1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-06-13 13:01:55 +03:00

dir changes - things are broken at the moment

git-svn-id: svn://svn.code.sf.net/p/axtls/code/trunk@116 9a5d90b5-6617-0410-8a86-bb477d3ed2e3
This commit is contained in:
cameronrich
2007-08-29 09:15:39 +00:00
parent a1bfbe6b07
commit f9ee197cff
40 changed files with 432 additions and 901 deletions

View File

@ -48,20 +48,23 @@ endif
libs: $(TARGET1) $(TARGET2)
AXTLS_HOME=..
OBJ=\
aes.o \
../crypto/aes.o \
asn1.o \
x509.o \
bigint.o \
crypto_misc.o \
hmac.o \
../crypto/hmac.o \
os_port.o \
loader.o \
md5.o \
../crypto/md5.o \
openssl.o \
p12.o \
rsa.o \
rc4.o \
sha1.o \
../crypto/rc4.o \
../crypto/sha1.o \
tls1.o \
tls1_svr.o \
tls1_clnt.o

444
ssl/aes.c
View File

@ -1,444 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* AES implementation - this is a small code version. There are much faster
* versions around but they are much larger in size (i.e. they use large
* submix tables).
*/
#include <string.h>
#include "crypto.h"
/* all commented out in skeleton mode */
#ifndef CONFIG_SSL_SKELETON_MODE
#define rot1(x) (((x) << 24) | ((x) >> 8))
#define rot2(x) (((x) << 16) | ((x) >> 16))
#define rot3(x) (((x) << 8) | ((x) >> 24))
/*
* This cute trick does 4 'mul by two' at once. Stolen from
* Dr B. R. Gladman <brg@gladman.uk.net> but I'm sure the u-(u>>7) is
* a standard graphics trick
* The key to this is that we need to xor with 0x1b if the top bit is set.
* a 1xxx xxxx 0xxx 0xxx First we mask the 7bit,
* b 1000 0000 0000 0000 then we shift right by 7 putting the 7bit in 0bit,
* c 0000 0001 0000 0000 we then subtract (c) from (b)
* d 0111 1111 0000 0000 and now we and with our mask
* e 0001 1011 0000 0000
*/
#define mt 0x80808080
#define ml 0x7f7f7f7f
#define mh 0xfefefefe
#define mm 0x1b1b1b1b
#define mul2(x,t) ((t)=((x)&mt), \
((((x)+(x))&mh)^(((t)-((t)>>7))&mm)))
#define inv_mix_col(x,f2,f4,f8,f9) (\
(f2)=mul2(x,f2), \
(f4)=mul2(f2,f4), \
(f8)=mul2(f4,f8), \
(f9)=(x)^(f8), \
(f8)=((f2)^(f4)^(f8)), \
(f2)^=(f9), \
(f4)^=(f9), \
(f8)^=rot3(f2), \
(f8)^=rot2(f4), \
(f8)^rot1(f9))
/*
* AES S-box
*/
static const uint8_t aes_sbox[256] =
{
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,
0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,
0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,
0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,
0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,
0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,
0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,
0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,
0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,
0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,
0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,
0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,
0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,
0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,
0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,
0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,
0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16,
};
/*
* AES is-box
*/
static const uint8_t aes_isbox[256] =
{
0x52,0x09,0x6a,0xd5,0x30,0x36,0xa5,0x38,
