU by setting GM (or IxM) in SR.
// 2: Perform the bus access to the peripheral register that clears or
// disables the interrupt.
// 3: Wait until the interrupt has actually been cleared or disabled by the
// peripheral. This is usually performed by reading from a register in the
// same peripheral (it DOES NOT have to be the same register that was
// accessed in step 2, but it MUST be in the same peripheral), what takes
// bus system latencies into account, but peripheral internal latencies
// (generally 0 cycle) also have to be considered.
// 4: Unmask the interrupt in the CPU by clearing GM (or IxM) in SR.
// Note that steps 1 and 4 are useless inside interrupt handlers as the
// corresponding interrupt level is automatically masked by IxM (unless IxM is
// explicitly cleared by the software).
//
// Get the right IRQ handler.
//
// If several interrupt lines are active in the group, the interrupt line with
// the highest number is selected. This is to be coherent with the
// prioritization of interrupt groups performed by the hardware interrupt
// controller.
//
// If no handler has been registered for the pending interrupt,
// _unhandled_interrupt will be selected thanks to the initialization of
// _int_line_handler_table_x by INTC_init_interrupts.
//
// exception.S will provide the interrupt handler with a clean interrupt stack
// frame, with nothing more pushed onto the stack. The interrupt handler must
// manage the `rete' instruction, what can be done thanks to pure assembly,
// inline assembly or the `__attribute__((__interrupt__))' C function
// attribute.
return (int_req) ? _int_handler_table[int_grp]._int_line_handler_table[32 - clz(int_req) - 1] : NULL;
}
//! Init EVBA address. This sequence might also be done in the UTILS/STARTUP/GCC/crt0.S
static __inline__ void INTC_init_evba(void)
{
Set_system_register(AVR32_EVBA, (int)&_evba );
}
void INTC_init_interrupts(void)
{
unsigned int int_grp, int_req;
INTC_init_evba();
// For all interrupt groups,
for (int_grp = 0; int_grp < AVR32_INTC_NUM_INT_GRPS; int_grp++)
{
// For all interrupt request lines of each group,
for (int_req = 0; int_req < _int_handler_table[int_grp].num_irqs; int_req++)
{
// Assign _unhandled_interrupt as default interrupt handler.
_int_handler_table[int_grp]._int_line_handler_table[int_req] = &_unhandled_interrupt;
}
// Set the interrupt group priority register to its default value.
// By default, all interrupt groups are linked to the interrupt priority
// level 0 and to the interrupt vector _int0.
AVR32_INTC.ipr[int_grp] = ipr_val[AVR32_INTC_INT0];
}
}
void INTC_register_interrupt(__int_handler handler, unsigned int irq, unsigned int int_level)
{
// Determine the group of the IRQ.
unsigned int int_grp = irq / AVR32_INTC_MAX_NUM_IRQS_PER_GRP;
// Store in _int_line_handler_table_x the pointer to the interrupt handler, so
// that _get_interrupt_handler can retrieve it when the interrupt is vectored.
_int_handler_table[int_grp]._int_line_handler_table[irq % AVR32_INTC_MAX_NUM_IRQS_PER_GRP] = handler;
// Program the corresponding IPRX register to set the interrupt priority level
// and the interrupt vector offset that will be fetched by the core interrupt
// system.
// NOTE: The _intx functions are intermediate assembly functions between the
// core interrupt system and the user interrupt handler.
AVR32_INTC.ipr[int_grp] = ipr_val[int_level & (AVR32_INTC_IPR_INTLEVEL_MASK >> AVR32_INTC_IPR_INTLEVEL_OFFSET)];
}

View File

@@ -0,0 +1,100 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief INTC driver for AVR32 UC3.
*
* AVR32 Interrupt Controller driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an INTC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _INTC_H_
#define _INTC_H_
#include "compiler.h"
//! Maximal number of interrupt request lines per group.
#define AVR32_INTC_MAX_NUM_IRQS_PER_GRP 32
//! Number of interrupt priority levels.
#define AVR32_INTC_NUM_INT_LEVELS (1 << AVR32_INTC_IPR_INTLEVEL_SIZE)
#ifdef __AVR32_ABI_COMPILER__ // Automatically defined when compiling for AVR32, not when assembling.
//! Pointer to interrupt handler.
#if (defined __GNUC__)
typedef void (*__int_handler)(void);
#elif (defined __ICCAVR32__)
typedef void (__interrupt *__int_handler)(void);
#endif
/*! \brief Initializes the hardware interrupt controller driver.
*
* \note Taken and adapted from Newlib.
*/
extern void INTC_init_interrupts(void);
/*! \brief Registers an interrupt handler.
*
* \param handler Interrupt handler to register.
* \param irq IRQ of the interrupt handler to register.
* \param int_level Interrupt priority level to assign to the group of this IRQ.
*
* \warning The interrupt handler must manage the `rete' instruction, what can
* be done thanks to pure assembly, inline assembly or the
* `__attribute__((__interrupt__))' C function attribute.
*
* \warning If several interrupt handlers of a same group are registered with
* different priority levels, only the latest priority level set will
* be effective.
*
* \note Taken and adapted from Newlib.
*/
extern void INTC_register_interrupt(__int_handler handler, unsigned int irq, unsigned int int_level);
#endif // __AVR32_ABI_COMPILER__
#endif // _INTC_H_

View File

@@ -0,0 +1,296 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief PDCA driver for AVR32 UC3.
*
* This file defines a useful set of functions for the PDCA interface on AVR32
* devices.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a PDCA module.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "compiler.h"
#include "pdca.h"
volatile avr32_pdca_channel_t *pdca_get_handler(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = &AVR32_PDCA.channel[pdca_ch_number];
if (pdca_ch_number >= AVR32_PDCA_CHANNEL_LENGTH)
return (volatile avr32_pdca_channel_t *)PDCA_INVALID_ARGUMENT;
return pdca_channel;
}
int pdca_init_channel(unsigned int pdca_ch_number, const pdca_channel_options_t *opt)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_disable_interrupt_transfer_complete(pdca_ch_number); // disable channel interrupt
pdca_disable_interrupt_reload_counter_zero(pdca_ch_number); // disable channel interrupt
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pdca_channel->mar = (unsigned long)opt->addr;
pdca_channel->tcr = opt->size;
pdca_channel->psr = opt->pid;
pdca_channel->marr = (unsigned long)opt->r_addr;
pdca_channel->tcrr = opt->r_size;
pdca_channel->mr =
#if (defined AVR32_PDCA_120_H_INCLUDED ) || (defined AVR32_PDCA_121_H_INCLUDED ) || (defined AVR32_PDCA_122_H_INCLUDED )
opt->etrig << AVR32_PDCA_ETRIG_OFFSET |
#endif // #ifdef AVR32_PDCA_120_H_INCLUDED
opt->transfer_size << AVR32_PDCA_SIZE_OFFSET;
pdca_channel->cr = AVR32_PDCA_ECLR_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
return PDCA_SUCCESS;
}
unsigned int pdca_get_channel_status(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
return (pdca_channel->sr & AVR32_PDCA_TEN_MASK) != 0;
}
void pdca_disable(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
// Disable transfer
pdca_channel->cr = AVR32_PDCA_TDIS_MASK;
}
void pdca_enable(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
// Enable transfer
pdca_channel->cr = AVR32_PDCA_TEN_MASK;
}
unsigned int pdca_get_load_size(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
return pdca_channel->tcr;
}
void pdca_load_channel(unsigned int pdca_ch_number, volatile void *addr, unsigned int size)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pdca_channel->mar = (unsigned long)addr;
pdca_channel->tcr = size;
pdca_channel->cr = AVR32_PDCA_ECLR_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
unsigned int pdca_get_reload_size(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
return pdca_channel->tcrr;
}
void pdca_reload_channel(unsigned int pdca_ch_number, volatile void *addr, unsigned int size)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
// set up next memory address
pdca_channel->marr = (unsigned long)addr;
// set up next memory size
pdca_channel->tcrr = size;
pdca_channel->cr = AVR32_PDCA_ECLR_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void pdca_set_peripheral_select(unsigned int pdca_ch_number, unsigned int pid)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->psr = pid;
}
void pdca_set_transfer_size(unsigned int pdca_ch_number, unsigned int transfer_size)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->mr = (pdca_channel->mr & ~AVR32_PDCA_SIZE_MASK) |
transfer_size << AVR32_PDCA_SIZE_OFFSET;
}
#if (defined AVR32_PDCA_120_H_INCLUDED ) || (defined AVR32_PDCA_121_H_INCLUDED ) || (defined AVR32_PDCA_122_H_INCLUDED )
void pdca_disable_event_trigger(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->mr &= ~AVR32_PDCA_ETRIG_MASK;
}
void pdca_enable_event_trigger(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->mr |= AVR32_PDCA_ETRIG_MASK;
}
#endif // #ifdef AVR32_PDCA_120_H_INCLUDED
void pdca_disable_interrupt_transfer_error(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pdca_channel->idr = AVR32_PDCA_TERR_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void pdca_enable_interrupt_transfer_error(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->ier = AVR32_PDCA_TERR_MASK;
}
void pdca_disable_interrupt_transfer_complete(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pdca_channel->idr = AVR32_PDCA_TRC_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void pdca_enable_interrupt_transfer_complete(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->ier = AVR32_PDCA_TRC_MASK;
}
void pdca_disable_interrupt_reload_counter_zero(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pdca_channel->idr = AVR32_PDCA_RCZ_MASK;
pdca_channel->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void pdca_enable_interrupt_reload_counter_zero(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
pdca_channel->ier = AVR32_PDCA_RCZ_MASK;
}
unsigned long pdca_get_transfer_status(unsigned int pdca_ch_number)
{
// get the correct channel pointer
volatile avr32_pdca_channel_t *pdca_channel = pdca_get_handler(pdca_ch_number);
return pdca_channel->isr;
}

View File

@@ -0,0 +1,251 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief PDCA driver for AVR32 UC3.
*
* This file defines a useful set of functions for the PDCA interface on AVR32
* devices.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a PDCA module.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _PDCA_H_
#define _PDCA_H_
#include <avr32/io.h>
//! Size of PDCA transfer: byte.
#define PDCA_TRANSFER_SIZE_BYTE AVR32_PDCA_BYTE
//! Size of PDCA transfer: half-word.
#define PDCA_TRANSFER_SIZE_HALF_WORD AVR32_PDCA_HALF_WORD
//! Size of PDCA transfer: word.
#define PDCA_TRANSFER_SIZE_WORD AVR32_PDCA_WORD
/*! \name PDCA Driver Status Codes
*/
//! @{
#define PDCA_SUCCESS 0
#define PDCA_INVALID_ARGUMENT -1
//! @}
/*! \name PDCA Transfer Status Codes
*/
//! @{
#define PDCA_TRANSFER_ERROR AVR32_PDCA_TERR_MASK
#define PDCA_TRANSFER_COMPLETE AVR32_PDCA_TRC_MASK
#define PDCA_TRANSFER_COUNTER_RELOAD_IS_ZERO AVR32_PDCA_RCZ_MASK
//! @}
//! PDCA channel options.
typedef struct
{
//! Memory address.
volatile void *addr ;
//! Transfer counter.
unsigned int size ;
//! Next memory address.
volatile void *r_addr ;
//! Next transfer counter.
unsigned int r_size ;
//! Select peripheral ID.
unsigned int pid ;
//! Select the size of the transfer (byte, half-word or word).
unsigned int transfer_size ;
#if (defined AVR32_PDCA_120_H_INCLUDED ) || (defined AVR32_PDCA_121_H_INCLUDED ) || (defined AVR32_PDCA_122_H_INCLUDED )
// Note: the options in this preprocessor section are only available from the PDCA IP version 1.2.0 on.
//! Enable (\c 1) or disable (\c 0) the transfer upon event trigger.
unsigned char etrig ;
#endif // #ifdef AVR32_PDCA_120_H_INCLUDED
} pdca_channel_options_t;
/*! \brief Get PDCA channel handler
*
* \param pdca_ch_number PDCA channel
*
* \return channel handled or PDCA_INVALID_ARGUMENT
*/
extern volatile avr32_pdca_channel_t *pdca_get_handler(unsigned int pdca_ch_number);
/*! \brief Set the channel configuration
*
* \param pdca_ch_number PDCA channel
* \param opt channel option
*/
extern int pdca_init_channel(unsigned int pdca_ch_number, const pdca_channel_options_t *opt);
/*! \brief Get the PDCA channel transfer enable status
*
* \param pdca_ch_number PDCA channel
*
* \return \c 1 if channel transfer is enabled, else \c 0
*/
extern unsigned int pdca_get_channel_status(unsigned int pdca_ch_number);
/*! \brief Disable the PDCA for the given channel
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_disable(unsigned int pdca_ch_number);
/*! \brief Enable the PDCA for the given channel
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_enable(unsigned int pdca_ch_number);
/*! \brief Get PDCA channel load size (or remaining size if transfer started)
*
* \param pdca_ch_number PDCA channel
*
* \return size current size to transfer
*/
extern unsigned int pdca_get_load_size(unsigned int pdca_ch_number);
/*! \brief Set PDCA channel load values
*
* \param pdca_ch_number PDCA channel
* \param addr address where data to load are stored
* \param size size of the data block to load
*/
extern void pdca_load_channel(unsigned int pdca_ch_number, volatile void *addr, unsigned int size);
/*! \brief Get PDCA channel reload size
*
* \param pdca_ch_number PDCA channel
*
* \return size current reload size
*/
extern unsigned int pdca_get_reload_size(unsigned int pdca_ch_number);
/*! \brief Set PDCA channel reload values
*
* \param pdca_ch_number PDCA channel
* \param addr address where data to load are stored
* \param size size of the data block to load
*/
extern void pdca_reload_channel(unsigned int pdca_ch_number, volatile void *addr, unsigned int size);
/*! \brief Set the peripheral function to use with the PDCA channel
*
* \param pdca_ch_number PDCA channel
* \param pid the peripheral ID
*/
extern void pdca_set_peripheral_select(unsigned int pdca_ch_number, unsigned int pid);
/*! \brief Set the size of the transfer
*
* \param pdca_ch_number PDCA channel
* \param transfer_size size of the transfer (byte, half-word or word)
*/
extern void pdca_set_transfer_size(unsigned int pdca_ch_number, unsigned int transfer_size);
#if (defined AVR32_PDCA_120_H_INCLUDED ) || (defined AVR32_PDCA_121_H_INCLUDED ) || (defined AVR32_PDCA_122_H_INCLUDED )
// Note: the functions in this preprocessor section are only available from the PDCA IP version 1.2.0 on.
/*! \brief Disable the event-triggered transfer feature
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_disable_event_trigger(unsigned int pdca_ch_number);
/*! \brief Enable the event-triggered transfer feature
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_enable_event_trigger(unsigned int pdca_ch_number);
#endif // #ifdef AVR32_PDCA_120_H_INCLUDED
/*! \brief Disable PDCA transfer error interrupt
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_disable_interrupt_transfer_error(unsigned int pdca_ch_number);
/*! \brief Enable PDCA transfer error interrupt
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_enable_interrupt_transfer_error(unsigned int pdca_ch_number);
/*! \brief Disable PDCA transfer interrupt when completed (ie TCR and TCRR are both zero)
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_disable_interrupt_transfer_complete(unsigned int pdca_ch_number);
/*! \brief Enable PDCA transfer interrupt when completed (ie TCR and TCRR are both zero)
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_enable_interrupt_transfer_complete(unsigned int pdca_ch_number);
/*! \brief Disable PDCA transfer interrupt when TCRR reaches zero
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_disable_interrupt_reload_counter_zero(unsigned int pdca_ch_number);
/*! \brief Enable PDCA transfer interrupt when TCRR reaches zero
*
* \param pdca_ch_number PDCA channel
*/
extern void pdca_enable_interrupt_reload_counter_zero(unsigned int pdca_ch_number);
/*! \brief Get PDCA channel transfer status
*
* \param pdca_ch_number PDCA channel
*
* \return PDCA transfer status with the following bit-masks:\n
* - \c PDCA_TRANSFER_ERROR;\n
* - \c PDCA_TRANSFER_COMPLETE;\n
* - \c PDCA_TRANSFER_COUNTER_RELOAD_IS_ZERO.
*/
extern unsigned long pdca_get_transfer_status(unsigned int pdca_ch_number);
#endif // _PDCA_H_