0xbf,0x40,0xa3,0x9e,0x81,0xf3,0xd7,0xfb,
0x7c,0xe3,0x39,0x82,0x9b,0x2f,0xff,0x87,
0x34,0x8e,0x43,0x44,0xc4,0xde,0xe9,0xcb,
0x54,0x7b,0x94,0x32,0xa6,0xc2,0x23,0x3d,
0xee,0x4c,0x95,0x0b,0x42,0xfa,0xc3,0x4e,
0x08,0x2e,0xa1,0x66,0x28,0xd9,0x24,0xb2,
0x76,0x5b,0xa2,0x49,0x6d,0x8b,0xd1,0x25,
0x72,0xf8,0xf6,0x64,0x86,0x68,0x98,0x16,
0xd4,0xa4,0x5c,0xcc,0x5d,0x65,0xb6,0x92,
0x6c,0x70,0x48,0x50,0xfd,0xed,0xb9,0xda,
0x5e,0x15,0x46,0x57,0xa7,0x8d,0x9d,0x84,
0x90,0xd8,0xab,0x00,0x8c,0xbc,0xd3,0x0a,
0xf7,0xe4,0x58,0x05,0xb8,0xb3,0x45,0x06,
0xd0,0x2c,0x1e,0x8f,0xca,0x3f,0x0f,0x02,
0xc1,0xaf,0xbd,0x03,0x01,0x13,0x8a,0x6b,
0x3a,0x91,0x11,0x41,0x4f,0x67,0xdc,0xea,
0x97,0xf2,0xcf,0xce,0xf0,0xb4,0xe6,0x73,
0x96,0xac,0x74,0x22,0xe7,0xad,0x35,0x85,
0xe2,0xf9,0x37,0xe8,0x1c,0x75,0xdf,0x6e,
0x47,0xf1,0x1a,0x71,0x1d,0x29,0xc5,0x89,
0x6f,0xb7,0x62,0x0e,0xaa,0x18,0xbe,0x1b,
0xfc,0x56,0x3e,0x4b,0xc6,0xd2,0x79,0x20,
0x9a,0xdb,0xc0,0xfe,0x78,0xcd,0x5a,0xf4,
0x1f,0xdd,0xa8,0x33,0x88,0x07,0xc7,0x31,
0xb1,0x12,0x10,0x59,0x27,0x80,0xec,0x5f,
0x60,0x51,0x7f,0xa9,0x19,0xb5,0x4a,0x0d,
0x2d,0xe5,0x7a,0x9f,0x93,0xc9,0x9c,0xef,
0xa0,0xe0,0x3b,0x4d,0xae,0x2a,0xf5,0xb0,
0xc8,0xeb,0xbb,0x3c,0x83,0x53,0x99,0x61,
0x17,0x2b,0x04,0x7e,0xba,0x77,0xd6,0x26,
0xe1,0x69,0x14,0x63,0x55,0x21,0x0c,0x7d
};
static const unsigned char Rcon[30]=
{
0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,
0x1b,0x36,0x6c,0xd8,0xab,0x4d,0x9a,0x2f,
0x5e,0xbc,0x63,0xc6,0x97,0x35,0x6a,0xd4,
0xb3,0x7d,0xfa,0xef,0xc5,0x91,
};
/* ----- static functions ----- */
static void AES_encrypt(const AES_CTX *ctx, uint32_t *data);
static void AES_decrypt(const AES_CTX *ctx, uint32_t *data);
/* Perform doubling in Galois Field GF(2^8) using the irreducible polynomial
x^8+x^4+x^3+x+1 */
static unsigned char AES_xtime(uint32_t x)
{
return x = (x&0x80) ? (x<<1)^0x1b : x<<1;
}
/**
* Set up AES with the key/iv and cipher size.
*/
void AES_set_key(AES_CTX *ctx, const uint8_t *key,
const uint8_t *iv, AES_MODE mode)
{
int i, ii;
uint32_t *W, tmp, tmp2;
const unsigned char *ip;
int words;
switch (mode)
{
case AES_MODE_128:
i = 10;
words = 4;
break;
case AES_MODE_256:
i = 14;
words = 8;
break;
default: /* fail silently */
return;
}
ctx->rounds = i;
ctx->key_size = words;
W = ctx->ks;
for (i = 0; i < words; i+=2)
{
W[i+0]= ((uint32_t)key[ 0]<<24)|
((uint32_t)key[ 1]<<16)|
((uint32_t)key[ 2]<< 8)|
((uint32_t)key[ 3] );
W[i+1]= ((uint32_t)key[ 4]<<24)|
((uint32_t)key[ 5]<<16)|
((uint32_t)key[ 6]<< 8)|
((uint32_t)key[ 7] );
key += 8;
}
ip = Rcon;
ii = 4 * (ctx->rounds+1);
for (i = words; i<ii; i++)
{
tmp = W[i-1];
if ((i % words) == 0)
{
tmp2 =(uint32_t)aes_sbox[(tmp )&0xff]<< 8;
tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<<16;
tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<24;
tmp2|=(uint32_t)aes_sbox[(tmp>>24) ];
tmp=tmp2^(((unsigned int)*ip)<<24);
ip++;
}
if ((words == 8) && ((i % words) == 4))
{
tmp2 =(uint32_t)aes_sbox[(tmp )&0xff] ;
tmp2|=(uint32_t)aes_sbox[(tmp>> 8)&0xff]<< 8;
tmp2|=(uint32_t)aes_sbox[(tmp>>16)&0xff]<<16;
tmp2|=(uint32_t)aes_sbox[(tmp>>24) ]<<24;
tmp=tmp2;
}
W[i]=W[i-words]^tmp;
}
/* copy the iv across */
memcpy(ctx->iv, iv, 16);
}
/**
* Change a key for decryption.
*/
void AES_convert_key(AES_CTX *ctx)
{
int i;
uint32_t *k,w,t1,t2,t3,t4;
k = ctx->ks;
k += 4;
for (i= ctx->rounds*4; i > 4; i--)
{
w= *k;
w = inv_mix_col(w,t1,t2,t3,t4);
*k++ =w;
}
}
/**
* Encrypt a byte sequence (with a block size 16) using the AES cipher.
*/
void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
{
int i;
uint32_t tin[4], tout[4], iv[4];
memcpy(iv, ctx->iv, AES_IV_SIZE);
for (i = 0; i < 4; i++)
tout[i] = ntohl(iv[i]);
for (length -= AES_BLOCKSIZE; length >= 0; length -= AES_BLOCKSIZE)
{
uint32_t msg_32[4];
uint32_t out_32[4];
memcpy(msg_32, msg, AES_BLOCKSIZE);
msg += AES_BLOCKSIZE;
for (i = 0; i < 4; i++)
tin[i] = ntohl(msg_32[i])^tout[i];
AES_encrypt(ctx, tin);
for (i = 0; i < 4; i++)
{
tout[i] = tin[i];
out_32[i] = htonl(tout[i]);
}
memcpy(out, out_32, AES_BLOCKSIZE);
out += AES_BLOCKSIZE;
}
for (i = 0; i < 4; i++)
iv[i] = htonl(tout[i]);
memcpy(ctx->iv, iv, AES_IV_SIZE);
}
/**
* Decrypt a byte sequence (with a block size 16) using the AES cipher.
*/
void AES_cbc_decrypt(AES_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
{
int i;
uint32_t tin[4], xor[4], tout[4], data[4], iv[4];
memcpy(iv, ctx->iv, AES_IV_SIZE);
for (i = 0; i < 4; i++)
xor[i] = ntohl(iv[i]);
for (length -= 16; length >= 0; length -= 16)
{
uint32_t msg_32[4];
uint32_t out_32[4];
memcpy(msg_32, msg, AES_BLOCKSIZE);
msg += AES_BLOCKSIZE;
for (i = 0; i < 4; i++)
{
tin[i] = ntohl(msg_32[i]);
data[i] = tin[i];
}
AES_decrypt(ctx, data);
for (i = 0; i < 4; i++)
{
tout[i] = data[i]^xor[i];
xor[i] = tin[i];
out_32[i] = htonl(tout[i]);
}
memcpy(out, out_32, AES_BLOCKSIZE);
out += AES_BLOCKSIZE;
}
for (i = 0; i < 4; i++)
iv[i] = htonl(xor[i]);
memcpy(ctx->iv, iv, AES_IV_SIZE);
}
/**
* Encrypt a single block (16 bytes) of data
*/
static void AES_encrypt(const AES_CTX *ctx, uint32_t *data)
{
/* To make this code smaller, generate the sbox entries on the fly.
* This will have a really heavy effect upon performance.