View File

@@ -0,0 +1,546 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Power Manager driver.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "compiler.h"
#include "pm.h"
/*! \name PM Writable Bit-Field Registers
*/
//! @{
typedef union
{
unsigned long mcctrl;
avr32_pm_mcctrl_t MCCTRL;
} u_avr32_pm_mcctrl_t;
typedef union
{
unsigned long cksel;
avr32_pm_cksel_t CKSEL;
} u_avr32_pm_cksel_t;
typedef union
{
unsigned long pll;
avr32_pm_pll_t PLL;
} u_avr32_pm_pll_t;
typedef union
{
unsigned long oscctrl0;
avr32_pm_oscctrl0_t OSCCTRL0;
} u_avr32_pm_oscctrl0_t;
typedef union
{
unsigned long oscctrl1;
avr32_pm_oscctrl1_t OSCCTRL1;
} u_avr32_pm_oscctrl1_t;
typedef union
{
unsigned long oscctrl32;
avr32_pm_oscctrl32_t OSCCTRL32;
} u_avr32_pm_oscctrl32_t;
typedef union
{
unsigned long ier;
avr32_pm_ier_t IER;
} u_avr32_pm_ier_t;
typedef union
{
unsigned long idr;
avr32_pm_idr_t IDR;
} u_avr32_pm_idr_t;
typedef union
{
unsigned long icr;
avr32_pm_icr_t ICR;
} u_avr32_pm_icr_t;
typedef union
{
unsigned long gcctrl;
avr32_pm_gcctrl_t GCCTRL;
} u_avr32_pm_gcctrl_t;
typedef union
{
unsigned long rccr;
avr32_pm_rccr_t RCCR;
} u_avr32_pm_rccr_t;
typedef union
{
unsigned long bgcr;
avr32_pm_bgcr_t BGCR;
} u_avr32_pm_bgcr_t;
typedef union
{
unsigned long vregcr;
avr32_pm_vregcr_t VREGCR;
} u_avr32_pm_vregcr_t;
typedef union
{
unsigned long bod;
avr32_pm_bod_t BOD;
} u_avr32_pm_bod_t;
//! @}
/*! \brief Sets the mode of the oscillator 0.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
* \param mode Oscillator 0 mode (i.e. AVR32_PM_OSCCTRL0_MODE_x).
*/
static void pm_set_osc0_mode(volatile avr32_pm_t *pm, unsigned int mode)
{
// Read
u_avr32_pm_oscctrl0_t u_avr32_pm_oscctrl0 = {pm->oscctrl0};
// Modify
u_avr32_pm_oscctrl0.OSCCTRL0.mode = mode;
// Write
pm->oscctrl0 = u_avr32_pm_oscctrl0.oscctrl0;
}
void pm_enable_osc0_ext_clock(volatile avr32_pm_t *pm)
{
pm_set_osc0_mode(pm, AVR32_PM_OSCCTRL0_MODE_EXT_CLOCK);
}
void pm_enable_osc0_crystal(volatile avr32_pm_t *pm, unsigned int fosc0)
{
pm_set_osc0_mode(pm, (fosc0 < 900000) ? AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G0 :
(fosc0 < 3000000) ? AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G1 :
(fosc0 < 8000000) ? AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G2 :
AVR32_PM_OSCCTRL0_MODE_CRYSTAL_G3);
}
void pm_enable_clk0(volatile avr32_pm_t *pm, unsigned int startup)
{
pm_enable_clk0_no_wait(pm, startup);
pm_wait_for_clk0_ready(pm);
}
void pm_disable_clk0(volatile avr32_pm_t *pm)
{
pm->mcctrl &= ~AVR32_PM_MCCTRL_OSC0EN_MASK;
}
void pm_enable_clk0_no_wait(volatile avr32_pm_t *pm, unsigned int startup)
{
// Read register
u_avr32_pm_oscctrl0_t u_avr32_pm_oscctrl0 = {pm->oscctrl0};
// Modify
u_avr32_pm_oscctrl0.OSCCTRL0.startup = startup;
// Write back
pm->oscctrl0 = u_avr32_pm_oscctrl0.oscctrl0;
pm->mcctrl |= AVR32_PM_MCCTRL_OSC0EN_MASK;
}
void pm_wait_for_clk0_ready(volatile avr32_pm_t *pm)
{
while (!(pm->poscsr & AVR32_PM_POSCSR_OSC0RDY_MASK));
}
/*! \brief Sets the mode of the oscillator 1.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
* \param mode Oscillator 1 mode (i.e. AVR32_PM_OSCCTRL1_MODE_x).
*/
static void pm_set_osc1_mode(volatile avr32_pm_t *pm, unsigned int mode)
{
// Read
u_avr32_pm_oscctrl1_t u_avr32_pm_oscctrl1 = {pm->oscctrl1};
// Modify
u_avr32_pm_oscctrl1.OSCCTRL1.mode = mode;
// Write
pm->oscctrl1 = u_avr32_pm_oscctrl1.oscctrl1;
}
void pm_enable_osc1_ext_clock(volatile avr32_pm_t *pm)
{
pm_set_osc1_mode(pm, AVR32_PM_OSCCTRL1_MODE_EXT_CLOCK);
}
void pm_enable_osc1_crystal(volatile avr32_pm_t *pm, unsigned int fosc1)
{
pm_set_osc1_mode(pm, (fosc1 < 900000) ? AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G0 :
(fosc1 < 3000000) ? AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G1 :
(fosc1 < 8000000) ? AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G2 :
AVR32_PM_OSCCTRL1_MODE_CRYSTAL_G3);
}
void pm_enable_clk1(volatile avr32_pm_t *pm, unsigned int startup)
{
pm_enable_clk1_no_wait(pm, startup);
pm_wait_for_clk1_ready(pm);
}
void pm_disable_clk1(volatile avr32_pm_t *pm)
{
pm->mcctrl &= ~AVR32_PM_MCCTRL_OSC1EN_MASK;
}
void pm_enable_clk1_no_wait(volatile avr32_pm_t *pm, unsigned int startup)
{
// Read register
u_avr32_pm_oscctrl1_t u_avr32_pm_oscctrl1 = {pm->oscctrl1};
// Modify
u_avr32_pm_oscctrl1.OSCCTRL1.startup = startup;
// Write back
pm->oscctrl1 = u_avr32_pm_oscctrl1.oscctrl1;
pm->mcctrl |= AVR32_PM_MCCTRL_OSC1EN_MASK;
}
void pm_wait_for_clk1_ready(volatile avr32_pm_t *pm)
{
while (!(pm->poscsr & AVR32_PM_POSCSR_OSC1RDY_MASK));
}
/*! \brief Sets the mode of the 32-kHz oscillator.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
* \param mode 32-kHz oscillator mode (i.e. AVR32_PM_OSCCTRL32_MODE_x).
*/
static void pm_set_osc32_mode(volatile avr32_pm_t *pm, unsigned int mode)
{
// Read
u_avr32_pm_oscctrl32_t u_avr32_pm_oscctrl32 = {pm->oscctrl32};
// Modify
u_avr32_pm_oscctrl32.OSCCTRL32.mode = mode;
// Write
pm->oscctrl32 = u_avr32_pm_oscctrl32.oscctrl32;
}
void pm_enable_osc32_ext_clock(volatile avr32_pm_t *pm)
{
pm_set_osc32_mode(pm, AVR32_PM_OSCCTRL32_MODE_EXT_CLOCK);
}
void pm_enable_osc32_crystal(volatile avr32_pm_t *pm)
{
pm_set_osc32_mode(pm, AVR32_PM_OSCCTRL32_MODE_CRYSTAL);
}
void pm_enable_clk32(volatile avr32_pm_t *pm, unsigned int startup)
{
pm_enable_clk32_no_wait(pm, startup);
pm_wait_for_clk32_ready(pm);
}
void pm_disable_clk32(volatile avr32_pm_t *pm)
{
pm->oscctrl32 &= ~AVR32_PM_OSCCTRL32_OSC32EN_MASK;
}
void pm_enable_clk32_no_wait(volatile avr32_pm_t *pm, unsigned int startup)
{
// Read register
u_avr32_pm_oscctrl32_t u_avr32_pm_oscctrl32 = {pm->oscctrl32};
// Modify
u_avr32_pm_oscctrl32.OSCCTRL32.osc32en = 1;
u_avr32_pm_oscctrl32.OSCCTRL32.startup = startup;
// Write back
pm->oscctrl32 = u_avr32_pm_oscctrl32.oscctrl32;
}
void pm_wait_for_clk32_ready(volatile avr32_pm_t *pm)
{
while (!(pm->poscsr & AVR32_PM_POSCSR_OSC32RDY_MASK));
}
void pm_cksel(volatile avr32_pm_t *pm,
unsigned int pbadiv,
unsigned int pbasel,
unsigned int pbbdiv,
unsigned int pbbsel,
unsigned int hsbdiv,
unsigned int hsbsel)
{
u_avr32_pm_cksel_t u_avr32_pm_cksel = {0};
u_avr32_pm_cksel.CKSEL.cpusel = hsbsel;
u_avr32_pm_cksel.CKSEL.cpudiv = hsbdiv;
u_avr32_pm_cksel.CKSEL.hsbsel = hsbsel;
u_avr32_pm_cksel.CKSEL.hsbdiv = hsbdiv;
u_avr32_pm_cksel.CKSEL.pbasel = pbasel;
u_avr32_pm_cksel.CKSEL.pbadiv = pbadiv;
u_avr32_pm_cksel.CKSEL.pbbsel = pbbsel;
u_avr32_pm_cksel.CKSEL.pbbdiv = pbbdiv;
pm->cksel = u_avr32_pm_cksel.cksel;
// Wait for ckrdy bit and then clear it
while (!(pm->poscsr & AVR32_PM_POSCSR_CKRDY_MASK));
}
void pm_gc_setup(volatile avr32_pm_t *pm,
unsigned int gc,
unsigned int osc_or_pll, // Use Osc (=0) or PLL (=1)
unsigned int pll_osc, // Sel Osc0/PLL0 or Osc1/PLL1
unsigned int diven,
unsigned int div)
{
u_avr32_pm_gcctrl_t u_avr32_pm_gcctrl = {0};
u_avr32_pm_gcctrl.GCCTRL.oscsel = pll_osc;
u_avr32_pm_gcctrl.GCCTRL.pllsel = osc_or_pll;
u_avr32_pm_gcctrl.GCCTRL.diven = diven;
u_avr32_pm_gcctrl.GCCTRL.div = div;
pm->gcctrl[gc] = u_avr32_pm_gcctrl.gcctrl;
}
void pm_gc_enable(volatile avr32_pm_t *pm,
unsigned int gc)
{
pm->gcctrl[gc] |= AVR32_PM_GCCTRL_CEN_MASK;
}
void pm_gc_disable(volatile avr32_pm_t *pm,
unsigned int gc)
{
pm->gcctrl[gc] &= ~AVR32_PM_GCCTRL_CEN_MASK;
}
void pm_pll_setup(volatile avr32_pm_t *pm,
unsigned int pll,
unsigned int mul,
unsigned int div,
unsigned int osc,
unsigned int lockcount)
{
u_avr32_pm_pll_t u_avr32_pm_pll = {0};
u_avr32_pm_pll.PLL.pllosc = osc;
u_avr32_pm_pll.PLL.plldiv = div;
u_avr32_pm_pll.PLL.pllmul = mul;
u_avr32_pm_pll.PLL.pllcount = lockcount;
pm->pll[pll] = u_avr32_pm_pll.pll;
}
void pm_pll_set_option(volatile avr32_pm_t *pm,
unsigned int pll,
unsigned int pll_freq,
unsigned int pll_div2,
unsigned int pll_wbwdisable)
{
u_avr32_pm_pll_t u_avr32_pm_pll = {pm->pll[pll]};
u_avr32_pm_pll.PLL.pllopt = pll_freq | (pll_div2 << 1) | (pll_wbwdisable << 2);
pm->pll[pll] = u_avr32_pm_pll.pll;
}
unsigned int pm_pll_get_option(volatile avr32_pm_t *pm,
unsigned int pll)
{
return (pm->pll[pll] & AVR32_PM_PLLOPT_MASK) >> AVR32_PM_PLLOPT_OFFSET;
}
void pm_pll_enable(volatile avr32_pm_t *pm,
unsigned int pll)
{
pm->pll[pll] |= AVR32_PM_PLLEN_MASK;
}
void pm_pll_disable(volatile avr32_pm_t *pm,
unsigned int pll)
{
pm->pll[pll] &= ~AVR32_PM_PLLEN_MASK;
}
void pm_wait_for_pll0_locked(volatile avr32_pm_t *pm)
{
while (!(pm->poscsr & AVR32_PM_POSCSR_LOCK0_MASK));
}
void pm_wait_for_pll1_locked(volatile avr32_pm_t *pm)
{
while (!(pm->poscsr & AVR32_PM_POSCSR_LOCK1_MASK));
}
void pm_switch_to_clock(volatile avr32_pm_t *pm, unsigned long clock)
{
// Read
u_avr32_pm_mcctrl_t u_avr32_pm_mcctrl = {pm->mcctrl};
// Modify
u_avr32_pm_mcctrl.MCCTRL.mcsel = clock;
// Write back
pm->mcctrl = u_avr32_pm_mcctrl.mcctrl;
}
void pm_switch_to_osc0(volatile avr32_pm_t *pm, unsigned int fosc0, unsigned int startup)
{
pm_enable_osc0_crystal(pm, fosc0); // Enable the Osc0 in crystal mode
pm_enable_clk0(pm, startup); // Crystal startup time - This parameter is critical and depends on the characteristics of the crystal
pm_switch_to_clock(pm, AVR32_PM_MCSEL_OSC0); // Then switch main clock to Osc0
}
void pm_bod_enable_irq(volatile avr32_pm_t *pm)
{
pm->ier = AVR32_PM_IER_BODDET_MASK;
}
void pm_bod_disable_irq(volatile avr32_pm_t *pm)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
pm->idr = AVR32_PM_IDR_BODDET_MASK;
pm->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void pm_bod_clear_irq(volatile avr32_pm_t *pm)
{
pm->icr = AVR32_PM_ICR_BODDET_MASK;
}
unsigned long pm_bod_get_irq_status(volatile avr32_pm_t *pm)
{
return ((pm->isr & AVR32_PM_ISR_BODDET_MASK) != 0);
}
unsigned long pm_bod_get_irq_enable_bit(volatile avr32_pm_t *pm)
{
return ((pm->imr & AVR32_PM_IMR_BODDET_MASK) != 0);
}
unsigned long pm_bod_get_level(volatile avr32_pm_t *pm)
{
return (pm->bod & AVR32_PM_BOD_LEVEL_MASK) >> AVR32_PM_BOD_LEVEL_OFFSET;
}
unsigned long pm_read_gplp(volatile avr32_pm_t *pm, unsigned long gplp)
{
return pm->gplp[gplp];
}
void pm_write_gplp(volatile avr32_pm_t *pm, unsigned long gplp, unsigned long value)
{
pm->gplp[gplp] = value;
}
long pm_enable_module(volatile avr32_pm_t *pm, unsigned long module)
{
unsigned long domain = module>>5;
unsigned long *regptr = (unsigned long*)(&(pm->cpumask) + domain);
// Implementation-specific shortcut: the ckMASK registers are contiguous and
// memory-mapped in that order: CPUMASK, HSBMASK, PBAMASK, PBBMASK.
*regptr |= (1<<(module%32));
return PASS;
}
long pm_disable_module(volatile avr32_pm_t *pm, unsigned long module)
{
unsigned long domain = module>>5;
unsigned long *regptr = (unsigned long*)(&(pm->cpumask) + domain);
// Implementation-specific shortcut: the ckMASK registers are contiguous and
// memory-mapped in that order: CPUMASK, HSBMASK, PBAMASK, PBBMASK.
*regptr &= ~(1<<(module%32));
return PASS;
}

View File

@@ -0,0 +1,493 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Power Manager driver.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _PM_H_
#define _PM_H_
#include <avr32/io.h>
#include "compiler.h"
#include "preprocessor.h"
/*! \brief Sets the MCU in the specified sleep mode.
*
* \param mode Sleep mode:
* \arg \c AVR32_PM_SMODE_IDLE: Idle;
* \arg \c AVR32_PM_SMODE_FROZEN: Frozen;
* \arg \c AVR32_PM_SMODE_STANDBY: Standby;
* \arg \c AVR32_PM_SMODE_STOP: Stop;
* \arg \c AVR32_PM_SMODE_DEEP_STOP: DeepStop;
* \arg \c AVR32_PM_SMODE_STATIC: Static.
*/
#define SLEEP(mode) {__asm__ __volatile__ ("sleep "STRINGZ(mode));}
//! Input and output parameters when initializing PM clocks using pm_configure_clocks().
typedef struct
{
//! CPU frequency (input/output argument).
unsigned long cpu_f;
//! PBA frequency (input/output argument).
unsigned long pba_f;
//! Oscillator 0's external crystal(or external clock) frequency (board dependant) (input argument).
unsigned long osc0_f;
//! Oscillator 0's external crystal(or external clock) startup time: AVR32_PM_OSCCTRL0_STARTUP_x_RCOSC (input argument).
unsigned long osc0_startup;
} pm_freq_param_t;
#define PM_FREQ_STATUS_FAIL (-1)
#define PM_FREQ_STATUS_OK (0)
/*! \brief Gets the MCU reset cause.
*
* \param pm Base address of the Power Manager instance (i.e. &AVR32_PM).
*
* \return The MCU reset cause which can be masked with the
* \c AVR32_PM_RCAUSE_x_MASK bit-masks to isolate specific causes.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ unsigned int pm_get_reset_cause(volatile avr32_pm_t *pm)
{
return pm->rcause;
}
/*!
* \brief This function will enable the external clock mode of the oscillator 0.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_enable_osc0_ext_clock(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the crystal mode of the oscillator 0.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param fosc0 Oscillator 0 crystal frequency (Hz)
*/
extern void pm_enable_osc0_crystal(volatile avr32_pm_t *pm, unsigned int fosc0);
/*!
* \brief This function will enable the oscillator 0 to be used with a startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 0 startup time. AVR32_PM_OSCCTRL0_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk0(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will disable the oscillator 0.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_disable_clk0(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the oscillator 0 to be used with no startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 0 startup time, for which the function does not wait. AVR32_PM_OSCCTRL0_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk0_no_wait(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will wait until the Osc0 clock is ready.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_wait_for_clk0_ready(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the external clock mode of the oscillator 1.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_enable_osc1_ext_clock(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the crystal mode of the oscillator 1.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param fosc1 Oscillator 1 crystal frequency (Hz)
*/
extern void pm_enable_osc1_crystal(volatile avr32_pm_t *pm, unsigned int fosc1);
/*!
* \brief This function will enable the oscillator 1 to be used with a startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 1 startup time. AVR32_PM_OSCCTRL1_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk1(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will disable the oscillator 1.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_disable_clk1(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the oscillator 1 to be used with no startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 1 startup time, for which the function does not wait. AVR32_PM_OSCCTRL1_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk1_no_wait(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will wait until the Osc1 clock is ready.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_wait_for_clk1_ready(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the external clock mode of the 32-kHz oscillator.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_enable_osc32_ext_clock(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the crystal mode of the 32-kHz oscillator.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_enable_osc32_crystal(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the oscillator 32 to be used with a startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 32 kHz startup time. AVR32_PM_OSCCTRL32_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk32(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will disable the oscillator 32.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_disable_clk32(volatile avr32_pm_t *pm);
/*!
* \brief This function will enable the oscillator 32 to be used with no startup time.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param startup Clock 32 kHz startup time, for which the function does not wait. AVR32_PM_OSCCTRL32_STARTUP_x_RCOSC.
*/
extern void pm_enable_clk32_no_wait(volatile avr32_pm_t *pm, unsigned int startup);
/*!
* \brief This function will wait until the osc32 clock is ready.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_wait_for_clk32_ready(volatile avr32_pm_t *pm);
/*!
* \brief This function will select all the power manager clocks.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pbadiv Peripheral Bus A clock divisor enable
* \param pbasel Peripheral Bus A select
* \param pbbdiv Peripheral Bus B clock divisor enable
* \param pbbsel Peripheral Bus B select
* \param hsbdiv High Speed Bus clock divisor enable (CPU clock = HSB clock)
* \param hsbsel High Speed Bus select (CPU clock = HSB clock )
*/
extern void pm_cksel(volatile avr32_pm_t *pm, unsigned int pbadiv, unsigned int pbasel, unsigned int pbbdiv, unsigned int pbbsel, unsigned int hsbdiv, unsigned int hsbsel);
/*!
* \brief This function will setup a generic clock.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param gc generic clock number (0 for gc0...)
* \param osc_or_pll Use OSC (=0) or PLL (=1)
* \param pll_osc Select Osc0/PLL0 or Osc1/PLL1
* \param diven Generic clock divisor enable
* \param div Generic clock divisor
*/
extern void pm_gc_setup(volatile avr32_pm_t *pm, unsigned int gc, unsigned int osc_or_pll, unsigned int pll_osc, unsigned int diven, unsigned int div);
/*!
* \brief This function will enable a generic clock.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param gc generic clock number (0 for gc0...)
*/
extern void pm_gc_enable(volatile avr32_pm_t *pm, unsigned int gc);
/*!
* \brief This function will disable a generic clock.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param gc generic clock number (0 for gc0...)
*/
extern void pm_gc_disable(volatile avr32_pm_t *pm, unsigned int gc);
/*!
* \brief This function will setup a PLL.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pll PLL number(0 for PLL0, 1 for PLL1)
* \param mul PLL MUL in the PLL formula
* \param div PLL DIV in the PLL formula
* \param osc OSC number (0 for osc0, 1 for osc1)
* \param lockcount PLL lockount
*/
extern void pm_pll_setup(volatile avr32_pm_t *pm, unsigned int pll, unsigned int mul, unsigned int div, unsigned int osc, unsigned int lockcount);
/*!
* \brief This function will set a PLL option.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pll PLL number(0 for PLL0, 1 for PLL1)
* \param pll_freq Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
* \param pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
* \param pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
*/
extern void pm_pll_set_option(volatile avr32_pm_t *pm, unsigned int pll, unsigned int pll_freq, unsigned int pll_div2, unsigned int pll_wbwdisable);
/*!
* \brief This function will get a PLL option.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pll PLL number(0 for PLL0, 1 for PLL1)
* \return Option
*/
extern unsigned int pm_pll_get_option(volatile avr32_pm_t *pm, unsigned int pll);
/*!
* \brief This function will enable a PLL.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pll PLL number(0 for PLL0, 1 for PLL1)
*/
extern void pm_pll_enable(volatile avr32_pm_t *pm, unsigned int pll);
/*!
* \brief This function will disable a PLL.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param pll PLL number(0 for PLL0, 1 for PLL1)
*/
extern void pm_pll_disable(volatile avr32_pm_t *pm, unsigned int pll);
/*!
* \brief This function will wait for PLL0 locked
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_wait_for_pll0_locked(volatile avr32_pm_t *pm);
/*!
* \brief This function will wait for PLL1 locked
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
*/
extern void pm_wait_for_pll1_locked(volatile avr32_pm_t *pm);
/*!
* \brief This function will switch the power manager main clock.
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param clock Clock to be switched on. AVR32_PM_MCSEL_SLOW for RCOsc, AVR32_PM_MCSEL_OSC0 for Osc0, AVR32_PM_MCSEL_PLL0 for PLL0.
*/
extern void pm_switch_to_clock(volatile avr32_pm_t *pm, unsigned long clock);
/*!
* \brief Switch main clock to clock Osc0 (crystal mode)
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param fosc0 Oscillator 0 crystal frequency (Hz)
* \param startup Crystal 0 startup time. AVR32_PM_OSCCTRL0_STARTUP_x_RCOSC.
*/
extern void pm_switch_to_osc0(volatile avr32_pm_t *pm, unsigned int fosc0, unsigned int startup);
/*! \brief Enables the Brown-Out Detector interrupt.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*/
extern void pm_bod_enable_irq(volatile avr32_pm_t *pm);
/*! \brief Disables the Brown-Out Detector interrupt.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*/
extern void pm_bod_disable_irq(volatile avr32_pm_t *pm);
/*! \brief Clears the Brown-Out Detector interrupt flag.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*/
extern void pm_bod_clear_irq(volatile avr32_pm_t *pm);
/*! \brief Gets the Brown-Out Detector interrupt flag.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*
* \retval 0 No BOD interrupt.
* \retval 1 BOD interrupt pending.
*/
extern unsigned long pm_bod_get_irq_status(volatile avr32_pm_t *pm);
/*! \brief Gets the Brown-Out Detector interrupt enable status.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*
* \retval 0 BOD interrupt disabled.
* \retval 1 BOD interrupt enabled.
*/
extern unsigned long pm_bod_get_irq_enable_bit(volatile avr32_pm_t *pm);
/*! \brief Gets the triggering threshold of the Brown-Out Detector.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM).
*
* \return Triggering threshold of the BOD. See the electrical characteristics
* in the part datasheet for actual voltage levels.
*/
extern unsigned long pm_bod_get_level(volatile avr32_pm_t *pm);
/*!
* \brief Read the content of the PM GPLP registers
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param gplp GPLP register index (0,1,... depending on the number of GPLP registers for a given part)
*
* \return The content of the chosen GPLP register.
*/
extern unsigned long pm_read_gplp(volatile avr32_pm_t *pm, unsigned long gplp);
/*!
* \brief Write into the PM GPLP registers
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param gplp GPLP register index (0,1,... depending on the number of GPLP registers for a given part)
* \param value Value to write
*/
extern void pm_write_gplp(volatile avr32_pm_t *pm, unsigned long gplp, unsigned long value);
/*! \brief Enable the clock of a module.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param module The module to clock (use one of the defines in the part-specific
* header file under "toolchain folder"/avr32/inc(lude)/avr32/; depending on the
* clock domain, look for the sections "CPU clocks", "HSB clocks", "PBx clocks")
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
extern long pm_enable_module(volatile avr32_pm_t *pm, unsigned long module);
/*! \brief Disable the clock of a module.
*
* \param pm Base address of the Power Manager (i.e. &AVR32_PM)
* \param module The module to shut down (use one of the defines in the part-specific
* header file under "toolchain folder"/avr32/inc(lude)/avr32/; depending on the
* clock domain, look for the sections "CPU clocks", "HSB clocks", "PBx clocks")
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
extern long pm_disable_module(volatile avr32_pm_t *pm, unsigned long module);
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks
* according to the user wishes.
*
* This function needs some parameters stored in a pm_freq_param_t structure:
* - cpu_f and pba_f are the wanted frequencies,
* - osc0_f is the oscillator 0 on-board frequency (e.g. FOSC0),
* - osc0_startup is the oscillator 0 startup time (e.g. OSC0_STARTUP).
*
* The function will then configure the clocks using the following rules:
* - It first try to find a valid PLL frequency (the highest possible value to avoid jitter) in order
* to satisfy the CPU frequency,
* - It optimizes the configuration depending the various divide stages,
* - Then, the PBA frequency is configured from the CPU freq.
* - Note that HSB and PBB are configured with the same frequency as CPU.
* - Note also that the number of wait states of the flash read accesses is automatically set-up depending
* the CPU frequency. As a consequence, the application needs the FLASHC driver to compile.
*
* The CPU, HSB and PBA frequencies programmed after configuration are stored back into cpu_f and pba_f.
*
* \param param pointer on the configuration structure.
*
* \retval PM_FREQ_STATUS_OK Mode successfully initialized.
* \retval PM_FREQ_STATUS_FAIL The configuration can not be done.
*/
extern int pm_configure_clocks(pm_freq_param_t *param);
/*! \brief Automatically configure the USB clock.
*
* USB clock is configured to 48MHz, using the PLL1 from the Oscillator0, assuming
* a 12 MHz crystal is connected to it.
*/
extern void pm_configure_usb_clock(void);
#endif // _PM_H_

View File

@@ -0,0 +1,268 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Power Manager clocks configuration helper.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <string.h>
#include "compiler.h"
#include "pm.h"
extern void flashc_set_wait_state(unsigned int wait_state);
#if (defined AVR32_FLASHC_210_H_INCLUDED)
extern void flashc_issue_command(unsigned int command, int page_number);
#endif
#define PM_MAX_MUL ((1 << AVR32_PM_PLL0_PLLMUL_SIZE) - 1)
int pm_configure_clocks(pm_freq_param_t *param)
{
// Supported frequencies:
// Fosc0 mul div PLL div2_en cpu_f pba_f Comment
// 12 15 1 192 1 12 12
// 12 9 3 40 1 20 20 PLL out of spec
// 12 15 1 192 1 24 12
// 12 9 1 120 1 30 15
// 12 9 3 40 0 40 20 PLL out of spec
// 12 15 1 192 1 48 12
// 12 15 1 192 1 48 24
// 12 8 1 108 1 54 27
// 12 9 1 120 1 60 15
// 12 9 1 120 1 60 30
// 12 10 1 132 1 66 16.5
//
unsigned long in_cpu_f = param->cpu_f;
unsigned long in_osc0_f = param->osc0_f;
unsigned long mul, div, div2_en = 0, div2_cpu = 0, div2_pba = 0;
unsigned long pll_freq, rest;
Bool b_div2_pba, b_div2_cpu;
// Switch to external Oscillator 0
pm_switch_to_osc0(&AVR32_PM, in_osc0_f, param->osc0_startup);
// Start with CPU freq config
if (in_cpu_f == in_osc0_f)
{
param->cpu_f = in_osc0_f;
param->pba_f = in_osc0_f;
return PM_FREQ_STATUS_OK;
}
else if (in_cpu_f < in_osc0_f)
{
// TBD
}
rest = in_cpu_f % in_osc0_f;
for (div = 1; div < 32; div++)
{
if ((div * rest) % in_osc0_f == 0)
break;
}
if (div == 32)
return PM_FREQ_STATUS_FAIL;
mul = (in_cpu_f * div) / in_osc0_f;
if (mul > PM_MAX_MUL)
return PM_FREQ_STATUS_FAIL;
// export 2power from PLL div to div2_cpu
while (!(div % 2))
{
div /= 2;
div2_cpu++;
}
// Here we know the mul and div parameter of the PLL config.
// . Check out if the PLL has a valid in_cpu_f.
// . Try to have for the PLL frequency (VCO output) the highest possible value
// to reduce jitter.
while (in_osc0_f * 2 * mul / div < AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ)
{
if (2 * mul > PM_MAX_MUL)
break;
mul *= 2;
div2_cpu++;
}
if (div2_cpu != 0)
{
div2_cpu--;
div2_en = 1;
}
pll_freq = in_osc0_f * mul / (div * (1 << div2_en));
// Update real CPU Frequency
param->cpu_f = pll_freq / (1 << div2_cpu);
mul--;
pm_pll_setup(&AVR32_PM
, 0 // pll
, mul // mul
, div // div
, 0 // osc
, 16 // lockcount
);
pm_pll_set_option(&AVR32_PM
, 0 // pll
// PLL clock is lower than 160MHz: need to set pllopt.
, (pll_freq < AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ) ? 1 : 0 // pll_freq
, div2_en // pll_div2
, 0 // pll_wbwdisable
);
rest = pll_freq;
while (rest > AVR32_PM_PBA_MAX_FREQ ||
rest != param->pba_f)
{
div2_pba++;
rest = pll_freq / (1 << div2_pba);
if (rest < param->pba_f)
break;
}
// Update real PBA Frequency
param->pba_f = pll_freq / (1 << div2_pba);
// Enable PLL0
pm_pll_enable(&AVR32_PM, 0);
// Wait for PLL0 locked
pm_wait_for_pll0_locked(&AVR32_PM);
if (div2_cpu)
{
b_div2_cpu = TRUE;
div2_cpu--;
}
else
b_div2_cpu = FALSE;
if (div2_pba)
{
b_div2_pba = TRUE;
div2_pba--;
}
else
b_div2_pba = FALSE;
pm_cksel(&AVR32_PM
, b_div2_pba, div2_pba // PBA
, b_div2_cpu, div2_cpu // PBB
, b_div2_cpu, div2_cpu // HSB
);
if (param->cpu_f > AVR32_FLASHC_FWS_0_MAX_FREQ)
{
flashc_set_wait_state(1);
#if (defined AVR32_FLASHC_210_H_INCLUDED)
if (param->cpu_f > AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ)
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
else
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
#endif
}
else
{
flashc_set_wait_state(0);
#if (defined AVR32_FLASHC_210_H_INCLUDED)
if (param->cpu_f > AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ)
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
else
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
#endif
}
pm_switch_to_clock(&AVR32_PM, AVR32_PM_MCCTRL_MCSEL_PLL0);
return PM_FREQ_STATUS_OK;
}
void pm_configure_usb_clock(void)
{
#if UC3A3
// Setup USB GCLK.
pm_gc_setup(&AVR32_PM, AVR32_PM_GCLK_USBB, // gc
0, // osc_or_pll: use Osc (if 0) or PLL (if 1)
0, // pll_osc: select Osc0/PLL0 or Osc1/PLL1
0, // diven
0); // div
// Enable USB GCLK.
pm_gc_enable(&AVR32_PM, AVR32_PM_GCLK_USBB);
#else
// Use 12MHz from OSC0 and generate 96 MHz
pm_pll_setup(&AVR32_PM, 1, // pll.
7, // mul.
1, // div.
0, // osc.
16); // lockcount.
pm_pll_set_option(&AVR32_PM, 1, // pll.
1, // pll_freq: choose the range 80-180MHz.
1, // pll_div2.
0); // pll_wbwdisable.
// start PLL1 and wait forl lock
pm_pll_enable(&AVR32_PM, 1);
// Wait for PLL1 locked.
pm_wait_for_pll1_locked(&AVR32_PM);
pm_gc_setup(&AVR32_PM, AVR32_PM_GCLK_USBB, // gc.
1, // osc_or_pll: use Osc (if 0) or PLL (if 1).
1, // pll_osc: select Osc0/PLL0 or Osc1/PLL1.
0, // diven.
0); // div.
pm_gc_enable(&AVR32_PM, AVR32_PM_GCLK_USBB);
#endif
}

View File

@@ -0,0 +1,566 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief High-level library abstracting features such as oscillators/pll/dfll
* configuration, clock configuration, System-sensible parameters
* configuration, buses clocks configuration, sleep mode, reset.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "power_clocks_lib.h"
//! Device-specific data
#if UC3L
static long int pcl_configure_clocks_uc3l(pcl_freq_param_t *param); // FORWARD declaration
#endif
#if UC3C
static long int pcl_configure_clocks_uc3c(pcl_freq_param_t *param); // FORWARD declaration
#endif
long int pcl_configure_clocks(pcl_freq_param_t *param)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
return(pm_configure_clocks(param));
#else
#ifdef AVR32_PM_410_H_INCLUDED
// Implementation for UC3C parts.
return(pcl_configure_clocks_uc3c(param));
#else
// Implementation for UC3L parts.
return(pcl_configure_clocks_uc3l(param));
#endif
#endif
}
//! Device-specific implementation
#if UC3L
// FORWARD declaration
static long int pcl_configure_synchronous_clocks( pm_clk_src_t main_clk_src,
unsigned long main_clock_freq_hz,
pcl_freq_param_t *param);
long int pcl_configure_clocks_rcsys(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RCSYS
// Supported synchronous clocks frequencies if RCSYS is the main clock source:
// 115200Hz, 57600Hz, 28800Hz, 14400Hz, 7200Hz, 3600Hz, 1800Hz, 900Hz, 450Hz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > SCIF_SLOWCLOCK_FREQ_HZ) || (param->pba_f > SCIF_SLOWCLOCK_FREQ_HZ)
|| (param->pbb_f > SCIF_SLOWCLOCK_FREQ_HZ))
return(-1);
#endif
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_SLOW, SCIF_SLOWCLOCK_FREQ_HZ, param));
}
long int pcl_configure_clocks_rc120m(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RC120M
// Supported synchronous clocks frequencies if RC120M is the main clock source:
// 30MHz, 15MHz, 7.5MHz, 3.75MHz, 1.875MHz, 937.5kHz, 468.75kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > SCIF_RC120M_FREQ_HZ) || (param->pba_f > SCIF_RC120M_FREQ_HZ)
|| (param->pbb_f > SCIF_RC120M_FREQ_HZ))
return(-1);
#endif
// Start the 120MHz internal RCosc (RC120M) clock
scif_start_rc120M();
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_RC120M, SCIF_RC120M_FREQ_HZ, param));
}
long int pcl_configure_clocks_osc0(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_OSC0
// Supported synchronous clocks frequencies if OSC0 is the main clock source:
// (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
// 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
unsigned long main_clock_freq;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
main_clock_freq = param->osc0_f;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target frequencies are reachable.
if((param->cpu_f > main_clock_freq) || (param->pba_f > main_clock_freq)
|| (param->pbb_f > main_clock_freq))
return(-1);
#endif
// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, main_clock_freq);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_OSC0, main_clock_freq, param));
}
long int pcl_configure_clocks_dfll0(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_DFLL
// Supported synchronous clocks frequencies if DFLL is the main clock source:
// (these obviously depend on the DFLL target frequency; we'll take 100MHz as an example)
// 50MHz, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5kHz, 781.25kHz, 390.625kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
unsigned long main_clock_freq;
scif_gclk_opt_t *pgc_dfllif_ref_opt;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
main_clock_freq = param->dfll_f;
#ifdef AVR32SFW_INPUT_CHECK
// Verify that the target DFLL output frequency is in the correct range.
if((main_clock_freq > SCIF_DFLL_MAXFREQ_HZ) || (main_clock_freq < SCIF_DFLL_MINFREQ_HZ))
return(-1);
// Verify that the target frequencies are reachable.
if((param->cpu_f > main_clock_freq) || (param->pba_f > main_clock_freq)
|| (param->pbb_f > main_clock_freq))
return(-1);
#endif
pgc_dfllif_ref_opt = (scif_gclk_opt_t *)param->pextra_params;
// Implementation note: this implementation configures the DFLL in closed-loop
// mode (because it gives the best accuracy) which enables the generic clock CLK_DFLLIF_REF
// as a reference (RCSYS being used as the generic clock source, undivided).
scif_dfll0_closedloop_configure_and_start(pgc_dfllif_ref_opt, main_clock_freq, TRUE);
return(pcl_configure_synchronous_clocks(PM_CLK_SRC_DFLL0, main_clock_freq, param));
}
static long int pcl_configure_clocks_uc3l(pcl_freq_param_t *param)
{
// Supported main clock sources: PCL_MC_RCSYS, PCL_MC_OSC0, PCL_MC_DFLL0, PCL_MC_RC120M
// Supported synchronous clocks frequencies if RCSYS is the main clock source:
// 115200Hz, 57600Hz, 28800Hz, 14400Hz, 7200Hz, 3600Hz, 1800Hz, 900Hz, 450Hz.
// Supported synchronous clocks frequencies if RC120M is the main clock source:
// 30MHz, 15MHz, 7.5MHz, 3.75MHz, 1.875MHz, 937.5kHz, 468.75kHz.
// Supported synchronous clocks frequencies if OSC0 is the main clock source:
// (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
// 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.
// Supported synchronous clocks frequencies if DFLL is the main clock source:
// (these obviously depend on the DFLL target frequency; we'll take 100MHz as an example)
// 50MHz, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5kHz, 781.25kHz, 390.625kHz.
// NOTE: by default, this implementation doesn't perform thorough checks on the
// input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
#ifdef AVR32SFW_INPUT_CHECK
// Verify that fCPU >= fPBx
if((param->cpu_f < param->pba_f) || (param->cpu_f < param->pbb_f))
return(-1);
#endif
if(PCL_MC_RCSYS == param->main_clk_src)
{
return(pcl_configure_clocks_rcsys(param));
}
else if(PCL_MC_RC120M == param->main_clk_src)
{
return(pcl_configure_clocks_rc120m(param));
}
else if(PCL_MC_OSC0 == param->main_clk_src)
{
return(pcl_configure_clocks_osc0(param));
}
else // PCL_MC_DFLL0 == param->main_clk_src
{
return(pcl_configure_clocks_dfll0(param));
}
}
static long int pcl_configure_synchronous_clocks(pm_clk_src_t main_clk_src, unsigned long main_clock_freq_hz, pcl_freq_param_t *param)
{
//#
//# Set the Synchronous clock division ratio for each clock domain
//#
pm_set_all_cksel(main_clock_freq_hz, param->cpu_f, param->pba_f, param->pbb_f);
//#
//# Set the Flash wait state and the speed read mode (depending on the target CPU frequency).
//#
#if UC3L
flashcdw_set_flash_waitstate_and_readmode(param->cpu_f);
#elif UC3C
flashc_set_flash_waitstate_and_readmode(param->cpu_f);
#endif
//#
//# Switch the main clock source to the selected clock.
//#
pm_set_mclk_source(main_clk_src);
return PASS;
}
#endif // UC3L device-specific implementation
//! UC3C Device-specific implementation
#if UC3C
static long int pcl_configure_clocks_uc3c(pcl_freq_param_t *param)
{
#define PM_MAX_MUL ((1 << AVR32_SCIF_PLLMUL_SIZE) - 1)
#define AVR32_PM_PBA_MAX_FREQ 66000000
#define AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ 240000000
#define AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ 160000000
// Implementation for UC3C parts.
// Supported frequencies:
// Fosc0 mul div PLL div2_en cpu_f pba_f Comment
// 12 15 1 192 1 12 12
// 12 9 3 40 1 20 20 PLL out of spec
// 12 15 1 192 1 24 12
// 12 9 1 120 1 30 15
// 12 9 3 40 0 40 20 PLL out of spec
// 12 15 1 192 1 48 12
// 12 15 1 192 1 48 24
// 12 8 1 108 1 54 27
// 12 9 1 120 1 60 15
// 12 9 1 120 1 60 30
// 12 10 1 132 1 66 16.5
//
unsigned long in_cpu_f = param->cpu_f;
unsigned long in_osc0_f = param->osc0_f;
unsigned long mul, div, div2_en = 0, div2_cpu = 0, div2_pba = 0;
unsigned long pll_freq, rest;
Bool b_div2_pba, b_div2_cpu;
// Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, in_osc0_f);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, param->osc0_startup, true);
// Set the main clock source as being OSC0.
pm_set_mclk_source(PM_CLK_SRC_OSC0);
// Start with CPU freq config
if (in_cpu_f == in_osc0_f)
{
param->cpu_f = in_osc0_f;
param->pba_f = in_osc0_f;
return PASS;
}
else if (in_cpu_f < in_osc0_f)
{
// TBD
}
rest = in_cpu_f % in_osc0_f;
for (div = 1; div < 32; div++)
{
if ((div * rest) % in_osc0_f == 0)
break;
}
if (div == 32)
return FAIL;
mul = (in_cpu_f * div) / in_osc0_f;
if (mul > PM_MAX_MUL)
return FAIL;
// export 2power from PLL div to div2_cpu
while (!(div % 2))
{
div /= 2;
div2_cpu++;
}
// Here we know the mul and div parameter of the PLL config.
// . Check out if the PLL has a valid in_cpu_f.
// . Try to have for the PLL frequency (VCO output) the highest possible value
// to reduce jitter.
while (in_osc0_f * 2 * mul / div < AVR32_PM_PLL_VCO_RANGE0_MAX_FREQ)
{
if (2 * mul > PM_MAX_MUL)
break;
mul *= 2;
div2_cpu++;
}
if (div2_cpu != 0)
{
div2_cpu--;
div2_en = 1;
}
pll_freq = in_osc0_f * mul / (div * (1 << div2_en));
// Update real CPU Frequency
param->cpu_f = pll_freq / (1 << div2_cpu);
mul--;
scif_pll_opt_t opt;
opt.osc = SCIF_OSC0, // Sel Osc0 or Osc1
opt.lockcount = 16, // lockcount in main clock for the PLL wait lock
opt.div = div, // DIV=1 in the formula
opt.mul = mul, // MUL=7 in the formula
opt.pll_div2 = div2_en, // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
opt.pll_wbwdisable = 0, //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
opt.pll_freq = (pll_freq < AVR32_PM_PLL_VCO_RANGE0_MIN_FREQ) ? 1 : 0, // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
scif_pll_setup(SCIF_PLL0, opt); // lockcount in main clock for the PLL wait lock
/* Enable PLL0 */
scif_pll_enable(SCIF_PLL0);
/* Wait for PLL0 locked */
scif_wait_for_pll_locked(SCIF_PLL0) ;
rest = pll_freq;
while (rest > AVR32_PM_PBA_MAX_FREQ ||
rest != param->pba_f)
{
div2_pba++;
rest = pll_freq / (1 << div2_pba);
if (rest < param->pba_f)
break;
}
// Update real PBA Frequency
param->pba_f = pll_freq / (1 << div2_pba);
if (div2_cpu)
{
b_div2_cpu = TRUE;
div2_cpu--;
}
else
b_div2_cpu = FALSE;
if (div2_pba)
{
b_div2_pba = TRUE;
div2_pba--;
}
else
b_div2_pba = FALSE;
if (b_div2_cpu == TRUE )
{
pm_set_clk_domain_div(PM_CLK_DOMAIN_0, (pm_divratio_t) div2_cpu); // CPU
pm_set_clk_domain_div(PM_CLK_DOMAIN_1, (pm_divratio_t) div2_cpu); // HSB
pm_set_clk_domain_div(PM_CLK_DOMAIN_3, (pm_divratio_t) div2_cpu); // PBB
}
if (b_div2_pba == TRUE )
{
pm_set_clk_domain_div(PM_CLK_DOMAIN_2, (pm_divratio_t) div2_pba); // PBA
pm_set_clk_domain_div(PM_CLK_DOMAIN_4, (pm_divratio_t) div2_pba); // PBC
}
// Set Flashc Wait State
flashc_set_flash_waitstate_and_readmode(param->cpu_f);
// Set the main clock source as being PLL0.
pm_set_mclk_source(PM_CLK_SRC_PLL0);
return PASS;
}
#endif // UC3C device-specific implementation
long int pcl_switch_to_osc(pcl_osc_t osc, unsigned int fcrystal, unsigned int startup)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
if(PCL_OSC0 == osc)
{
// Configure OSC0 in crystal mode, external crystal with a FOSC0 Hz frequency,
// enable the OSC0, set the main clock source as being OSC0.
pm_switch_to_osc0(&AVR32_PM, fcrystal, startup);
}
else
{
return PCL_NOT_SUPPORTED;
}
#else
// Implementation for UC3C, UC3L parts.
#if AVR32_PM_VERSION_RESETVALUE < 0x400
return PCL_NOT_SUPPORTED;
#else
if(PCL_OSC0 == osc)
{
// Configure OSC0 in crystal mode, external crystal with a fcrystal Hz frequency.
scif_configure_osc_crystalmode(SCIF_OSC0, fcrystal);
// Enable the OSC0
scif_enable_osc(SCIF_OSC0, startup, true);
// Set the Flash wait state and the speed read mode (depending on the target CPU frequency).
#if UC3L
flashcdw_set_flash_waitstate_and_readmode(fcrystal);
#elif UC3C
flashc_set_flash_waitstate_and_readmode(fcrystal);
#endif
// Set the main clock source as being OSC0.
pm_set_mclk_source(PM_CLK_SRC_OSC0);
}
else
{
return PCL_NOT_SUPPORTED;
}
#endif
#endif
return PASS;
}
long int pcl_configure_usb_clock(void)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
pm_configure_usb_clock();
return PASS;
#else
#ifdef AVR32_PM_410_H_INCLUDED
const scif_pll_opt_t opt = {
.osc = SCIF_OSC0, // Sel Osc0 or Osc1
.lockcount = 16, // lockcount in main clock for the PLL wait lock
.div = 1, // DIV=1 in the formula
.mul = 5, // MUL=7 in the formula
.pll_div2 = 1, // pll_div2 Divide the PLL output frequency by 2 (this settings does not change the FVCO value)
.pll_wbwdisable = 0, //pll_wbwdisable 1 Disable the Wide-Bandith Mode (Wide-Bandwith mode allow a faster startup time and out-of-lock time). 0 to enable the Wide-Bandith Mode.
.pll_freq = 1, // Set to 1 for VCO frequency range 80-180MHz, set to 0 for VCO frequency range 160-240Mhz.
};
/* Setup PLL1 on Osc0, mul=7 ,no divisor, lockcount=16, ie. 16Mhzx6 = 96MHz output */
scif_pll_setup(SCIF_PLL1, opt); // lockcount in main clock for the PLL wait lock
/* Enable PLL1 */
scif_pll_enable(SCIF_PLL1);
/* Wait for PLL1 locked */
scif_wait_for_pll_locked(SCIF_PLL1) ;
// Implementation for UC3C parts.
// Setup the generic clock for USB
scif_gc_setup(AVR32_SCIF_GCLK_USB,
SCIF_GCCTRL_PLL1,
AVR32_SCIF_GC_NO_DIV_CLOCK,
0);
// Now enable the generic clock
scif_gc_enable(AVR32_SCIF_GCLK_USB);
return PASS;
#else
return PCL_NOT_SUPPORTED;
#endif
#endif
}
#if UC3L
#else
void pcl_write_gplp(unsigned long gplp, unsigned long value)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
pm_write_gplp(&AVR32_PM,gplp,value);
#else
scif_write_gplp(gplp,value);
#endif
}
unsigned long pcl_read_gplp(unsigned long gplp)
{
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
return pm_read_gplp(&AVR32_PM,gplp);
#else
return scif_read_gplp(gplp);
#endif
}
#endif