*/
uint32_t tmp[4];
uint32_t tmp1, old_a0, a0, a1, a2, a3, row;
int curr_rnd;
int rounds = ctx->rounds;
const uint32_t *k = ctx->ks;
/* Pre-round key addition */
for (row = 0; row < 4; row++)
data[row] ^= *(k++);
/* Encrypt one block. */
for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
{
/* Perform ByteSub and ShiftRow operations together */
for (row = 0; row < 4; row++)
{
a0 = (uint32_t)aes_sbox[(data[row%4]>>24)&0xFF];
a1 = (uint32_t)aes_sbox[(data[(row+1)%4]>>16)&0xFF];
a2 = (uint32_t)aes_sbox[(data[(row+2)%4]>>8)&0xFF];
a3 = (uint32_t)aes_sbox[(data[(row+3)%4])&0xFF];
/* Perform MixColumn iff not last round */
if (curr_rnd < (rounds - 1))
{
tmp1 = a0 ^ a1 ^ a2 ^ a3;
old_a0 = a0;
a0 ^= tmp1 ^ AES_xtime(a0 ^ a1);
a1 ^= tmp1 ^ AES_xtime(a1 ^ a2);
a2 ^= tmp1 ^ AES_xtime(a2 ^ a3);
a3 ^= tmp1 ^ AES_xtime(a3 ^ old_a0);
}
tmp[row] = ((a0 << 24) | (a1 << 16) | (a2 << 8) | a3);
}
/* KeyAddition - note that it is vital that this loop is separate from
the MixColumn operation, which must be atomic...*/
for (row = 0; row < 4; row++)
data[row] = tmp[row] ^ *(k++);
}
}
/**
* Decrypt a single block (16 bytes) of data
*/
static void AES_decrypt(const AES_CTX *ctx, uint32_t *data)
{
uint32_t tmp[4];
uint32_t xt0,xt1,xt2,xt3,xt4,xt5,xt6;
uint32_t a0, a1, a2, a3, row;
int curr_rnd;
int rounds = ctx->rounds;
const uint32_t *k = ctx->ks + ((rounds+1)*4);
/* pre-round key addition */
for (row=4; row > 0;row--)
data[row-1] ^= *(--k);
/* Decrypt one block */
for (curr_rnd = 0; curr_rnd < rounds; curr_rnd++)
{
/* Perform ByteSub and ShiftRow operations together */
for (row = 4; row > 0; row--)
{
a0 = aes_isbox[(data[(row+3)%4]>>24)&0xFF];
a1 = aes_isbox[(data[(row+2)%4]>>16)&0xFF];
a2 = aes_isbox[(data[(row+1)%4]>>8)&0xFF];
a3 = aes_isbox[(data[row%4])&0xFF];
/* Perform MixColumn iff not last round */
if (curr_rnd<(rounds-1))
{
/* The MDS cofefficients (0x09, 0x0B, 0x0D, 0x0E)
are quite large compared to encryption; this
operation slows decryption down noticeably. */
xt0 = AES_xtime(a0^a1);
xt1 = AES_xtime(a1^a2);
xt2 = AES_xtime(a2^a3);
xt3 = AES_xtime(a3^a0);
xt4 = AES_xtime(xt0^xt1);
xt5 = AES_xtime(xt1^xt2);
xt6 = AES_xtime(xt4^xt5);
xt0 ^= a1^a2^a3^xt4^xt6;
xt1 ^= a0^a2^a3^xt5^xt6;
xt2 ^= a0^a1^a3^xt4^xt6;
xt3 ^= a0^a1^a2^xt5^xt6;
tmp[row-1] = ((xt0<<24)|(xt1<<16)|(xt2<<8)|xt3);
}
else
tmp[row-1] = ((a0<<24)|(a1<<16)|(a2<<8)|a3);
}
for (row = 4; row > 0; row--)
data[row-1] = tmp[row-1] ^ *(--k);
}
}
#endif

View File

@ -19,22 +19,19 @@
/**
* @file asn1.c
*
* Some primitive asn methods for extraction rsa modulus information. It also
* is used for retrieving information from X.509 certificates.
* Some primitive asn methods for extraction ASN.1 data.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "os_port.h"
#include "crypto.h"
#include "crypto_misc.h"
#define SIG_OID_PREFIX_SIZE 8
#define SIG_TYPE_MD2 0x02
#define SIG_TYPE_MD5 0x04
#define SIG_TYPE_SHA1 0x05
/* Must be an RSA algorithm with either SHA1 or MD5 for verifying to work */
static const uint8_t sig_oid_prefix[SIG_OID_PREFIX_SIZE] =
{
@ -44,7 +41,7 @@ static const uint8_t sig_oid_prefix[SIG_OID_PREFIX_SIZE] =
/* CN, O, OU */
static const uint8_t g_dn_types[] = { 3, 10, 11 };
static int get_asn1_length(const uint8_t *buf, int *offset)
int get_asn1_length(const uint8_t *buf, int *offset)
{
int len, i;
@ -209,7 +206,7 @@ end_utc_time:
/**
* Get the version type of a certificate (which we don't actually care about)
*/
static int asn1_version(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
int asn1_version(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK;
@ -225,7 +222,7 @@ end_version:
/**
* Retrieve the notbefore and notafter certificate times.