View File

@@ -0,0 +1,379 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief High-level library abstracting features such as oscillators/pll/dfll
* configuration, clock configuration, System-sensible parameters
* configuration, buses clocks configuration, sleep mode, reset.
*
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
*****************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _POWER_CLOCKS_LIB_H_
#define _POWER_CLOCKS_LIB_H_
#ifdef __cplusplus
extern "C" {
#endif
#include <avr32/io.h>
#include "compiler.h"
#ifndef AVR32_PM_VERSION_RESETVALUE
// Support for UC3A, UC3A3, UC3B parts.
#include "pm.h"
#else
//! Device-specific data
#if UC3L
#include "pm_uc3l.h"
#include "scif_uc3l.h"
#include "flashcdw.h"
#elif UC3C
#include "pm_uc3c.h"
#include "scif_uc3c.h"
#include "flashc.h"
#endif
#endif
/*! \name Clocks Management
*/
//! @{
//! The different oscillators
typedef enum
{
PCL_OSC0 = 0,
PCL_OSC1 = 1
} pcl_osc_t;
//! The different DFLLs
typedef enum
{
PCL_DFLL0 = 0,
PCL_DFLL1 = 1
} pcl_dfll_t;
//! Possible Main Clock Sources
typedef enum
{
PCL_MC_RCSYS, // Default main clock source, supported by all (aka Slow Clock)
PCL_MC_OSC0, // Supported by all
PCL_MC_OSC1, // Supported by UC3C only
PCL_MC_OSC0_PLL0, // Supported by UC3A, UC3B, UC3A3, UC3C (the main clock source is PLL0 with OSC0 as reference)
PCL_MC_OSC1_PLL0, // Supported by UC3A, UC3B, UC3A3, UC3C (the main clock source is PLL0 with OSC1 as reference)
PCL_MC_OSC0_PLL1, // Supported by UC3C (the main clock source is PLL1 with OSC0 as reference)
PCL_MC_OSC1_PLL1, // Supported by UC3C (the main clock source is PLL1 with OSC1 as reference)
PCL_MC_DFLL0, // Supported by UC3L
PCL_MC_DFLL1, // Not supported yet
PCL_MC_RC120M, // Supported by UC3L, UC3C
PCL_MC_RC8M, // Supported by UC3C
PCL_MC_CRIPOSC // Supported by UC3C
} pcl_mainclk_t;
//! Input and output parameters to configure clocks with pcl_configure_clocks().
// NOTE: regarding the frequency settings, always abide by the datasheet rules and min & max supported frequencies.
#ifndef AVR32_PM_VERSION_RESETVALUE
// Support for UC3A, UC3A3, UC3B parts.
#define pcl_freq_param_t pm_freq_param_t // See pm.h
#else
// Support for UC3C, UC3L parts.
typedef struct
{
//! Main clock source selection (input argument).
pcl_mainclk_t main_clk_src;
//! Target CPU frequency (input/output argument).
unsigned long cpu_f;
//! Target PBA frequency (input/output argument).
unsigned long pba_f;
//! Target PBB frequency (input/output argument).
unsigned long pbb_f;
//! Target PBC frequency (input/output argument).
unsigned long pbc_f;
//! Oscillator 0's external crystal(or external clock) frequency (board dependant) (input argument).
unsigned long osc0_f;
//! Oscillator 0's external crystal(or external clock) startup time: AVR32_PM_OSCCTRL0_STARTUP_x_RCOSC (input argument).
unsigned long osc0_startup;
//! DFLL target frequency (input/output argument) (NOTE: the bigger, the most stable the frequency)
unsigned long dfll_f;
//! Other parameters that might be necessary depending on the device (implementation-dependent).
// For the UC3L DFLL setup, this parameter should be pointing to a structure of
// type (scif_gclk_opt_t *).
void *pextra_params;
} pcl_freq_param_t;
#endif
//! Define "not supported" for the lib.
#define PCL_NOT_SUPPORTED (-10000)
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks
*
* This function needs some parameters stored in a pcl_freq_param_t structure:
* - main_clk_src is the id of the main clock source to use,
* - cpu_f and pba_f and pbb_f are the wanted frequencies,
* - osc0_f is the oscillator 0's external crystal (or external clock) on-board frequency (e.g. FOSC0),
* - osc0_startup is the oscillator 0's external crystal (or external clock) startup time (e.g. OSC0_STARTUP).
* - dfll_f is the target DFLL frequency to set-up if main_clk_src is the dfll.
*
* The CPU, HSB and PBA frequencies programmed after configuration are stored back into cpu_f and pba_f.
*
* \note: since it is dynamically computing the appropriate field values of the
* configuration registers from the parameters structure, this function is not
* optimal in terms of code size. For a code size optimal solution, it is better
* to create a new function from pcl_configure_clocks() and modify it to use
* preprocessor computation from pre-defined target frequencies.
*
* \param param pointer on the configuration structure.
*
* \retval 0 Success.
* \retval <0 The configuration cannot be performed.
*/
extern long int pcl_configure_clocks(pcl_freq_param_t *param);
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks using the RCSYS osc as main source clock.
*
* This function needs some parameters stored in a pcl_freq_param_t structure:
* - cpu_f and pba_f and pbb_f are the wanted frequencies
*
* Supported main clock sources: PCL_MC_RCSYS
*
* Supported synchronous clocks frequencies:
* 115200Hz, 57600Hz, 28800Hz, 14400Hz, 7200Hz, 3600Hz, 1800Hz, 900Hz, 450Hz.
*
* \note: by default, this implementation doesn't perform thorough checks on the
* input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
*
* \note: since it is dynamically computing the appropriate field values of the
* configuration registers from the parameters structure, this function is not
* optimal in terms of code size. For a code size optimal solution, it is better
* to create a new function from pcl_configure_clocks_rcsys() and modify it to use
* preprocessor computation from pre-defined target frequencies.
*
* \param param pointer on the configuration structure.
*
* \retval 0 Success.
* \retval <0 The configuration cannot be performed.
*/
extern long int pcl_configure_clocks_rcsys(pcl_freq_param_t *param);
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks using the RC120M osc as main source clock.
*
* This function needs some parameters stored in a pcl_freq_param_t structure:
* - cpu_f and pba_f and pbb_f are the wanted frequencies
*
* Supported main clock sources: PCL_MC_RC120M
*
* Supported synchronous clocks frequencies:
* 30MHz, 15MHz, 7.5MHz, 3.75MHz, 1.875MHz, 937.5kHz, 468.75kHz.
*
* \note: by default, this implementation doesn't perform thorough checks on the
* input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
*
* \note: since it is dynamically computing the appropriate field values of the
* configuration registers from the parameters structure, this function is not
* optimal in terms of code size. For a code size optimal solution, it is better
* to create a new function from pcl_configure_clocks_rc120m() and modify it to
* use preprocessor computation from pre-defined target frequencies.
*
* \param param pointer on the configuration structure.
*
* \retval 0 Success.
* \retval <0 The configuration cannot be performed.
*/
extern long int pcl_configure_clocks_rc120m(pcl_freq_param_t *param);
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks using the OSC0 osc as main source clock
*
* This function needs some parameters stored in a pcl_freq_param_t structure:
* - cpu_f and pba_f and pbb_f are the wanted frequencies,
* - osc0_f is the oscillator 0's external crystal (or external clock) on-board frequency (e.g. FOSC0),
* - osc0_startup is the oscillator 0's external crystal (or external clock) startup time (e.g. OSC0_STARTUP).
*
* Supported main clock sources: PCL_MC_OSC0
*
* Supported synchronous clocks frequencies:
* (these obviously depend on the OSC0 frequency; we'll take 16MHz as an example)
* 16MHz, 8MHz, 4MHz, 2MHz, 1MHz, 500kHz, 250kHz, 125kHz, 62.5kHz.
*
* \note: by default, this implementation doesn't perform thorough checks on the
* input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
*
* \note: since it is dynamically computing the appropriate field values of the
* configuration registers from the parameters structure, this function is not
* optimal in terms of code size. For a code size optimal solution, it is better
* to create a new function from pcl_configure_clocks_osc0() and modify it to use
* preprocessor computation from pre-defined target frequencies.
*
* \param param pointer on the configuration structure.
*
* \retval 0 Success.
* \retval <0 The configuration cannot be performed.
*/
extern long int pcl_configure_clocks_osc0(pcl_freq_param_t *param);
/*! \brief Automatically configure the CPU, PBA, PBB, and HSB clocks using the DFLL0 as main source clock
*
* This function needs some parameters stored in a pcl_freq_param_t structure:
* - cpu_f and pba_f and pbb_f are the wanted frequencies,
* - dfll_f is the target DFLL frequency to set-up
*
* \note: when the DFLL0 is to be used as main source clock for the synchronous clocks,
* the target frequency of the DFLL should be chosen to be as high as possible
* within the specification range (for stability reasons); the target cpu and pbx
* frequencies will then be reached by appropriate division ratio.
*
* Supported main clock sources: PCL_MC_DFLL0
*
* Supported synchronous clocks frequencies:
* (these obviously depend on the DFLL target frequency; we'll take 100MHz as an example)
* 50MHz, 25MHz, 12.5MHz, 6.25MHz, 3.125MHz, 1562.5kHz, 781.25kHz, 390.625kHz.
*
* \note: by default, this implementation doesn't perform thorough checks on the
* input parameters. To enable the checks, define AVR32SFW_INPUT_CHECK.
*
* \note: since it is dynamically computing the appropriate field values of the
* configuration registers from the parameters structure, this function is not
* optimal in terms of code size. For a code size optimal solution, it is better
* to create a new function from pcl_configure_clocks_dfll0() and modify it to
* use preprocessor computation from pre-defined target frequencies.
*
* \param param pointer on the configuration structure.
*
* \retval 0 Success.
* \retval <0 The configuration cannot be performed.
*/
extern long int pcl_configure_clocks_dfll0(pcl_freq_param_t *param);
/*! \brief Switch the main clock source to Osc0 configured in crystal mode
*
* \param osc The oscillator to enable and switch to.
* \param fcrystal Oscillator external crystal frequency (Hz)
* \param startup Oscillator startup time.
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
extern long int pcl_switch_to_osc(pcl_osc_t osc, unsigned int fcrystal, unsigned int startup);
/*! \brief Enable the clock of a module.
*
* \param module The module to clock (use one of the defines in the part-specific
* header file under "toolchain folder"/avr32/inc(lude)/avr32/; depending on the
* clock domain, look for the sections "CPU clocks", "HSB clocks", "PBx clocks"
* or look in the module section).
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
#define pcl_enable_module(module) pm_enable_module(&AVR32_PM, module)
#else
// Implementation for UC3C, UC3L parts.
#define pcl_enable_module(module) pm_enable_module(module)
#endif
/*! \brief Disable the clock of a module.
*
* \param module The module to shut down (use one of the defines in the part-specific
* header file under "toolchain folder"/avr32/inc(lude)/avr32/; depending on the
* clock domain, look for the sections "CPU clocks", "HSB clocks", "PBx clocks"
* or look in the module section).
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
#ifndef AVR32_PM_VERSION_RESETVALUE
// Implementation for UC3A, UC3A3, UC3B parts.
#define pcl_disable_module(module) pm_disable_module(&AVR32_PM, module)
#else
// Implementation for UC3C, UC3L parts.
#define pcl_disable_module(module) pm_disable_module(module)
#endif
/*! \brief Configure the USB Clock
*
*
* \return Status.
* \retval 0 Success.
* \retval <0 An error occured.
*/
extern long int pcl_configure_usb_clock(void);
//! @}
/*! \name Power Management
*/
//! @{
/*!
* \brief Read the content of the GPLP registers
* \param gplp GPLP register index (0,1,... depending on the number of GPLP registers for a given part)
*
* \return The content of the chosen GPLP register.
*/
extern unsigned long pcl_read_gplp(unsigned long gplp);
/*!
* \brief Write into the GPLP registers
* \param gplp GPLP register index (0,1,... depending on the number of GPLP registers for a given part)
* \param value Value to write
*/
extern void pcl_write_gplp(unsigned long gplp, unsigned long value);
//! @}
#ifdef __cplusplus
}
#endif
#endif // _POWER_CLOCKS_LIB_H_

View File

@@ -0,0 +1,213 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief RTC driver for AVR32 UC3.
*
* AVR32 Real Time Counter driver module.
*
* - Compiler: GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an RTC and a PM module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <avr32/io.h>
#include "compiler.h"
#include "pm.h"
#include "rtc.h"
int rtc_is_busy(volatile avr32_rtc_t *rtc)
{
return (rtc->ctrl & AVR32_RTC_CTRL_BUSY_MASK) != 0;
}
int rtc_init(volatile avr32_rtc_t *rtc, unsigned char osc_type, unsigned char psel)
{
// If exit, it means that the configuration has not been set correctly
if (osc_type > (1 << AVR32_RTC_CTRL_CLK32_SIZE) - 1 ||
psel > (1 << AVR32_RTC_CTRL_PSEL_SIZE) - 1)
return 0;
// If we use the 32-kHz oscillator, we have to enable it first
if (osc_type == RTC_OSC_32KHZ)
{
// Select the 32-kHz oscillator crystal
pm_enable_osc32_crystal(&AVR32_PM);
// Enable the 32-kHz clock
pm_enable_clk32_no_wait(&AVR32_PM, AVR32_PM_OSCCTRL32_STARTUP_0_RCOSC);
}
// Wait until the rtc CTRL register is up-to-date
while (rtc_is_busy(rtc));
// Set the new RTC configuration
rtc->ctrl = osc_type << AVR32_RTC_CTRL_CLK32_OFFSET |
psel << AVR32_RTC_CTRL_PSEL_OFFSET |
AVR32_RTC_CTRL_CLKEN_MASK;
// Wait until write is done
while (rtc_is_busy(rtc));
// Set the counter value to 0
rtc_set_value(rtc, 0x00000000);
// Set the top value to 0xFFFFFFFF
rtc_set_top_value(rtc, 0xFFFFFFFF);
return 1;
}
void rtc_set_value(volatile avr32_rtc_t *rtc, unsigned long val)
{
// Wait until we can write into the VAL register
while (rtc_is_busy(rtc));
// Set the new val value
rtc->val = val;
// Wait until write is done
while (rtc_is_busy(rtc));
}
unsigned long rtc_get_value(volatile avr32_rtc_t *rtc)
{
return rtc->val;
}
void rtc_enable_wake_up(volatile avr32_rtc_t *rtc)
{
// Wait until the rtc CTRL register is up-to-date
while (rtc_is_busy(rtc));
// Enable the wake up of the RTC
rtc->ctrl |= AVR32_RTC_CTRL_WAKE_EN_MASK;
// Wait until write is done
while (rtc_is_busy(rtc));
}
void rtc_disable_wake_up(volatile avr32_rtc_t *rtc)
{
// Wait until the rtc CTRL register is up-to-date
while (rtc_is_busy(rtc));
// Disable the wake up of the RTC
rtc->ctrl &= ~AVR32_RTC_CTRL_WAKE_EN_MASK;
// Wait until write is done
while (rtc_is_busy(rtc));
}
void rtc_enable(volatile avr32_rtc_t *rtc)
{
// Wait until the rtc CTRL register is up-to-date
while (rtc_is_busy(rtc));
// Enable the RTC
rtc->ctrl |= AVR32_RTC_CTRL_EN_MASK;
// Wait until write is done
while (rtc_is_busy(rtc));
}
void rtc_disable(volatile avr32_rtc_t *rtc)
{
// Wait until the rtc CTRL register is up-to-date
while (rtc_is_busy(rtc));
// Disable the RTC
rtc->ctrl &= ~AVR32_RTC_CTRL_EN_MASK;
// Wait until write is done
while (rtc_is_busy(rtc));
}
void rtc_enable_interrupt(volatile avr32_rtc_t *rtc)
{
rtc->ier = AVR32_RTC_IER_TOPI_MASK;
}
void rtc_disable_interrupt(volatile avr32_rtc_t *rtc)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
rtc->idr = AVR32_RTC_IDR_TOPI_MASK;
rtc->imr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void rtc_clear_interrupt(volatile avr32_rtc_t *rtc)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
if (global_interrupt_enabled) Disable_global_interrupt();
rtc->icr = AVR32_RTC_ICR_TOPI_MASK;
rtc->isr;
if (global_interrupt_enabled) Enable_global_interrupt();
}
void rtc_set_top_value(volatile avr32_rtc_t *rtc, unsigned long top)
{
// Wait until we can write into the VAL register
while (rtc_is_busy(rtc));
// Set the new val value
rtc->top = top;
// Wait until write is done
while (rtc_is_busy(rtc));
}
unsigned long rtc_get_top_value(volatile avr32_rtc_t *rtc)
{
return rtc->top;
}
int rtc_interrupt_enabled(volatile avr32_rtc_t *rtc)
{
return (rtc->imr & AVR32_RTC_IMR_TOPI_MASK) != 0;
}
int rtc_is_interrupt(volatile avr32_rtc_t *rtc)
{
return (rtc->isr & AVR32_RTC_ISR_TOPI_MASK) != 0;
}

View File

@@ -0,0 +1,191 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief RTC driver for AVR32 UC3.
*
* AVR32 Real Time Counter driver module.
*
* - Compiler: GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an RTC and a PM module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _RTC_H_
#define _RTC_H_
#include "compiler.h"
#include <avr32/io.h>
/*! \name Oscillator Types
*/
//! @{
#define RTC_OSC_32KHZ 1
#define RTC_OSC_RC 0
//! @}
/*! \name Predefined PSEL Values
*/
//! @{
//! The PSEL value to set the RTC source clock (after the prescaler) to 1 Hz,
//! when using an external 32-kHz crystal.
#define RTC_PSEL_32KHZ_1HZ 14
//! The PSEL value to set the RTC source clock (after the prescaler) to 1.76 Hz,
//! when using the internal RC oscillator (~ 115 kHz).
#define RTC_PSEL_RC_1_76HZ 15
//! @}
/*!
* \brief This function will initialise the RTC module.
* If you use the 32 KHz oscillator, it will enable this module.
* This function also set the top value of the RTC to 0xFFFFFFFF
* and the value to 0.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \param osc_type The oscillator you want to use. If you need a better
* accuracy, use the 32 KHz oscillator (i.e. RTC_OSC_32KHZ).
* \param psel The preselector value for the corresponding oscillator (4-bits).
* To obtain this value, you can use this formula:
* psel = log(Fosc/Frtc)/log(2)-1, where Fosc is the frequency of the
* oscillator you are using (32 KHz or 115 KHz) and Frtc the frequency
* desired.
* \return 1 if the initialisation succeds otherwize it will return 0.
*/
extern int rtc_init(volatile avr32_rtc_t *rtc, unsigned char osc_type, unsigned char psel);
/*!
* \brief Enable the RTC.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_enable(volatile avr32_rtc_t *rtc);
/*!
* \brief Disable the RTC.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_disable(volatile avr32_rtc_t *rtc);
/*!
* \brief Enable the wake up feature of the RTC.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_enable_wake_up(volatile avr32_rtc_t *rtc);
/*!
* \brief Disable the wake up feature of the RTC.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_disable_wake_up(volatile avr32_rtc_t *rtc);
/*!
* \brief Enable the interrupt feature of the RTC.
* An interrupt is raised when the value of the RTC
* is equal to its top value.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_enable_interrupt(volatile avr32_rtc_t *rtc);
/*!
* \brief Disable the interrupt feature of the RTC.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_disable_interrupt(volatile avr32_rtc_t *rtc);
/*!
* \brief Clear the interrupt flag.
* Call this function once you handled the interrupt.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
*/
extern void rtc_clear_interrupt(volatile avr32_rtc_t *rtc);
/*!
* \brief Get the status of interrupts.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \return 1 if the interrupts are enabled otherwize it returns 0.
*/
extern int rtc_interrupt_enabled(volatile avr32_rtc_t *rtc);
/*!
* \brief Check if an interrupt is raised.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \return 1 if an interrupt is currently raised otherwize it returns 0.
*/
extern int rtc_is_interrupt(volatile avr32_rtc_t *rtc);
/*!
* \brief This function sets the RTC current top value.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \param top The top value you want to store.
*/
extern void rtc_set_top_value(volatile avr32_rtc_t *rtc, unsigned long top);
/*!
* \brief This function returns the RTC current top value.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \return The RTC current top value.
*/
extern unsigned long rtc_get_top_value(volatile avr32_rtc_t *rtc);
/*!
* \brief This function checks if the RTC is busy or not.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \return 1 if the RTC is busy otherwize it will return 0.
*/
extern int rtc_is_busy(volatile avr32_rtc_t *rtc);
/*!
* \brief This function sets the RTC current value.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \param val The value you want to store.
*/
extern void rtc_set_value(volatile avr32_rtc_t *rtc, unsigned long val);
/*!
* \brief This function returns the RTC current value.
* \param rtc Base address of the RTC (i.e. &AVR32_RTC).
* \return The RTC current value.
*/
extern unsigned long rtc_get_value(volatile avr32_rtc_t *rtc);
#endif // _RTC_H_

View File

@@ -0,0 +1,443 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief SPI driver for AVR32 UC3.
*
* This file defines a useful set of functions for the SPI interface on AVR32
* devices.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an SPI module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "spi.h"
#ifdef FREERTOS_USED
#include "FreeRTOS.h"
#include "semphr.h"
#endif
/*! \name SPI Writable Bit-Field Registers
*/
//! @{
typedef union
{
unsigned long cr;
avr32_spi_cr_t CR;
} u_avr32_spi_cr_t;
typedef union
{
unsigned long mr;
avr32_spi_mr_t MR;
} u_avr32_spi_mr_t;
typedef union
{
unsigned long tdr;
avr32_spi_tdr_t TDR;
} u_avr32_spi_tdr_t;
typedef union
{
unsigned long ier;
avr32_spi_ier_t IER;
} u_avr32_spi_ier_t;
typedef union
{
unsigned long idr;
avr32_spi_idr_t IDR;
} u_avr32_spi_idr_t;
typedef union
{
unsigned long csr;
avr32_spi_csr0_t CSR;
} u_avr32_spi_csr_t;
//! @}
#ifdef FREERTOS_USED
//! The SPI mutex.
static xSemaphoreHandle xSPIMutex;
#endif
/*! \brief Calculates the baudrate divider.
*
* \param options Pointer to a structure containing initialization options for
* an SPI channel.
* \param pba_hz SPI module input clock frequency (PBA clock, Hz).
*
* \return Divider or error code.
* \retval >=0 Success.
* \retval <0 Error.
*/
static int getBaudDiv(const spi_options_t *options, unsigned int pba_hz)
{
int baudDiv = (pba_hz + options->baudrate / 2) / options->baudrate;
if (baudDiv <= 0 || baudDiv > 255) {
return -1;
}
return baudDiv;
}
void spi_reset(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SWRST_MASK;
}
spi_status_t spi_initSlave(volatile avr32_spi_t *spi,
unsigned char bits,
unsigned char spi_mode)
{
if (spi_mode > 3 ||
bits < 8 || bits > 16) {
return SPI_ERROR_ARGUMENT;
}
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
// Will use CSR0 offsets; these are the same for CSR0 to CSR3.
spi->csr0 = ((spi_mode >> 1) << AVR32_SPI_CSR0_CPOL_OFFSET) |
(((spi_mode & 0x1) ^ 0x1) << AVR32_SPI_CSR0_NCPHA_OFFSET) |
((bits - 8) << AVR32_SPI_CSR0_BITS_OFFSET);
return SPI_OK;
}
spi_status_t spi_initTest(volatile avr32_spi_t *spi)
{
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
spi->mr |= AVR32_SPI_MR_MSTR_MASK | // Master Mode.
AVR32_SPI_MR_LLB_MASK; // Local Loopback.
return SPI_OK;
}
spi_status_t spi_initMaster(volatile avr32_spi_t *spi, const spi_options_t *options)
{
u_avr32_spi_mr_t u_avr32_spi_mr;
if (options->modfdis > 1) {
return SPI_ERROR_ARGUMENT;
}
// Reset.
spi->cr = AVR32_SPI_CR_SWRST_MASK;
// Master Mode.
u_avr32_spi_mr.mr = spi->mr;
u_avr32_spi_mr.MR.mstr = 1;
u_avr32_spi_mr.MR.modfdis = options->modfdis;
u_avr32_spi_mr.MR.llb = 0;
u_avr32_spi_mr.MR.pcs = (1 << AVR32_SPI_MR_PCS_SIZE) - 1;
spi->mr = u_avr32_spi_mr.mr;
return SPI_OK;
}
spi_status_t spi_selectionMode(volatile avr32_spi_t *spi,
unsigned char variable_ps,
unsigned char pcs_decode,
unsigned char delay)
{
u_avr32_spi_mr_t u_avr32_spi_mr;
if (variable_ps > 1 ||
pcs_decode > 1) {
return SPI_ERROR_ARGUMENT;
}
u_avr32_spi_mr.mr = spi->mr;
u_avr32_spi_mr.MR.ps = variable_ps;
u_avr32_spi_mr.MR.pcsdec = pcs_decode;
u_avr32_spi_mr.MR.dlybcs = delay;
spi->mr = u_avr32_spi_mr.mr;
return SPI_OK;
}
spi_status_t spi_selectChip(volatile avr32_spi_t *spi, unsigned char chip)
{
#ifdef FREERTOS_USED
while (pdFALSE == xSemaphoreTake(xSPIMutex, 20));
#endif
// Assert all lines; no peripheral is selected.
spi->mr |= AVR32_SPI_MR_PCS_MASK;
if (spi->mr & AVR32_SPI_MR_PCSDEC_MASK) {
// The signal is decoded; allow up to 15 chips.
if (chip > 14) {
return SPI_ERROR_ARGUMENT;
}
spi->mr &= ~AVR32_SPI_MR_PCS_MASK | (chip << AVR32_SPI_MR_PCS_OFFSET);
} else {
if (chip > 3) {
return SPI_ERROR_ARGUMENT;
}
spi->mr &= ~(1 << (AVR32_SPI_MR_PCS_OFFSET + chip));
}
return SPI_OK;
}
spi_status_t spi_unselectChip(volatile avr32_spi_t *spi, unsigned char chip)
{
unsigned int timeout = SPI_TIMEOUT;
while (!(spi->sr & AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
// Assert all lines; no peripheral is selected.
spi->mr |= AVR32_SPI_MR_PCS_MASK;
// Last transfer, so deassert the current NPCS if CSAAT is set.
spi->cr = AVR32_SPI_CR_LASTXFER_MASK;
#ifdef FREERTOS_USED
xSemaphoreGive(xSPIMutex);
#endif
return SPI_OK;
}
spi_status_t spi_setupChipReg(volatile avr32_spi_t *spi,
const spi_options_t *options,
unsigned int pba_hz)
{
u_avr32_spi_csr_t u_avr32_spi_csr;
if (options->spi_mode > 3 ||
options->stay_act > 1 ||
options->bits < 8 || options->bits > 16) {
return SPI_ERROR_ARGUMENT;
}
int baudDiv = getBaudDiv(options, pba_hz);
if (baudDiv < 0) {
return SPI_ERROR_ARGUMENT;
}
// Will use CSR0 offsets; these are the same for CSR0 to CSR3.
u_avr32_spi_csr.csr = 0;
u_avr32_spi_csr.CSR.cpol = options->spi_mode >> 1;
u_avr32_spi_csr.CSR.ncpha = (options->spi_mode & 0x1) ^ 0x1;
u_avr32_spi_csr.CSR.csaat = options->stay_act;
u_avr32_spi_csr.CSR.bits = options->bits - 8;
u_avr32_spi_csr.CSR.scbr = baudDiv;
u_avr32_spi_csr.CSR.dlybs = options->spck_delay;
u_avr32_spi_csr.CSR.dlybct = options->trans_delay;
switch(options->reg) {
case 0:
spi->csr0 = u_avr32_spi_csr.csr;
break;
case 1:
spi->csr1 = u_avr32_spi_csr.csr;
break;
case 2:
spi->csr2 = u_avr32_spi_csr.csr;
break;
case 3:
spi->csr3 = u_avr32_spi_csr.csr;
break;
default:
return SPI_ERROR_ARGUMENT;
}
#ifdef FREERTOS_USED
if (!xSPIMutex)
{
// Create the SPI mutex.
vSemaphoreCreateBinary(xSPIMutex);
if (!xSPIMutex)
{
while(1);
}
}
#endif
return SPI_OK;
}
void spi_enable(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SPIEN_MASK;
}
void spi_disable(volatile avr32_spi_t *spi)
{
spi->cr = AVR32_SPI_CR_SPIDIS_MASK;
}
int spi_is_enabled(volatile avr32_spi_t *spi)
{
return (spi->sr & AVR32_SPI_SR_SPIENS_MASK) != 0;
}
inline unsigned char spi_writeRegisterEmptyCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_TDRE_MASK) != 0);
}
inline spi_status_t spi_write(volatile avr32_spi_t *spi, unsigned short data)
{
unsigned int timeout = SPI_TIMEOUT;
while (!(spi->sr & AVR32_SPI_SR_TDRE_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
spi->tdr = data << AVR32_SPI_TDR_TD_OFFSET;
return SPI_OK;
}
spi_status_t spi_variableSlaveWrite(volatile avr32_spi_t *spi, unsigned short data,
unsigned char pcs, unsigned char lastxfer)
{
unsigned int timeout = SPI_TIMEOUT;
if (pcs > 14 || lastxfer > 1) {
return SPI_ERROR_ARGUMENT;
}
while (!(spi->sr & AVR32_SPI_SR_TDRE_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
spi->tdr = (data << AVR32_SPI_TDR_TD_OFFSET) |
(pcs << AVR32_SPI_TDR_PCS_OFFSET) |
(lastxfer << AVR32_SPI_TDR_LASTXFER_OFFSET);
return SPI_OK;
}
inline unsigned char spi_writeEndCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_TXEMPTY_MASK) != 0);
}
unsigned char spi_readRegisterFullCheck(volatile avr32_spi_t *spi)
{
return ((spi->sr & AVR32_SPI_SR_RDRF_MASK) != 0);
}
inline spi_status_t spi_read(volatile avr32_spi_t *spi, unsigned short *data)
{
unsigned int timeout = SPI_TIMEOUT;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
*data = spi->rdr >> AVR32_SPI_RDR_RD_OFFSET;
return SPI_OK;
}
unsigned char spi_getStatus(volatile avr32_spi_t *spi)
{
spi_status_t ret = SPI_OK;
unsigned long sr = spi->sr;
if (sr & AVR32_SPI_SR_OVRES_MASK) {
ret = SPI_ERROR_OVERRUN;
}
if (sr & AVR32_SPI_SR_MODF_MASK) {
ret += SPI_ERROR_MODE_FAULT;
}
if (ret == (SPI_ERROR_OVERRUN + SPI_ERROR_MODE_FAULT)) {
return SPI_ERROR_OVERRUN_AND_MODE_FAULT;
}
else if (ret > 0) {
return ret;
} else {
return SPI_OK;
}
}

View File

@@ -0,0 +1,342 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief SPI driver for AVR32 UC3.
*
* This file defines a useful set of functions for the SPI interface on AVR32
* devices.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with an SPI module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _SPI_H_
#define _SPI_H_
#include <avr32/io.h>
//! Time-out value (number of attempts).
#define SPI_TIMEOUT 10000
//! Status codes used by the SPI driver.
typedef enum
{
SPI_ERROR = -1,
SPI_OK = 0,
SPI_ERROR_TIMEOUT = 1,
SPI_ERROR_ARGUMENT,
SPI_ERROR_OVERRUN,
SPI_ERROR_MODE_FAULT,
SPI_ERROR_OVERRUN_AND_MODE_FAULT
} spi_status_t;
//! Option structure for SPI channels.
typedef struct
{
//! The SPI channel to set up.
unsigned char reg;
//! Preferred baudrate for the SPI.
unsigned int baudrate;
//! Number of bits in each character (8 to 16).
unsigned char bits;
//! Delay before first clock pulse after selecting slave (in PBA clock periods).
unsigned char spck_delay;
//! Delay between each transfer/character (in PBA clock periods).
unsigned char trans_delay;
//! Sets this chip to stay active after last transfer to it.
unsigned char stay_act;
//! Which SPI mode to use when transmitting.
unsigned char spi_mode;
//! Disables the mode fault detection.
//! With this bit cleared, the SPI master mode will disable itself if another
//! master tries to address it.
unsigned char modfdis;
} spi_options_t;
/*! \brief Resets the SPI controller.
*
* \param spi Base address of the SPI instance.
*/
extern void spi_reset(volatile avr32_spi_t *spi);
/*! \brief Initializes the SPI in slave mode.
*
* \param spi Base address of the SPI instance.
* \param bits Number of bits in each transmitted character (8 to 16).
* \param spi_mode Clock polarity and phase.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*/
extern spi_status_t spi_initSlave(volatile avr32_spi_t *spi,
unsigned char bits,
unsigned char spi_mode);
/*! \brief Sets up the SPI in a test mode where the transmitter is connected to
* the receiver (local loopback).
*
* \param spi Base address of the SPI instance.
*
* \return Status.
* \retval SPI_OK Success.
*/
extern spi_status_t spi_initTest(volatile avr32_spi_t *spi);
/*! \brief Initializes the SPI in master mode.
*
* \param spi Base address of the SPI instance.
* \param options Pointer to a structure containing initialization options.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*/
extern spi_status_t spi_initMaster(volatile avr32_spi_t *spi, const spi_options_t *options);
/*! \brief Sets up how and when the slave chips are selected (master mode only).
*
* \param spi Base address of the SPI instance.
* \param variable_ps Target slave is selected in transfer register for every
* character to transmit.
* \param pcs_decode The four chip select lines are decoded externally. Values
* 0 to 14 can be given to \ref spi_selectChip.
* \param delay Delay in PBA periods between chip selects.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*/
extern spi_status_t spi_selectionMode(volatile avr32_spi_t *spi,
unsigned char variable_ps,
unsigned char pcs_decode,
unsigned char delay);
/*! \brief Selects slave chip.
*
* \param spi Base address of the SPI instance.
* \param chip Slave chip number (normal: 0 to 3, extarnally decoded signal: 0
* to 14).
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*/
extern spi_status_t spi_selectChip(volatile avr32_spi_t *spi, unsigned char chip);
/*! \brief Unselects slave chip.
*
* \param spi Base address of the SPI instance.
* \param chip Slave chip number (normal: 0 to 3, extarnally decoded signal: 0
* to 14).
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_TIMEOUT Time-out.
*
* \note Will block program execution until time-out occurs if last transmission
* is not complete. Invoke \ref spi_writeEndCheck beforehand if needed.
*/
extern spi_status_t spi_unselectChip(volatile avr32_spi_t *spi, unsigned char chip);
/*! \brief Sets options for a specific slave chip.
*
* The baudrate field has to be written before transfer in master mode. Four
* similar registers exist, one for each slave. When using encoded slave
* addressing, reg=0 sets options for slaves 0 to 3, reg=1 for slaves 4 to 7 and
* so on.
*
* \param spi Base address of the SPI instance.
* \param options Pointer to a structure containing initialization options for
* an SPI channel.
* \param pba_hz SPI module input clock frequency (PBA clock, Hz).
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*/
extern spi_status_t spi_setupChipReg(volatile avr32_spi_t *spi,
const spi_options_t *options,
unsigned int pba_hz);
/*! \brief Enables the SPI.
*
* \param spi Base address of the SPI instance.
*/
extern void spi_enable(volatile avr32_spi_t *spi);
/*! \brief Disables the SPI.
*
* Ensures that nothing is transferred while setting up buffers.
*
* \param spi Base address of the SPI instance.
*
* \warning This may cause data loss if used on a slave SPI.
*/
extern void spi_disable(volatile avr32_spi_t *spi);
/*! \brief Tests if the SPI is enabled.
*
* \param spi Base address of the SPI instance.
*
* \return \c 1 if the SPI is enabled, otherwise \c 0.
*/
extern int spi_is_enabled(volatile avr32_spi_t *spi);
/*! \brief Checks if there is no data in the transmit register.
*
* \param spi Base address of the SPI instance.
*
* \return Status.
* \retval 1 No data in TDR.
* \retval 0 Some data in TDR.
*/
extern unsigned char spi_writeRegisterEmptyCheck(volatile avr32_spi_t *spi);
/*! \brief Writes one data word in master fixed peripheral select mode or in
* slave mode.
*
* \param spi Base address of the SPI instance.
* \param data The data word to write.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_TIMEOUT Time-out.
*
* \note Will block program execution until time-out occurs if transmitter is
* busy and transmit buffer is full. Invoke
* \ref spi_writeRegisterEmptyCheck beforehand if needed.
*
* \note Once the data has been written to the transmit buffer, the end of
* transmission is not waited for. Invoke \ref spi_writeEndCheck if
* needed.
*/
extern spi_status_t spi_write(volatile avr32_spi_t *spi, unsigned short data);
/*! \brief Selects a slave in master variable peripheral select mode and writes
* one data word to it.
*
* \param spi Base address of the SPI instance.
* \param data The data word to write.
* \param pcs Slave selector (bit 0 -> nCS line 0, bit 1 -> nCS line 1,
* etc.).
* \param lastxfer Boolean indicating whether this is the last data word
* transfer.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_TIMEOUT Time-out.
* \retval SPI_ERROR_ARGUMENT Invalid argument(s) passed.
*
* \note Will block program execution until time-out occurs if transmitter is
* busy and transmit buffer is full. Invoke
* \ref spi_writeRegisterEmptyCheck beforehand if needed.
*
* \note Once the data has been written to the transmit buffer, the end of
* transmission is not waited for. Invoke \ref spi_writeEndCheck if
* needed.
*/
extern spi_status_t spi_variableSlaveWrite(volatile avr32_spi_t *spi,
unsigned short data,
unsigned char pcs,
unsigned char lastxfer);
/*! \brief Checks if all transmissions are complete.
*
* \param spi Base address of the SPI instance.
*
* \return Status.
* \retval 1 All transmissions complete.
* \retval 0 Transmissions not complete.
*/
extern unsigned char spi_writeEndCheck(volatile avr32_spi_t *spi);
/*! \brief Checks if there is data in the receive register.
*
* \param spi Base address of the SPI instance.
*
* \return Status.
* \retval 1 Some data in RDR.
* \retval 0 No data in RDR.
*/
extern unsigned char spi_readRegisterFullCheck(volatile avr32_spi_t *spi);
/*! \brief Reads one data word in master mode or in slave mode.
*
* \param spi Base address of the SPI instance.
* \param data Pointer to the location where to store the received data word.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_TIMEOUT Time-out.
*
* \note Will block program execution until time-out occurs if no data is
* received or last transmission is not complete. Invoke
* \ref spi_writeEndCheck or \ref spi_readRegisterFullCheck beforehand if
* needed.
*/
extern spi_status_t spi_read(volatile avr32_spi_t *spi, unsigned short *data);
/*! \brief Gets status information from the SPI.
*
* \param spi Base address of the SPI instance.
*
* \return Status.
* \retval SPI_OK Success.
* \retval SPI_ERROR_OVERRUN Overrun error.
* \retval SPI_ERROR_MODE_FAULT Mode fault (SPI addressed as slave
* while in master mode).
* \retval SPI_ERROR_OVERRUN_AND_MODE_FAULT Overrun error and mode fault.
*/
extern unsigned char spi_getStatus(volatile avr32_spi_t *spi);
#endif // _SPI_H_