*/
static int asn1_validity(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
int asn1_validity(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
return (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0 ||
asn1_get_utc_time(cert, offset, &x509_ctx->not_before) ||
@ -281,7 +278,7 @@ end_pnt_str:
/**
* Get the subject name (or the issuer) of a certificate.
*/
static int asn1_name(const uint8_t *cert, int *offset, char *dn[])
int asn1_name(const uint8_t *cert, int *offset, char *dn[])
{
int ret = X509_NOT_OK;
int dn_type;
@ -332,7 +329,7 @@ end_name:
/**
* Read the modulus and public exponent of a certificate.
*/
static int asn1_public_key(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
int asn1_public_key(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK, mod_len, pub_len;
uint8_t *modulus, *pub_exp;
@ -364,7 +361,7 @@ end_pub_key:
/**
* Read the signature of the certificate.
*/
static int asn1_signature(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
int asn1_signature(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK;
@ -417,7 +414,7 @@ void remove_ca_certs(CA_CERT_CTX *ca_cert_ctx)
* Compare 2 distinguished names for equality
* @return 0 if a match
*/
static int asn1_compare_dn(char * const dn1[], char * const dn2[])
int asn1_compare_dn(char * const dn1[], char * const dn2[])
{
int i;
@ -432,34 +429,13 @@ static int asn1_compare_dn(char * const dn1[], char * const dn2[])
return 0; /* all good */
}
/**
* Retrieve the signature from a certificate.
*/
const uint8_t *x509_get_signature(const uint8_t *asn1_sig, int *len)
{
int offset = 0;
const uint8_t *ptr = NULL;
if (asn1_next_obj(asn1_sig, &offset, ASN1_SEQUENCE) < 0 ||
asn1_skip_obj(asn1_sig, &offset, ASN1_SEQUENCE))
goto end_get_sig;
if (asn1_sig[offset++] != ASN1_OCTET_STRING)
goto end_get_sig;
*len = get_asn1_length(asn1_sig, &offset);
ptr = &asn1_sig[offset]; /* all ok */
end_get_sig:
return ptr;
}
#endif
/**
* Read the signature type of the certificate. We only support RSA-MD5 and
* RSA-SHA1 signature types.
*/
static int asn1_signature_type(const uint8_t *cert,
int asn1_signature_type(const uint8_t *cert,
int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK, len;
@ -482,382 +458,3 @@ end_check_sig:
return ret;
}
/**
* Construct a new x509 object.
* @return 0 if ok. < 0 if there was a problem.
*/
int x509_new(const uint8_t *cert, int *len, X509_CTX **ctx)
{
int begin_tbs, end_tbs;
int ret = X509_NOT_OK, offset = 0, cert_size = 0;
X509_CTX *x509_ctx;
BI_CTX *bi_ctx;
*ctx = (X509_CTX *)calloc(1, sizeof(X509_CTX));
x509_ctx = *ctx;
/* get the certificate size */
asn1_skip_obj(cert, &cert_size, ASN1_SEQUENCE);
if (asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
begin_tbs = offset; /* start of the tbs */
end_tbs = begin_tbs; /* work out the end of the tbs */
asn1_skip_obj(cert, &end_tbs, ASN1_SEQUENCE);
if (asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
if (cert[offset] == ASN1_EXPLICIT_TAG) /* optional version */
{
if (asn1_version(cert, &offset, x509_ctx))
goto end_cert;
}
if (asn1_skip_obj(cert, &offset, ASN1_INTEGER) || /* serial number */
asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
/* make sure the signature is ok */
if (asn1_signature_type(cert, &offset, x509_ctx))
{
ret = X509_VFY_ERROR_UNSUPPORTED_DIGEST;
goto end_cert;
}
if (asn1_name(cert, &offset, x509_ctx->ca_cert_dn) ||
asn1_validity(cert, &offset, x509_ctx) ||
asn1_name(cert, &offset, x509_ctx->cert_dn) ||
asn1_public_key(cert, &offset, x509_ctx))
goto end_cert;
bi_ctx = x509_ctx->rsa_ctx->bi_ctx;
#ifdef CONFIG_SSL_CERT_VERIFICATION /* only care if doing verification */
/* use the appropriate signature algorithm (either SHA1 or MD5) */
if (x509_ctx->sig_type == SIG_TYPE_MD5)
{
MD5_CTX md5_ctx;
uint8_t md5_dgst[MD5_SIZE];
MD5Init(&md5_ctx);