View File

@@ -0,0 +1,314 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief TC driver for AVR32 UC3.
*
* AVR32 Timer/Counter driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a TC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <avr32/io.h>
#include "compiler.h"
#include "tc.h"
int tc_get_interrupt_settings(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return tc->channel[channel].imr;
}
int tc_configure_interrupts(volatile avr32_tc_t *tc, unsigned int channel, const tc_interrupt_t *bitfield)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// Enable the appropriate interrupts.
tc->channel[channel].ier = bitfield->etrgs << AVR32_TC_ETRGS_OFFSET |
bitfield->ldrbs << AVR32_TC_LDRBS_OFFSET |
bitfield->ldras << AVR32_TC_LDRAS_OFFSET |
bitfield->cpcs << AVR32_TC_CPCS_OFFSET |
bitfield->cpbs << AVR32_TC_CPBS_OFFSET |
bitfield->cpas << AVR32_TC_CPAS_OFFSET |
bitfield->lovrs << AVR32_TC_LOVRS_OFFSET |
bitfield->covfs << AVR32_TC_COVFS_OFFSET;
// Disable the appropriate interrupts.
if (global_interrupt_enabled) Disable_global_interrupt();
tc->channel[channel].idr = (~bitfield->etrgs & 1) << AVR32_TC_ETRGS_OFFSET |
(~bitfield->ldrbs & 1) << AVR32_TC_LDRBS_OFFSET |
(~bitfield->ldras & 1) << AVR32_TC_LDRAS_OFFSET |
(~bitfield->cpcs & 1) << AVR32_TC_CPCS_OFFSET |
(~bitfield->cpbs & 1) << AVR32_TC_CPBS_OFFSET |
(~bitfield->cpas & 1) << AVR32_TC_CPAS_OFFSET |
(~bitfield->lovrs & 1) << AVR32_TC_LOVRS_OFFSET |
(~bitfield->covfs & 1) << AVR32_TC_COVFS_OFFSET;
tc->channel[channel].sr;
if (global_interrupt_enabled) Enable_global_interrupt();
return 0;
}
int tc_select_external_clock(volatile avr32_tc_t *tc, unsigned int channel, unsigned int ext_clk_sig_src)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS || ext_clk_sig_src >= 1 << AVR32_TC_BMR_TC0XC0S_SIZE)
return TC_INVALID_ARGUMENT;
// Clear bit-field and set the correct behavior.
tc->bmr = (tc->bmr & ~(AVR32_TC_BMR_TC0XC0S_MASK << (channel * AVR32_TC_BMR_TC0XC0S_SIZE))) |
(ext_clk_sig_src << (channel * AVR32_TC_BMR_TC0XC0S_SIZE));
return 0;
}
int tc_init_capture(volatile avr32_tc_t *tc, const tc_capture_opt_t *opt)
{
// Check for valid input.
if (opt->channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// MEASURE SIGNALS: Capture operating mode.
tc->channel[opt->channel].cmr = opt->ldrb << AVR32_TC_LDRB_OFFSET |
opt->ldra << AVR32_TC_LDRA_OFFSET |
0 << AVR32_TC_WAVE_OFFSET |
opt->cpctrg << AVR32_TC_CPCTRG_OFFSET |
opt->abetrg << AVR32_TC_ABETRG_OFFSET |
opt->etrgedg << AVR32_TC_ETRGEDG_OFFSET|
opt->ldbdis << AVR32_TC_LDBDIS_OFFSET |
opt->ldbstop << AVR32_TC_LDBSTOP_OFFSET |
opt->burst << AVR32_TC_BURST_OFFSET |
opt->clki << AVR32_TC_CLKI_OFFSET |
opt->tcclks << AVR32_TC_TCCLKS_OFFSET;
return 0;
}
int tc_init_waveform(volatile avr32_tc_t *tc, const tc_waveform_opt_t *opt)
{
// Check for valid input.
if (opt->channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// GENERATE SIGNALS: Waveform operating mode.
tc->channel[opt->channel].cmr = opt->bswtrg << AVR32_TC_BSWTRG_OFFSET |
opt->beevt << AVR32_TC_BEEVT_OFFSET |
opt->bcpc << AVR32_TC_BCPC_OFFSET |
opt->bcpb << AVR32_TC_BCPB_OFFSET |
opt->aswtrg << AVR32_TC_ASWTRG_OFFSET |
opt->aeevt << AVR32_TC_AEEVT_OFFSET |
opt->acpc << AVR32_TC_ACPC_OFFSET |
opt->acpa << AVR32_TC_ACPA_OFFSET |
1 << AVR32_TC_WAVE_OFFSET |
opt->wavsel << AVR32_TC_WAVSEL_OFFSET |
opt->enetrg << AVR32_TC_ENETRG_OFFSET |
opt->eevt << AVR32_TC_EEVT_OFFSET |
opt->eevtedg << AVR32_TC_EEVTEDG_OFFSET |
opt->cpcdis << AVR32_TC_CPCDIS_OFFSET |
opt->cpcstop << AVR32_TC_CPCSTOP_OFFSET |
opt->burst << AVR32_TC_BURST_OFFSET |
opt->clki << AVR32_TC_CLKI_OFFSET |
opt->tcclks << AVR32_TC_TCCLKS_OFFSET;
return 0;
}
int tc_start(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// Enable, reset and start the selected timer/counter channel.
tc->channel[channel].ccr = AVR32_TC_SWTRG_MASK | AVR32_TC_CLKEN_MASK;
return 0;
}
int tc_stop(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// Disable the selected timer/counter channel.
tc->channel[channel].ccr = AVR32_TC_CLKDIS_MASK;
return 0;
}
int tc_software_trigger(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// Reset the selected timer/counter channel.
tc->channel[channel].ccr = AVR32_TC_SWTRG_MASK;
return 0;
}
void tc_sync_trigger(volatile avr32_tc_t *tc)
{
// Reset all channels of the selected timer/counter.
tc->bcr = AVR32_TC_BCR_SYNC_MASK;
}
void tc_sync_start(volatile avr32_tc_t *tc)
{
unsigned int i;
// Enable the clock for each channel.
for(i=0; i<TC_NUMBER_OF_CHANNELS;i++)
tc->channel[i].ccr = AVR32_TC_CLKEN_MASK;
// Reset all channels of the selected timer/counter.
tc->bcr = AVR32_TC_BCR_SYNC_MASK;
}
int tc_read_sr(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return tc->channel[channel].sr;
}
int tc_read_tc(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return Rd_bitfield(tc->channel[channel].cv, AVR32_TC_CV_MASK);
}
int tc_read_ra(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return Rd_bitfield(tc->channel[channel].ra, AVR32_TC_RA_MASK);
}
int tc_read_rb(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return Rd_bitfield(tc->channel[channel].rb, AVR32_TC_RB_MASK);
}
int tc_read_rc(volatile avr32_tc_t *tc, unsigned int channel)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
return Rd_bitfield(tc->channel[channel].rc, AVR32_TC_RC_MASK);
}
int tc_write_ra(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// This function is only available in WAVEFORM mode.
if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK))
Wr_bitfield(tc->channel[channel].ra, AVR32_TC_RA_MASK, value);
return value;
}
int tc_write_rb(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// This function is only available in WAVEFORM mode.
if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK))
Wr_bitfield(tc->channel[channel].rb, AVR32_TC_RB_MASK, value);
return value;
}
int tc_write_rc(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value)
{
// Check for valid input.
if (channel >= TC_NUMBER_OF_CHANNELS)
return TC_INVALID_ARGUMENT;
// This function is only available in WAVEFORM mode.
if (Tst_bits(tc->channel[channel].cmr, AVR32_TC_WAVE_MASK))
Wr_bitfield(tc->channel[channel].rc, AVR32_TC_RC_MASK, value);
return value;
}

View File

@@ -0,0 +1,591 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief Timer/Counter driver for AVR32 UC3.
*
* AVR32 Timer/Counter driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a TC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _TC_H_
#define _TC_H_
#include <avr32/io.h>
//! TC driver functions return value in case of invalid argument(s).
#define TC_INVALID_ARGUMENT (-1)
//! Number of timer/counter channels.
#define TC_NUMBER_OF_CHANNELS (sizeof(((avr32_tc_t *)0)->channel) / sizeof(avr32_tc_channel_t))
/*! \name External Clock Signal 0 Selection
*/
//! @{
#define TC_CH0_EXT_CLK0_SRC_TCLK0 AVR32_TC_TC0XC0S_TCLK0
#define TC_CH0_EXT_CLK0_SRC_NO_CLK AVR32_TC_TC0XC0S_NO_CLK
#define TC_CH0_EXT_CLK0_SRC_TIOA1 AVR32_TC_TC0XC0S_TIOA1
#define TC_CH0_EXT_CLK0_SRC_TIOA2 AVR32_TC_TC0XC0S_TIOA2
//! @}
/*! \name External Clock Signal 1 Selection
*/
//! @{
#define TC_CH1_EXT_CLK1_SRC_TCLK1 AVR32_TC_TC1XC1S_TCLK1
#define TC_CH1_EXT_CLK1_SRC_NO_CLK AVR32_TC_TC1XC1S_NO_CLK
#define TC_CH1_EXT_CLK1_SRC_TIOA0 AVR32_TC_TC1XC1S_TIOA0
#define TC_CH1_EXT_CLK1_SRC_TIOA2 AVR32_TC_TC1XC1S_TIOA2
//! @}
/*! \name External Clock Signal 2 Selection
*/
//! @{
#define TC_CH2_EXT_CLK2_SRC_TCLK2 AVR32_TC_TC2XC2S_TCLK2
#define TC_CH2_EXT_CLK2_SRC_NO_CLK AVR32_TC_TC2XC2S_NO_CLK
#define TC_CH2_EXT_CLK2_SRC_TIOA0 AVR32_TC_TC2XC2S_TIOA0
#define TC_CH2_EXT_CLK2_SRC_TIOA1 AVR32_TC_TC2XC2S_TIOA1
//! @}
/*! \name Event/Trigger Actions on Output
*/
//! @{
#define TC_EVT_EFFECT_NOOP AVR32_TC_NONE
#define TC_EVT_EFFECT_SET AVR32_TC_SET
#define TC_EVT_EFFECT_CLEAR AVR32_TC_CLEAR
#define TC_EVT_EFFECT_TOGGLE AVR32_TC_TOGGLE
//! @}
/*! \name RC Compare Trigger Enable
*/
//! @{
#define TC_NO_TRIGGER_COMPARE_RC 0
#define TC_TRIGGER_COMPARE_RC 1
//! @}
/*! \name Waveform Selection
*/
//! @{
#define TC_WAVEFORM_SEL_UP_MODE AVR32_TC_WAVSEL_UP_NO_AUTO
#define TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER AVR32_TC_WAVSEL_UP_AUTO
#define TC_WAVEFORM_SEL_UPDOWN_MODE AVR32_TC_WAVSEL_UPDOWN_NO_AUTO
#define TC_WAVEFORM_SEL_UPDOWN_MODE_RC_TRIGGER AVR32_TC_WAVSEL_UPDOWN_AUTO
//! @}
/*! \name TIOA or TIOB External Trigger Selection
*/
//! @{
#define TC_EXT_TRIG_SEL_TIOA 1
#define TC_EXT_TRIG_SEL_TIOB 0
//! @}
/*! \name External Event Selection
*/
//! @{
#define TC_EXT_EVENT_SEL_TIOB_INPUT AVR32_TC_EEVT_TIOB_INPUT
#define TC_EXT_EVENT_SEL_XC0_OUTPUT AVR32_TC_EEVT_XC0_OUTPUT
#define TC_EXT_EVENT_SEL_XC1_OUTPUT AVR32_TC_EEVT_XC1_OUTPUT
#define TC_EXT_EVENT_SEL_XC2_OUTPUT AVR32_TC_EEVT_XC2_OUTPUT
//! @}
/*! \name Edge Selection
*/
//! @{
#define TC_SEL_NO_EDGE AVR32_TC_EEVTEDG_NO_EDGE
#define TC_SEL_RISING_EDGE AVR32_TC_EEVTEDG_POS_EDGE
#define TC_SEL_FALLING_EDGE AVR32_TC_EEVTEDG_NEG_EDGE
#define TC_SEL_EACH_EDGE AVR32_TC_EEVTEDG_BOTH_EDGES
//! @}
/*! \name Burst Signal Selection
*/
//! @{
#define TC_BURST_NOT_GATED AVR32_TC_BURST_NOT_GATED
#define TC_BURST_CLK_AND_XC0 AVR32_TC_BURST_CLK_AND_XC0
#define TC_BURST_CLK_AND_XC1 AVR32_TC_BURST_CLK_AND_XC1
#define TC_BURST_CLK_AND_XC2 AVR32_TC_BURST_CLK_AND_XC2
//! @}
/*! \name Clock Invert
*/
//! @{
#define TC_CLOCK_RISING_EDGE 0
#define TC_CLOCK_FALLING_EDGE 1
//! @}
/*! \name Clock Selection
*/
//! @{
#define TC_CLOCK_SOURCE_TC1 AVR32_TC_TCCLKS_TIMER_CLOCK1
#define TC_CLOCK_SOURCE_TC2 AVR32_TC_TCCLKS_TIMER_CLOCK2
#define TC_CLOCK_SOURCE_TC3 AVR32_TC_TCCLKS_TIMER_CLOCK3
#define TC_CLOCK_SOURCE_TC4 AVR32_TC_TCCLKS_TIMER_CLOCK4
#define TC_CLOCK_SOURCE_TC5 AVR32_TC_TCCLKS_TIMER_CLOCK5
#define TC_CLOCK_SOURCE_XC0 AVR32_TC_TCCLKS_XC0
#define TC_CLOCK_SOURCE_XC1 AVR32_TC_TCCLKS_XC1
#define TC_CLOCK_SOURCE_XC2 AVR32_TC_TCCLKS_XC2
//! @}
//! Timer/counter interrupts.
typedef struct
{
unsigned int :24;
//! External trigger interrupt.
unsigned int etrgs : 1;
//! RB load interrupt.
unsigned int ldrbs : 1;
//! RA load interrupt.
unsigned int ldras : 1;
//! RC compare interrupt.
unsigned int cpcs : 1;
//! RB compare interrupt.
unsigned int cpbs : 1;
//! RA compare interrupt.
unsigned int cpas : 1;
//! Load overrun interrupt.
unsigned int lovrs : 1;
//! Counter overflow interrupt.
unsigned int covfs : 1;
} tc_interrupt_t;
//! Parameters when initializing a timer/counter in capture mode.
typedef struct
{
//! Channel to initialize.
unsigned int channel ;
unsigned int :12;
//! RB loading selection:\n
//! - \ref TC_SEL_NO_EDGE;\n
//! - \ref TC_SEL_RISING_EDGE;\n
//! - \ref TC_SEL_FALLING_EDGE;\n
//! - \ref TC_SEL_EACH_EDGE.
unsigned int ldrb : 2;
//! RA loading selection:\n
//! - \ref TC_SEL_NO_EDGE;\n
//! - \ref TC_SEL_RISING_EDGE;\n
//! - \ref TC_SEL_FALLING_EDGE;\n
//! - \ref TC_SEL_EACH_EDGE.
unsigned int ldra : 2;
unsigned int : 1;
//! RC compare trigger enable:\n
//! - \ref TC_NO_TRIGGER_COMPARE_RC;\n
//! - \ref TC_TRIGGER_COMPARE_RC.
unsigned int cpctrg : 1;
unsigned int : 3;
//! TIOA or TIOB external trigger selection:\n
//! - \ref TC_EXT_TRIG_SEL_TIOA;\n
//! - \ref TC_EXT_TRIG_SEL_TIOB.
unsigned int abetrg : 1;
//! External trigger edge selection:\n
//! - \ref TC_SEL_NO_EDGE;\n
//! - \ref TC_SEL_RISING_EDGE;\n
//! - \ref TC_SEL_FALLING_EDGE;\n
//! - \ref TC_SEL_EACH_EDGE.
unsigned int etrgedg : 2;
//! Counter clock disable with RB loading:\n
//! - \c FALSE;\n
//! - \c TRUE.
unsigned int ldbdis : 1;
//! Counter clock stopped with RB loading:\n
//! - \c FALSE;\n
//! - \c TRUE.
unsigned int ldbstop : 1;
//! Burst signal selection:\n
//! - \ref TC_BURST_NOT_GATED;\n
//! - \ref TC_BURST_CLK_AND_XC0;\n
//! - \ref TC_BURST_CLK_AND_XC1;\n
//! - \ref TC_BURST_CLK_AND_XC2.
unsigned int burst : 2;
//! Clock invert:\n
//! - \ref TC_CLOCK_RISING_EDGE;\n
//! - \ref TC_CLOCK_FALLING_EDGE.
unsigned int clki : 1;
//! Clock selection:\n
//! - \ref TC_CLOCK_SOURCE_TC1;\n
//! - \ref TC_CLOCK_SOURCE_TC2;\n
//! - \ref TC_CLOCK_SOURCE_TC3;\n
//! - \ref TC_CLOCK_SOURCE_TC4;\n
//! - \ref TC_CLOCK_SOURCE_TC5;\n
//! - \ref TC_CLOCK_SOURCE_XC0;\n
//! - \ref TC_CLOCK_SOURCE_XC1;\n
//! - \ref TC_CLOCK_SOURCE_XC2.
unsigned int tcclks : 3;
} tc_capture_opt_t;
//! Parameters when initializing a timer/counter in waveform mode.
typedef struct
{
//! Channel to initialize.
unsigned int channel ;
//! Software trigger effect on TIOB:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int bswtrg : 2;
//! External event effect on TIOB:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int beevt : 2;
//! RC compare effect on TIOB:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int bcpc : 2;
//! RB compare effect on TIOB:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int bcpb : 2;
//! Software trigger effect on TIOA:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int aswtrg : 2;
//! External event effect on TIOA:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int aeevt : 2;
//! RC compare effect on TIOA:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int acpc : 2;
//! RA compare effect on TIOA:\n
//! - \ref TC_EVT_EFFECT_NOOP;\n
//! - \ref TC_EVT_EFFECT_SET;\n
//! - \ref TC_EVT_EFFECT_CLEAR;\n
//! - \ref TC_EVT_EFFECT_TOGGLE.
unsigned int acpa : 2;
unsigned int : 1;
//! Waveform selection:\n
//! - \ref TC_WAVEFORM_SEL_UP_MODE;\n
//! - \ref TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER;\n
//! - \ref TC_WAVEFORM_SEL_UPDOWN_MODE;\n
//! - \ref TC_WAVEFORM_SEL_UPDOWN_MODE_RC_TRIGGER.
unsigned int wavsel : 2;
//! External event trigger enable:\n
//! - \c FALSE;\n
//! - \c TRUE.
unsigned int enetrg : 1;
//! External event selection:\n
//! - \ref TC_EXT_EVENT_SEL_TIOB_INPUT;\n
//! - \ref TC_EXT_EVENT_SEL_XC0_OUTPUT;\n
//! - \ref TC_EXT_EVENT_SEL_XC1_OUTPUT;\n
//! - \ref TC_EXT_EVENT_SEL_XC2_OUTPUT.
unsigned int eevt : 2;
//! External event edge selection:\n
//! - \ref TC_SEL_NO_EDGE;\n
//! - \ref TC_SEL_RISING_EDGE;\n
//! - \ref TC_SEL_FALLING_EDGE;\n
//! - \ref TC_SEL_EACH_EDGE.
unsigned int eevtedg : 2;
//! Counter clock disable with RC compare:\n
//! - \c FALSE;\n
//! - \c TRUE.
unsigned int cpcdis : 1;
//! Counter clock stopped with RC compare:\n
//! - \c FALSE;\n
//! - \c TRUE.
unsigned int cpcstop : 1;
//! Burst signal selection:\n
//! - \ref TC_BURST_NOT_GATED;\n
//! - \ref TC_BURST_CLK_AND_XC0;\n
//! - \ref TC_BURST_CLK_AND_XC1;\n
//! - \ref TC_BURST_CLK_AND_XC2.
unsigned int burst : 2;
//! Clock invert:\n
//! - \ref TC_CLOCK_RISING_EDGE;\n
//! - \ref TC_CLOCK_FALLING_EDGE.
unsigned int clki : 1;
//! Clock selection:\n
//! - \ref TC_CLOCK_SOURCE_TC1;\n
//! - \ref TC_CLOCK_SOURCE_TC2;\n
//! - \ref TC_CLOCK_SOURCE_TC3;\n
//! - \ref TC_CLOCK_SOURCE_TC4;\n
//! - \ref TC_CLOCK_SOURCE_TC5;\n
//! - \ref TC_CLOCK_SOURCE_XC0;\n
//! - \ref TC_CLOCK_SOURCE_XC1;\n
//! - \ref TC_CLOCK_SOURCE_XC2.
unsigned int tcclks : 3;
} tc_waveform_opt_t;
/*! \brief Reads timer/counter interrupt settings.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 The interrupt enable configuration organized according to \ref tc_interrupt_t.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_get_interrupt_settings(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Enables various timer/counter interrupts.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
* \param bitfield The interrupt enable configuration.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_configure_interrupts(volatile avr32_tc_t *tc, unsigned int channel, const tc_interrupt_t *bitfield);
/*! \brief Selects which external clock to use and how to configure it.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
* \param ext_clk_sig_src External clock signal selection:
* \arg \c TC_CH0_EXT_CLK0_SRC_TCLK0;
* \arg \c TC_CH0_EXT_CLK0_SRC_NO_CLK;
* \arg \c TC_CH0_EXT_CLK0_SRC_TIOA1;
* \arg \c TC_CH0_EXT_CLK0_SRC_TIOA2;
* \arg \c TC_CH1_EXT_CLK1_SRC_TCLK1;
* \arg \c TC_CH1_EXT_CLK1_SRC_NO_CLK;
* \arg \c TC_CH1_EXT_CLK1_SRC_TIOA0;
* \arg \c TC_CH1_EXT_CLK1_SRC_TIOA2;
* \arg \c TC_CH2_EXT_CLK2_SRC_TCLK2;
* \arg \c TC_CH2_EXT_CLK2_SRC_NO_CLK;
* \arg \c TC_CH2_EXT_CLK2_SRC_TIOA0;
* \arg \c TC_CH2_EXT_CLK2_SRC_TIOA1.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_select_external_clock(volatile avr32_tc_t *tc, unsigned int channel, unsigned int ext_clk_sig_src);
/*! \brief Sets options for timer/counter capture initialization.
*
* \param tc Pointer to the TC instance to access.
* \param opt Options for capture mode.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_init_capture(volatile avr32_tc_t *tc, const tc_capture_opt_t *opt);
/*! \brief Sets options for timer/counter waveform initialization.
*
* \param tc Pointer to the TC instance to access.
* \param opt Options for waveform generation.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_init_waveform(volatile avr32_tc_t *tc, const tc_waveform_opt_t *opt);
/*! \brief Starts a timer/counter.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_start(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Stops a timer/counter.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_stop(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Performs a software trigger: the counter is reset and the clock is started.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval 0 Success.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_software_trigger(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Asserts a SYNC signal to generate a software trigger and reset all channels.
*
* \param tc Pointer to the TC instance to access.
*/
extern void tc_sync_trigger(volatile avr32_tc_t *tc);
/*! \brief Start all TC channels simultaneously.
*
* \param tc Pointer to the TC instance to access.
*/
extern void tc_sync_start(volatile avr32_tc_t *tc);
/*! \brief Reads the status register.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 Status register value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_read_sr(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Reads the channel's TC counter and returns the value.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 TC counter value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_read_tc(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Reads the channel's RA register and returns the value.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 RA register value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_read_ra(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Reads the channel's RB register and returns the value.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 RB register value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_read_rb(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Reads the channel's RC register and returns the value.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
*
* \retval >=0 RC register value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_read_rc(volatile avr32_tc_t *tc, unsigned int channel);
/*! \brief Writes a value to the channel's RA register.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
* \param value Value to write to the RA register.
*
* \retval >=0 Written value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_write_ra(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value);
/*! \brief Writes a value to the channel's RB register.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
* \param value Value to write to the RB register.
*
* \retval >=0 Written value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_write_rb(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value);
/*! \brief Writes a value to the channel's RC register.
*
* \param tc Pointer to the TC instance to access.
* \param channel The TC instance channel to access.
* \param value Value to write to the RC register.
*
* \retval >=0 Written value.
* \retval TC_INVALID_ARGUMENT Invalid argument(s).
*/
extern int tc_write_rc(volatile avr32_tc_t *tc, unsigned int channel, unsigned short value);
#endif // _TC_H_

View File

@@ -0,0 +1,914 @@
/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief USART driver for AVR32 UC3.
*
* This file contains basic functions for the AVR32 USART, with support for all
* modes, settings and clock speeds.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a USART module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include "compiler.h"
#include "usart.h"
//------------------------------------------------------------------------------
/*! \name Private Functions
*/
//! @{
/*! \brief Checks if the USART is in multidrop mode.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART is in multidrop mode, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
static __inline__ int usart_mode_is_multidrop(volatile avr32_usart_t *usart)
{
return ((usart->mr >> AVR32_USART_MR_PAR_OFFSET) & AVR32_USART_MR_PAR_MULTI) == AVR32_USART_MR_PAR_MULTI;
}
/*! \brief Calculates a clock divider (\e CD) and a fractional part (\e FP) for
* the USART asynchronous modes to generate a baud rate as close as
* possible to the baud rate set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{Over \times (CD + \frac{FP}{8})} \f$, \e Over being 16 or 8.
* The maximal oversampling is selected if it allows to generate a baud rate close to the set point.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_async_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int over = (pba_hz >= 16 * baudrate) ? 16 : 8;
unsigned int cd_fp = ((1 << AVR32_USART_BRGR_FP_SIZE) * pba_hz + (over * baudrate) / 2) / (over * baudrate);
unsigned int cd = cd_fp >> AVR32_USART_BRGR_FP_SIZE;
unsigned int fp = cd_fp & ((1 << AVR32_USART_BRGR_FP_SIZE) - 1);
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~(AVR32_USART_MR_USCLKS_MASK |
AVR32_USART_MR_SYNC_MASK |
AVR32_USART_MR_OVER_MASK)) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
((over == 16) ? AVR32_USART_MR_OVER_X16 : AVR32_USART_MR_OVER_X8) << AVR32_USART_MR_OVER_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET |
fp << AVR32_USART_BRGR_FP_OFFSET;
return USART_SUCCESS;
}
/*! \brief Calculates a clock divider (\e CD) for the USART synchronous master
* modes to generate a baud rate as close as possible to the baud rate
* set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_sync_master_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + baudrate / 2) / baudrate;
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_SYNC_MASK;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
/*! \brief Selects the SCK pin as the source of baud rate for the USART
* synchronous slave modes.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Baud rate successfully initialized.
*/
static int usart_set_sync_slave_baudrate(volatile avr32_usart_t *usart)
{
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_SCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_SYNC_MASK;
return USART_SUCCESS;
}
/*! \brief Calculates a clock divider (\e CD) for the USART ISO7816 mode to
* generate an ISO7816 clock as close as possible to the clock set point.
*
* ISO7816 clock calculation:
* \f$ Clock = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param clock ISO7816 clock set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS ISO7816 clock successfully initialized.
* \retval USART_INVALID_INPUT ISO7816 clock set point is out of range for the given input clock frequency.
*/
static int usart_set_iso7816_clock(volatile avr32_usart_t *usart, unsigned int clock, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + clock / 2) / clock;
if (cd < 1 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~(AVR32_USART_MR_USCLKS_MASK |
AVR32_USART_MR_SYNC_MASK |
AVR32_USART_MR_OVER_MASK)) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET |
AVR32_USART_MR_OVER_X16 << AVR32_USART_MR_OVER_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \brief Calculates a clock divider (\e CD) for the USART SPI master mode to
* generate a baud rate as close as possible to the baud rate set point.
*
* Baud rate calculation:
* \f$ Baudrate = \frac{SelectedClock}{CD} \f$.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate set point.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Baud rate successfully initialized.
* \retval USART_INVALID_INPUT Baud rate set point is out of range for the given input clock frequency.
*/
static int usart_set_spi_master_baudrate(volatile avr32_usart_t *usart, unsigned int baudrate, unsigned long pba_hz)
{
unsigned int cd = (pba_hz + baudrate / 2) / baudrate;
if (cd < 4 || cd > (1 << AVR32_USART_BRGR_CD_SIZE) - 1)
return USART_INVALID_INPUT;
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_MCK << AVR32_USART_MR_USCLKS_OFFSET;
usart->brgr = cd << AVR32_USART_BRGR_CD_OFFSET;
return USART_SUCCESS;
}
/*! \brief Selects the SCK pin as the source of baud rate for the USART SPI
* slave mode.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Baud rate successfully initialized.
*/
static int usart_set_spi_slave_baudrate(volatile avr32_usart_t *usart)
{
usart->mr = (usart->mr & ~AVR32_USART_MR_USCLKS_MASK) |
AVR32_USART_MR_USCLKS_SCK << AVR32_USART_MR_USCLKS_OFFSET;
return USART_SUCCESS;
}
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
/*! \name Initialization Functions
*/
//! @{
void usart_reset(volatile avr32_usart_t *usart)
{
Bool global_interrupt_enabled = Is_global_interrupt_enabled();
// Disable all USART interrupts.
// Interrupts needed should be set explicitly on every reset.
if (global_interrupt_enabled) Disable_global_interrupt();
usart->idr = 0xFFFFFFFF;
usart->csr;
if (global_interrupt_enabled) Enable_global_interrupt();
// Reset mode and other registers that could cause unpredictable behavior after reset.
usart->mr = 0;
usart->rtor = 0;
usart->ttgr = 0;
// Shutdown TX and RX (will be re-enabled when setup has successfully completed),
// reset status bits and turn off DTR and RTS.
usart->cr = AVR32_USART_CR_RSTRX_MASK |
AVR32_USART_CR_RSTTX_MASK |
AVR32_USART_CR_RSTSTA_MASK |
AVR32_USART_CR_RSTIT_MASK |
AVR32_USART_CR_RSTNACK_MASK |
#ifndef AVR32_USART_440_H_INCLUDED
// Note: Modem Signal Management DTR-DSR-DCD-RI are not included in USART rev.440.
AVR32_USART_CR_DTRDIS_MASK |
#endif
AVR32_USART_CR_RTSDIS_MASK;
}
int usart_init_rs232(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_async_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1, 1.5 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_rs232_tx_only(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable only output as input is not possible in synchronous mode without
// transferring clock.
usart->cr = AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_hw_handshaking(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set hardware handshaking mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_HARDWARE << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_modem(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set modem mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_MODEM << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_sync_master(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_CLKO_MASK;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_sync_slave(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->paritytype > 7 ||
opt->stopbits == 1 || opt->stopbits > 2 + 255 ||
opt->channelmode > 3 ||
usart_set_sync_slave_baudrate(usart) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET;
if (opt->stopbits > USART_2_STOPBITS)
{
// Set two stop bits
usart->mr |= AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET;
// and a timeguard period gives the rest.
usart->ttgr = opt->stopbits - USART_2_STOPBITS;
}
else
// Insert 1 or 2 stop bits.
usart->mr |= opt->stopbits << AVR32_USART_MR_NBSTOP_OFFSET;
// Set normal mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_NORMAL << AVR32_USART_MR_MODE_OFFSET;
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_rs485(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set RS485 mode.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MR_MODE_RS485 << AVR32_USART_MR_MODE_OFFSET;
return USART_SUCCESS;
}
int usart_init_IrDA(volatile avr32_usart_t *usart, const usart_options_t *opt,
long pba_hz, unsigned char irda_filter)
{
// First: Setup standard RS232.
if (usart_init_rs232(usart, opt, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set IrDA filter.
usart->ifr = irda_filter;
// Set IrDA mode and activate filtering of input.
usart->mr = (usart->mr & ~AVR32_USART_MR_MODE_MASK) |
AVR32_USART_MODE_IRDA << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_FILTER_MASK;
return USART_SUCCESS;
}
int usart_init_iso7816(volatile avr32_usart_t *usart, const usart_iso7816_options_t *opt, int t, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->paritytype > 1)
return USART_INVALID_INPUT;
if (t == 0)
{
// Set USART mode to ISO7816, T=0.
// The T=0 protocol always uses 2 stop bits.
usart->mr = AVR32_USART_MR_MODE_ISO7816_T0 << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_NBSTOP_2 << AVR32_USART_MR_NBSTOP_OFFSET |
opt->bit_order << AVR32_USART_MR_MSBF_OFFSET; // Allow MSBF in T=0.
}
else if (t == 1)
{
// Only LSB first in the T=1 protocol.
// max_iterations field is only used in T=0 mode.
if (opt->bit_order != 0 ||
opt->max_iterations != 0)
return USART_INVALID_INPUT;
// Set USART mode to ISO7816, T=1.
// The T=1 protocol always uses 1 stop bit.
usart->mr = AVR32_USART_MR_MODE_ISO7816_T1 << AVR32_USART_MR_MODE_OFFSET |
AVR32_USART_MR_NBSTOP_1 << AVR32_USART_MR_NBSTOP_OFFSET;
}
else
return USART_INVALID_INPUT;
if (usart_set_iso7816_clock(usart, opt->iso7816_hz, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
// Set FIDI register: bit rate = selected clock/FI_DI_ratio/16.
usart->fidi = opt->fidi_ratio;
// Set ISO7816 spesific options in the MODE register.
usart->mr |= opt->paritytype << AVR32_USART_MR_PAR_OFFSET |
AVR32_USART_MR_CLKO_MASK | // Enable clock output.
opt->inhibit_nack << AVR32_USART_MR_INACK_OFFSET |
opt->dis_suc_nack << AVR32_USART_MR_DSNACK_OFFSET |
opt->max_iterations << AVR32_USART_MR_MAX_ITERATION_OFFSET;
// Setup complete; enable the receiver by default.
usart_iso7816_enable_receiver(usart);
return USART_SUCCESS;
}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
int usart_init_lin_master(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (usart_set_async_baudrate(usart, baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
usart->mr |= AVR32_USART_MR_MODE_LIN_MASTER << AVR32_USART_MR_MODE_OFFSET; // LIN master mode.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_lin_slave(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (usart_set_async_baudrate(usart, baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
usart->mr |= AVR32_USART_MR_MODE_LIN_SLAVE << AVR32_USART_MR_MODE_OFFSET; // LIN slave mode.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_spi_master(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->spimode > 3 ||
opt->channelmode > 3 ||
usart_set_spi_master_baudrate(usart, opt->baudrate, pba_hz) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= AVR32_USART_MR_MODE_SPI_MASTER << AVR32_USART_MR_MODE_OFFSET | // SPI master mode.
((opt->spimode & 0x1) ^ 0x1) << AVR32_USART_MR_SYNC_OFFSET | // SPI clock phase.
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET | // Channel mode.
(opt->spimode >> 1) << AVR32_USART_MR_MSBF_OFFSET | // SPI clock polarity.
AVR32_USART_MR_CLKO_MASK; // Drive SCK pin.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
int usart_init_spi_slave(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz)
{
// Reset the USART and shutdown TX and RX.
usart_reset(usart);
// Check input values.
if (!opt || // Null pointer.
opt->charlength < 5 || opt->charlength > 9 ||
opt->spimode > 3 ||
opt->channelmode > 3 ||
usart_set_spi_slave_baudrate(usart) == USART_INVALID_INPUT)
return USART_INVALID_INPUT;
if (opt->charlength == 9)
{
// Character length set to 9 bits. MODE9 dominates CHRL.
usart->mr |= AVR32_USART_MR_MODE9_MASK;
}
else
{
// CHRL gives the character length (- 5) when MODE9 = 0.
usart->mr |= (opt->charlength - 5) << AVR32_USART_MR_CHRL_OFFSET;
}
usart->mr |= AVR32_USART_MR_MODE_SPI_SLAVE << AVR32_USART_MR_MODE_OFFSET | // SPI slave mode.
((opt->spimode & 0x1) ^ 0x1) << AVR32_USART_MR_SYNC_OFFSET | // SPI clock phase.
opt->channelmode << AVR32_USART_MR_CHMODE_OFFSET | // Channel mode.
(opt->spimode >> 1) << AVR32_USART_MR_MSBF_OFFSET; // SPI clock polarity.
// Setup complete; enable communication.
// Enable input and output.
usart->cr = AVR32_USART_CR_RXEN_MASK |
AVR32_USART_CR_TXEN_MASK;
return USART_SUCCESS;
}
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \name SPI Control Functions
*/
//! @{
int usart_spi_selectChip(volatile avr32_usart_t *usart)
{
// Force the SPI chip select.
usart->cr = AVR32_USART_CR_RTSEN_MASK;
return USART_SUCCESS;
}
int usart_spi_unselectChip(volatile avr32_usart_t *usart)
{
int timeout = USART_DEFAULT_TIMEOUT;
do
{
if (!timeout--) return USART_FAILURE;
} while (!usart_tx_empty(usart));
// Release the SPI chip select.
usart->cr = AVR32_USART_CR_RTSDIS_MASK;
return USART_SUCCESS;
}
//! @}
#endif // USART rev. >= 4.0.0
//------------------------------------------------------------------------------
/*! \name Transmit/Receive Functions
*/
//! @{
int usart_send_address(volatile avr32_usart_t *usart, int address)
{
// Check if USART is in multidrop / RS485 mode.
if (!usart_mode_is_multidrop(usart)) return USART_MODE_FAULT;
// Prepare to send an address.
usart->cr = AVR32_USART_CR_SENDA_MASK;
// Write the address to TX.
usart_bw_write_char(usart, address);
return USART_SUCCESS;
}
int usart_write_char(volatile avr32_usart_t *usart, int c)
{
if (usart_tx_ready(usart))
{
usart->thr = (c << AVR32_USART_THR_TXCHR_OFFSET) & AVR32_USART_THR_TXCHR_MASK;
return USART_SUCCESS;
}
else
return USART_TX_BUSY;
}
int usart_putchar(volatile avr32_usart_t *usart, int c)
{
int timeout = USART_DEFAULT_TIMEOUT;
if (c == '\n')
{
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, '\r') != USART_SUCCESS);
timeout = USART_DEFAULT_TIMEOUT;
}
do
{
if (!timeout--) return USART_FAILURE;
} while (usart_write_char(usart, c) != USART_SUCCESS);
return USART_SUCCESS;
}
int usart_read_char(volatile avr32_usart_t *usart, int *c)
{
// Check for errors: frame, parity and overrun. In RS485 mode, a parity error
// would mean that an address char has been received.
if (usart->csr & (AVR32_USART_CSR_OVRE_MASK |
AVR32_USART_CSR_FRAME_MASK |
AVR32_USART_CSR_PARE_MASK))
return USART_RX_ERROR;
// No error; if we really did receive a char, read it and return SUCCESS.
if (usart_test_hit(usart))
{
*c = (usart->rhr & AVR32_USART_RHR_RXCHR_MASK) >> AVR32_USART_RHR_RXCHR_OFFSET;
return USART_SUCCESS;
}
else
return USART_RX_EMPTY;
}
int usart_getchar(volatile avr32_usart_t *usart)
{
int c, ret;
while ((ret = usart_read_char(usart, &c)) == USART_RX_EMPTY);
if (ret == USART_RX_ERROR)
return USART_FAILURE;
return c;
}
void usart_write_line(volatile avr32_usart_t *usart, const char *string)
{
while (*string != '\0')
usart_putchar(usart, *string++);
}
int usart_get_echo_line(volatile avr32_usart_t *usart)
{
int rx_char;
int retval = USART_SUCCESS;
while (1)
{
rx_char = usart_getchar(usart);
if (rx_char == USART_FAILURE)
{
usart_write_line(usart, "Error!!!\n");
retval = USART_FAILURE;
break;
}
if (rx_char == '\x03')
{
retval = USART_FAILURE;
break;
}
usart_putchar(usart, rx_char);
if (rx_char == '\r')
{
usart_putchar(usart, '\n');
break;
}
}
return retval;
}
//! @}