MD5Update(&md5_ctx, &cert[begin_tbs], end_tbs-begin_tbs);
MD5Final(&md5_ctx, md5_dgst);
x509_ctx->digest = bi_import(bi_ctx, md5_dgst, MD5_SIZE);
}
else if (x509_ctx->sig_type == SIG_TYPE_SHA1)
{
SHA1_CTX sha_ctx;
uint8_t sha_dgst[SHA1_SIZE];
SHA1Init(&sha_ctx);
SHA1Update(&sha_ctx, &cert[begin_tbs], end_tbs-begin_tbs);
SHA1Final(&sha_ctx, sha_dgst);
x509_ctx->digest = bi_import(bi_ctx, sha_dgst, SHA1_SIZE);
}
offset = end_tbs; /* skip the v3 data */
if (asn1_skip_obj(cert, &offset, ASN1_SEQUENCE) ||
asn1_signature(cert, &offset, x509_ctx))
goto end_cert;
#endif
if (len)
{
*len = cert_size;
}
ret = X509_OK;
end_cert:
#ifdef CONFIG_SSL_FULL_MODE
if (ret)
{
printf("Error: Invalid X509 ASN.1 file\n");
}
#endif
return ret;
}
/**
* Free an X.509 object's resources.
*/
void x509_free(X509_CTX *x509_ctx)
{
X509_CTX *next;
int i;
if (x509_ctx == NULL) /* if already null, then don't bother */
return;
for (i = 0; i < X509_NUM_DN_TYPES; i++)
{
free(x509_ctx->ca_cert_dn[i]);
free(x509_ctx->cert_dn[i]);
}
free(x509_ctx->signature);
#ifdef CONFIG_SSL_CERT_VERIFICATION
if (x509_ctx->digest)
{
bi_free(x509_ctx->rsa_ctx->bi_ctx, x509_ctx->digest);
}
#endif
RSA_free(x509_ctx->rsa_ctx);
next = x509_ctx->next;
free(x509_ctx);
x509_free(next); /* clear the chain */
}
#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
* Do some basic checks on the certificate chain.
*
* Certificate verification consists of a number of checks:
* - A root certificate exists in the certificate store.
* - The date of the certificate is after the start date.
* - The date of the certificate is before the finish date.
* - The certificate chain is valid.
* - That the certificate(s) are not self-signed.
* - The signature of the certificate is valid.
*/
int x509_verify(const CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert)
{
int ret = X509_OK, i = 0;
bigint *cert_sig;
X509_CTX *next_cert = NULL;
BI_CTX *ctx;
bigint *mod, *expn;
struct timeval tv;
int match_ca_cert = 0;
if (cert == NULL || ca_cert_ctx == NULL)
{
ret = X509_VFY_ERROR_NO_TRUSTED_CERT;
goto end_verify;
}
/* last cert in the chain - look for a trusted cert */
if (cert->next == NULL)
{
while (i < CONFIG_X509_MAX_CA_CERTS && ca_cert_ctx->cert[i])
{
if (asn1_compare_dn(cert->ca_cert_dn,
ca_cert_ctx->cert[i]->cert_dn) == 0)
{
match_ca_cert = 1;
break;
}
i++;
}
if (i < CONFIG_X509_MAX_CA_CERTS && ca_cert_ctx->cert[i])
{
next_cert = ca_cert_ctx->cert[i];
}
else /* trusted cert not found */
{
ret = X509_VFY_ERROR_NO_TRUSTED_CERT;
goto end_verify;
}
}
else
{
next_cert = cert->next;
}
gettimeofday(&tv, NULL);
/* check the not before date */
if (tv.tv_sec < cert->not_before)
{
ret = X509_VFY_ERROR_NOT_YET_VALID;
goto end_verify;
}
/* check the not after date */
if (tv.tv_sec > cert->not_after)
{
ret = X509_VFY_ERROR_EXPIRED;
goto end_verify;
}
/* check the chain integrity */
if (asn1_compare_dn(cert->ca_cert_dn, next_cert->cert_dn))
{
ret = X509_VFY_ERROR_INVALID_CHAIN;
goto end_verify;
}
/* check for self-signing */
if (!match_ca_cert && asn1_compare_dn(cert->ca_cert_dn, cert->cert_dn) == 0)
{
ret = X509_VFY_ERROR_SELF_SIGNED;
goto end_verify;
}
/* check the signature */
ctx = cert->rsa_ctx->bi_ctx;
mod = next_cert->rsa_ctx->m;
expn = next_cert->rsa_ctx->e;
cert_sig = RSA_sign_verify(ctx, cert->signature, cert->sig_len,
bi_clone(ctx, mod), bi_clone(ctx, expn));
if (cert_sig)
{
ret = cert->digest ? /* check the signature */
bi_compare(cert_sig, cert->digest) :
X509_VFY_ERROR_UNSUPPORTED_DIGEST;
bi_free(ctx, cert_sig);
if (ret)
goto end_verify;
}
else
{
ret = X509_VFY_ERROR_BAD_SIGNATURE;
goto end_verify;
}
/* go down the certificate chain using recursion. */
if (ret == 0 && cert->next)
{
ret = x509_verify(ca_cert_ctx, next_cert);
}
end_verify:
return ret;
}
#endif
#if defined (CONFIG_SSL_FULL_MODE)
/**
* Used for diagnostics.