View File

@@ -0,0 +1,889 @@
/* This header file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief USART driver for AVR32 UC3.
*
* This file contains basic functions for the AVR32 USART, with support for all
* modes, settings and clock speeds.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a USART module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#ifndef _USART_H_
#define _USART_H_
#include <avr32/io.h>
#include "compiler.h"
/*! \name Return Values
*/
//! @{
#define USART_SUCCESS 0 //!< Successful completion.
#define USART_FAILURE -1 //!< Failure because of some unspecified reason.
#define USART_INVALID_INPUT 1 //!< Input value out of range.
#define USART_INVALID_ARGUMENT -1 //!< Argument value out of range.
#define USART_TX_BUSY 2 //!< Transmitter was busy.
#define USART_RX_EMPTY 3 //!< Nothing was received.
#define USART_RX_ERROR 4 //!< Transmission error occurred.
#define USART_MODE_FAULT 5 //!< USART not in the appropriate mode.
//! @}
//! Default time-out value (number of attempts).
#define USART_DEFAULT_TIMEOUT 10000
/*! \name Parity Settings
*/
//! @{
#define USART_EVEN_PARITY AVR32_USART_MR_PAR_EVEN //!< Use even parity on character transmission.
#define USART_ODD_PARITY AVR32_USART_MR_PAR_ODD //!< Use odd parity on character transmission.
#define USART_SPACE_PARITY AVR32_USART_MR_PAR_SPACE //!< Use a space as parity bit.
#define USART_MARK_PARITY AVR32_USART_MR_PAR_MARK //!< Use a mark as parity bit.
#define USART_NO_PARITY AVR32_USART_MR_PAR_NONE //!< Don't use a parity bit.
#define USART_MULTIDROP_PARITY AVR32_USART_MR_PAR_MULTI //!< Parity bit is used to flag address characters.
//! @}
/*! \name Stop Bits Settings
*/
//! @{
#define USART_1_STOPBIT AVR32_USART_MR_NBSTOP_1 //!< Use 1 stop bit.
#define USART_1_5_STOPBITS AVR32_USART_MR_NBSTOP_1_5 //!< Use 1.5 stop bits.
#define USART_2_STOPBITS AVR32_USART_MR_NBSTOP_2 //!< Use 2 stop bits (for more, just give the number of bits).
//! @}
/*! \name Channel Modes
*/
//! @{
#define USART_NORMAL_CHMODE AVR32_USART_MR_CHMODE_NORMAL //!< Normal communication.
#define USART_AUTO_ECHO AVR32_USART_MR_CHMODE_ECHO //!< Echo data.
#define USART_LOCAL_LOOPBACK AVR32_USART_MR_CHMODE_LOCAL_LOOP //!< Local loopback.
#define USART_REMOTE_LOOPBACK AVR32_USART_MR_CHMODE_REMOTE_LOOP //!< Remote loopback.
//! @}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \name LIN Node Actions
*/
//! @{
#define USART_LIN_PUBLISH_ACTION AVR32_USART_LINMR_NACT_PUBLISH //!< The USART transmits the response.
#define USART_LIN_SUBSCRIBE_ACTION AVR32_USART_LINMR_NACT_SUBSCRIBE //!< The USART receives the response.
#define USART_LIN_IGNORE_ACTION AVR32_USART_LINMR_NACT_IGNORE //!< The USART does not transmit and does not receive the reponse.
//! @}
/*! \name LIN Checksum Types
*/
//! @{
#define USART_LIN_ENHANCED_CHECKSUM 0 //!< LIN 2.0 "enhanced" checksum.
#define USART_LIN_CLASSIC_CHECKSUM 1 //!< LIN 1.3 "classic" checksum.
//! @}
#endif // USART rev. >= 4.0.0
//! Input parameters when initializing RS232 and similar modes.
typedef struct
{
//! Set baud rate of the USART (unused in slave modes).
unsigned long baudrate;
//! Number of bits to transmit as a character (5 to 9).
unsigned char charlength;
//! How to calculate the parity bit: \ref USART_EVEN_PARITY, \ref USART_ODD_PARITY,
//! \ref USART_SPACE_PARITY, \ref USART_MARK_PARITY, \ref USART_NO_PARITY or
//! \ref USART_MULTIDROP_PARITY.
unsigned char paritytype;
//! Number of stop bits between two characters: \ref USART_1_STOPBIT,
//! \ref USART_1_5_STOPBITS, \ref USART_2_STOPBITS or any number from 3 to 257
//! which will result in a time guard period of that length between characters.
//! \note \ref USART_1_5_STOPBITS is supported in asynchronous modes only.
unsigned short stopbits;
//! Run the channel in testmode: \ref USART_NORMAL_CHMODE, \ref USART_AUTO_ECHO,
//! \ref USART_LOCAL_LOOPBACK or \ref USART_REMOTE_LOOPBACK.
unsigned char channelmode;
} usart_options_t;
//! Input parameters when initializing ISO7816 mode.
typedef struct
{
//! Set the frequency of the ISO7816 clock.
unsigned long iso7816_hz;
//! The number of ISO7816 clock ticks in every bit period (1 to 2047, 0 = disable clock).
//! Bit rate = \ref iso7816_hz / \ref fidi_ratio.
unsigned short fidi_ratio;
//! How to calculate the parity bit: \ref USART_EVEN_PARITY for normal mode or
//! \ref USART_ODD_PARITY for inverse mode.
unsigned char paritytype;
//! Inhibit Non Acknowledge:\n
//! - 0: the NACK is generated;\n
//! - 1: the NACK is not generated.
//!
//! \note This bit will be used only in ISO7816 mode, protocol T = 0 receiver.
int inhibit_nack;
//! Disable successive NACKs.
//! Successive parity errors are counted up to the value in the \ref max_iterations field.
//! These parity errors generate a NACK on the ISO line. As soon as this value is reached,
//! no addititional NACK is sent on the ISO line. The ITERATION flag is asserted.
int dis_suc_nack;
//! Max number of repetitions (0 to 7).
unsigned char max_iterations;
//! Bit order in transmitted characters:\n
//! - 0: LSB first;\n
//! - 1: MSB first.
int bit_order;
} usart_iso7816_options_t;
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
//! Input parameters when initializing SPI mode.
typedef struct
{
//! Set the frequency of the SPI clock (unused in slave mode).
unsigned long baudrate;
//! Number of bits to transmit as a character (5 to 9).
unsigned char charlength;
//! Which SPI mode to use.
unsigned char spimode;
//! Run the channel in testmode: \ref USART_NORMAL_CHMODE, \ref USART_AUTO_ECHO,
//! \ref USART_LOCAL_LOOPBACK or \ref USART_REMOTE_LOOPBACK.
unsigned char channelmode;
} usart_spi_options_t;
#endif // USART rev. >= 4.0.0
//------------------------------------------------------------------------------
/*! \name Initialization Functions
*/
//! @{
/*! \brief Resets the USART and disables TX and RX.
*
* \param usart Base address of the USART instance.
*/
extern void usart_reset(volatile avr32_usart_t *usart);
/*! \brief Sets up the USART to use the standard RS232 protocol.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_rs232(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use the standard RS232 protocol in TX-only mode.
*
* Compared to \ref usart_init_rs232, this function allows very high baud rates
* (up to \a pba_hz instead of \a pba_hz / \c 8) at the expense of full duplex.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*
* \note The \c 1.5 stop bit is not supported in this mode.
*/
extern int usart_init_rs232_tx_only(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use hardware handshaking.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*
* \note \ref usart_init_rs232 does not need to be invoked before this function.
*/
extern int usart_init_hw_handshaking(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use the modem protocol, activating dedicated inputs/outputs.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_modem(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use a synchronous RS232-like protocol in master mode.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_sync_master(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use a synchronous RS232-like protocol in slave mode.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_sync_slave(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use the RS485 protocol.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_rs485(volatile avr32_usart_t *usart, const usart_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use the IrDA protocol.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up RS232 communication (see \ref usart_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
* \param irda_filter Counter used to distinguish received ones from zeros.
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_IrDA(volatile avr32_usart_t *usart, const usart_options_t *opt,
long pba_hz, unsigned char irda_filter);
/*! \brief Sets up the USART to use the ISO7816 T=0 or T=1 smartcard protocols.
*
* The receiver is enabled by default. \ref usart_iso7816_enable_receiver and
* \ref usart_iso7816_enable_transmitter can be called to change the half-duplex
* communication direction.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up ISO7816 communication (see \ref usart_iso7816_options_t).
* \param t ISO7816 mode to use (T=0 or T=1).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_iso7816(volatile avr32_usart_t *usart, const usart_iso7816_options_t *opt, int t, long pba_hz);
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \brief Sets up the USART to use the LIN master mode.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
*/
extern int usart_init_lin_master(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz);
/*! \brief Sets up the USART to use the LIN slave mode.
*
* \param usart Base address of the USART instance.
* \param baudrate Baud rate.
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
*/
extern int usart_init_lin_slave(volatile avr32_usart_t *usart, unsigned long baudrate, long pba_hz);
/*! \brief Sets up the USART to use the SPI master mode.
*
* \ref usart_spi_selectChip and \ref usart_spi_unselectChip can be called to
* select or unselect the SPI slave chip.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up SPI mode (see \ref usart_spi_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_spi_master(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz);
/*! \brief Sets up the USART to use the SPI slave mode.
*
* \param usart Base address of the USART instance.
* \param opt Options needed to set up SPI mode (see \ref usart_spi_options_t).
* \param pba_hz USART module input clock frequency (PBA clock, Hz).
*
* \retval USART_SUCCESS Mode successfully initialized.
* \retval USART_INVALID_INPUT One or more of the arguments is out of valid range.
*/
extern int usart_init_spi_slave(volatile avr32_usart_t *usart, const usart_spi_options_t *opt, long pba_hz);
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
/*! \name Read and Reset Error Status Bits
*/
//! @{
/*! \brief Resets the error status.
*
* This function resets the status bits indicating that a parity error,
* framing error or overrun has occurred. The RXBRK bit, indicating
* a start/end of break condition on the RX line, is also reset.
*
* \param usart Base address of the USART instance.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_reset_status(volatile avr32_usart_t *usart)
{
usart->cr = AVR32_USART_CR_RSTSTA_MASK;
}
/*! \brief Checks if a parity error has occurred since last status reset.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if a parity error has been detected, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_parity_error(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_PARE_MASK) != 0;
}
/*! \brief Checks if a framing error has occurred since last status reset.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if a framing error has been detected, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_framing_error(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_FRAME_MASK) != 0;
}
/*! \brief Checks if an overrun error has occurred since last status reset.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if a overrun error has been detected, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_overrun_error(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_OVRE_MASK) != 0;
}
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \brief Get LIN Error Status
*
* \param usart Base address of the USART instance.
*
* \retval The binary value of the error field.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_lin_get_error(volatile avr32_usart_t *usart)
{
return (usart->csr & (AVR32_USART_CSR_LINSNRE_MASK |
AVR32_USART_CSR_LINCE_MASK |
AVR32_USART_CSR_LINIPE_MASK |
AVR32_USART_CSR_LINISFE_MASK |
AVR32_USART_CSR_LINBE_MASK)) >> AVR32_USART_CSR_LINBE_OFFSET;
}
#endif // USART rev. >= 4.0.0
//! @}
//------------------------------------------------------------------------------
/*! \name ISO7816 Control Functions
*/
//! @{
/*! \brief Enables the ISO7816 receiver.
*
* The ISO7816 transmitter is disabled.
*
* \param usart Base address of the USART instance.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_iso7816_enable_receiver(volatile avr32_usart_t *usart)
{
usart->cr = AVR32_USART_CR_TXDIS_MASK | AVR32_USART_CR_RXEN_MASK;
}
/*! \brief Enables the ISO7816 transmitter.
*
* The ISO7816 receiver is disabled.
*
* \param usart Base address of the USART instance.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_iso7816_enable_transmitter(volatile avr32_usart_t *usart)
{
usart->cr = AVR32_USART_CR_RXDIS_MASK | AVR32_USART_CR_TXEN_MASK;
}
//! @}
//------------------------------------------------------------------------------
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \name LIN Control Functions
*/
//! @{
/*! \brief Sets the node action.
*
* \param usart Base address of the USART instance.
* \param action The node action: \ref USART_LIN_PUBLISH_ACTION,
* \ref USART_LIN_SUBSCRIBE_ACTION or
* \ref USART_LIN_IGNORE_ACTION.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_set_node_action(volatile avr32_usart_t *usart, unsigned char action)
{
usart->linmr = (usart->linmr & ~AVR32_USART_LINMR_NACT_MASK) |
action << AVR32_USART_LINMR_NACT_OFFSET;
}
/*! \brief Enables or disables the Identifier parity.
*
* \param usart Base address of the USART instance.
* \param parity Whether to enable the Identifier parity: \c TRUE or \c FALSE.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_enable_parity(volatile avr32_usart_t *usart, unsigned char parity)
{
usart->linmr = (usart->linmr & ~AVR32_USART_LINMR_PARDIS_MASK) |
!parity << AVR32_USART_LINMR_PARDIS_OFFSET;
}
/*! \brief Enables or disables the checksum.
*
* \param usart Base address of the USART instance.
* \param parity Whether to enable the checksum: \c TRUE or \c FALSE.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_enable_checksum(volatile avr32_usart_t *usart, unsigned char checksum)
{
usart->linmr = (usart->linmr & ~AVR32_USART_LINMR_CHKDIS_MASK) |
!checksum << AVR32_USART_LINMR_CHKDIS_OFFSET;
}
/*! \brief Sets the checksum type.
*
* \param usart Base address of the USART instance.
* \param chktyp The checksum type: \ref USART_LIN_ENHANCED_CHEKSUM or
* \ref USART_LIN_CLASSIC_CHECKSUM.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_set_checksum(volatile avr32_usart_t *usart, unsigned char chktyp)
{
usart->linmr = (usart->linmr & ~AVR32_USART_LINMR_CHKTYP_MASK) |
chktyp << AVR32_USART_LINMR_CHKTYP_OFFSET;
}
/*! \brief Gets the response data length.
*
* \param usart Base address of the USART instance.
*
* \return The response data length.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ unsigned char usart_lin_get_data_length(volatile avr32_usart_t *usart)
{
if (usart->linmr & AVR32_USART_LINMR_DLM_MASK)
{
unsigned char data_length = 1 << ((usart->linir >> (AVR32_USART_LINIR_IDCHR_OFFSET + 4)) & 0x03);
if (data_length == 1)
data_length = 2;
return data_length;
}
else
return ((usart->linmr & AVR32_USART_LINMR_DLC_MASK) >> AVR32_USART_LINMR_DLC_OFFSET) + 1;
}
/*! \brief Sets the response data length for LIN 1.x.
*
* \param usart Base address of the USART instance.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_set_data_length_lin1x(volatile avr32_usart_t *usart)
{
usart->linmr |= AVR32_USART_LINMR_DLM_MASK;
}
/*! \brief Sets the response data length for LIN 2.x.
*
* \param usart Base address of the USART instance.
* \param data_length The response data length.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_set_data_length_lin2x(volatile avr32_usart_t *usart, unsigned char data_length)
{
usart->linmr = (usart->linmr & ~(AVR32_USART_LINMR_DLC_MASK |
AVR32_USART_LINMR_DLM_MASK)) |
(data_length - 1) << AVR32_USART_LINMR_DLC_OFFSET;
}
/*! \brief Enables or disables the frame slot mode.
*
* \param usart Base address of the USART instance.
* \param frameslot Whether to enable the frame slot mode: \c TRUE or
* \c FALSE.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_enable_frameslot(volatile avr32_usart_t *usart, unsigned char frameslot)
{
usart->linmr = (usart->linmr & ~AVR32_USART_LINMR_FSDIS_MASK) |
!frameslot << AVR32_USART_LINMR_FSDIS_OFFSET;
}
/*! \brief Gets the Identifier character.
*
* \param usart Base address of the USART instance.
*
* \return The Identifier character.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ unsigned char usart_lin_get_id_char(volatile avr32_usart_t *usart)
{
return (usart->linir & AVR32_USART_LINIR_IDCHR_MASK) >> AVR32_USART_LINIR_IDCHR_OFFSET;
}
/*! \brief Sets the Identifier character.
*
* \param usart Base address of the USART instance.
* \param id_char The Identifier character.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_set_id_char(volatile avr32_usart_t *usart, unsigned char id_char)
{
usart->linir = (usart->linir & ~AVR32_USART_LINIR_IDCHR_MASK) |
id_char << AVR32_USART_LINIR_IDCHR_OFFSET;
}
//! @}
#endif // USART rev. >= 4.0.0
//------------------------------------------------------------------------------
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \name SPI Control Functions
*/
//! @{
/*! \brief Selects SPI slave chip.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Success.
*/
extern int usart_spi_selectChip(volatile avr32_usart_t *usart);
/*! \brief Unselects SPI slave chip.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Success.
* \retval USART_FAILURE Time-out.
*/
extern int usart_spi_unselectChip(volatile avr32_usart_t *usart);
//! @}
#endif // USART rev. >= 4.0.0
//------------------------------------------------------------------------------
/*! \name Transmit/Receive Functions
*/
//! @{
/*! \brief Addresses a receiver.
*
* While in RS485 mode, receivers only accept data addressed to them.
* A packet/char with the address tag set has to precede any data.
* This function is used to address a receiver. This receiver should read
* all the following data, until an address packet addresses another receiver.
*
* \param usart Base address of the USART instance.
* \param address Address of the target device.
*
* \retval USART_SUCCESS Address successfully sent (if current mode is RS485).
* \retval USART_MODE_FAULT Wrong operating mode.
*/
extern int usart_send_address(volatile avr32_usart_t *usart, int address);
/*! \brief Tests if the USART is ready to transmit a character.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART Transmit Holding Register is free, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_tx_ready(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_TXRDY_MASK) != 0;
}
/*! \brief Writes the given character to the TX buffer if the transmitter is ready.
*
* \param usart Base address of the USART instance.
* \param c The character (up to 9 bits) to transmit.
*
* \retval USART_SUCCESS The transmitter was ready.
* \retval USART_TX_BUSY The transmitter was busy.
*/
extern int usart_write_char(volatile avr32_usart_t *usart, int c);
/*! \brief An active wait writing a character to the USART.
*
* \param usart Base address of the USART instance.
* \param c The character (up to 9 bits) to transmit.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_bw_write_char(volatile avr32_usart_t *usart, int c)
{
while (usart_write_char(usart, c) != USART_SUCCESS);
}
/*! \brief Sends a character with the USART.
*
* \param usart Base address of the USART instance.
* \param c Character to write.
*
* \retval USART_SUCCESS The character was written.
* \retval USART_FAILURE The function timed out before the USART transmitter became ready to send.
*/
extern int usart_putchar(volatile avr32_usart_t *usart, int c);
/*! \brief Tests if all requested USART transmissions are over.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART Transmit Shift Register and the USART Transmit
* Holding Register are free, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_tx_empty(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_TXEMPTY_MASK) != 0;
}
/*! \brief Tests if the USART contains a received character.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if the USART Receive Holding Register is full, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_test_hit(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_RXRDY_MASK) != 0;
}
/*! \brief Checks the RX buffer for a received character, and stores it at the
* given memory location.
*
* \param usart Base address of the USART instance.
* \param c Pointer to the where the read character should be stored
* (must be at least short in order to accept 9-bit characters).
*
* \retval USART_SUCCESS The character was read successfully.
* \retval USART_RX_EMPTY The RX buffer was empty.
* \retval USART_RX_ERROR An error was deteceted.
*/
extern int usart_read_char(volatile avr32_usart_t *usart, int *c);
/*! \brief Waits until a character is received, and returns it.
*
* \param usart Base address of the USART instance.
*
* \return The received character, or \ref USART_FAILURE upon error.
*/
extern int usart_getchar(volatile avr32_usart_t *usart);
/*! \brief Writes one character string to the USART.
*
* \param usart Base address of the USART instance.
* \param string String to be written.
*/
extern void usart_write_line(volatile avr32_usart_t *usart, const char *string);
/*! \brief Gets and echoes characters until end of line.
*
* \param usart Base address of the USART instance.
*
* \retval USART_SUCCESS Success.
* \retval USART_FAILURE Low-level error detected or ETX character received.
*/
extern int usart_get_echo_line(volatile avr32_usart_t *usart);
#if defined(AVR32_USART_400_H_INCLUDED) || \
defined(AVR32_USART_410_H_INCLUDED) || \
defined(AVR32_USART_420_H_INCLUDED) || \
defined(AVR32_USART_440_H_INCLUDED) || \
defined(AVR32_USART_602_H_INCLUDED)
/*! \brief Abort LIN transmission.
*
* \param usart Base address of the USART instance.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ void usart_lin_abort(volatile avr32_usart_t *usart)
{
usart->cr = AVR32_USART_LINABT_MASK;
}
/*! \brief Tests if a LIN transfer has been completed.
*
* \param usart Base address of the USART instance.
*
* \return \c 1 if a LIN transfer has been completed, otherwise \c 0.
*/
#if (defined __GNUC__)
__attribute__((__always_inline__))
#endif
extern __inline__ int usart_lin_transfer_completed(volatile avr32_usart_t *usart)
{
return (usart->csr & AVR32_USART_CSR_LINTC_MASK) != 0;
}
#endif // USART rev. >= 4.0.0
//! @}
#endif // _USART_H_