*/
void x509_print(CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert)
{
if (cert == NULL)
return;
printf("---------------- CERT DEBUG ----------------\n");
printf("* CA Cert Distinguished Name\n");
if (cert->ca_cert_dn[X509_COMMON_NAME])
{
printf("Common Name (CN):\t%s\n", cert->ca_cert_dn[X509_COMMON_NAME]);
}
if (cert->ca_cert_dn[X509_ORGANIZATION])
{
printf("Organization (O):\t%s\n", cert->ca_cert_dn[X509_ORGANIZATION]);
}
if (cert->ca_cert_dn[X509_ORGANIZATIONAL_TYPE])
{
printf("Organizational Unit (OU): %s\n",
cert->ca_cert_dn[X509_ORGANIZATIONAL_TYPE]);
}
printf("* Cert Distinguished Name\n");
if (cert->cert_dn[X509_COMMON_NAME])
{
printf("Common Name (CN):\t%s\n", cert->cert_dn[X509_COMMON_NAME]);
}
if (cert->cert_dn[X509_ORGANIZATION])
{
printf("Organization (O):\t%s\n", cert->cert_dn[X509_ORGANIZATION]);
}
if (cert->cert_dn[X509_ORGANIZATIONAL_TYPE])
{
printf("Organizational Unit (OU): %s\n",
cert->cert_dn[X509_ORGANIZATIONAL_TYPE]);
}
printf("Not Before:\t\t%s", ctime(&cert->not_before));
printf("Not After:\t\t%s", ctime(&cert->not_after));
printf("RSA bitsize:\t\t%d\n", cert->rsa_ctx->num_octets*8);
printf("Sig Type:\t\t");
switch (cert->sig_type)
{
case SIG_TYPE_MD5:
printf("MD5\n");
break;
case SIG_TYPE_SHA1:
printf("SHA1\n");
break;
case SIG_TYPE_MD2:
printf("MD2\n");
break;
default:
printf("Unrecognized: %d\n", cert->sig_type);
break;
}
printf("Verify:\t\t\t");
if (ca_cert_ctx)
{
x509_display_error(x509_verify(ca_cert_ctx, cert));
}
printf("\n");
#if 0
print_blob("Signature", cert->signature, cert->sig_len);
bi_print("Modulus", cert->rsa_ctx->m);
bi_print("Pub Exp", cert->rsa_ctx->e);
#endif
if (ca_cert_ctx)
{
x509_print(ca_cert_ctx, cert->next);
}
}
void x509_display_error(int error)
{
switch (error)
{
case X509_NOT_OK:
printf("X509 not ok");
break;
case X509_VFY_ERROR_NO_TRUSTED_CERT:
printf("No trusted cert is available");
break;
case X509_VFY_ERROR_BAD_SIGNATURE:
printf("Bad signature");
break;
case X509_VFY_ERROR_NOT_YET_VALID:
printf("Cert is not yet valid");
break;
case X509_VFY_ERROR_EXPIRED:
printf("Cert has expired");
break;
case X509_VFY_ERROR_SELF_SIGNED:
printf("Cert is self-signed");
break;
case X509_VFY_ERROR_INVALID_CHAIN:
printf("Chain is invalid (check order of certs)");
break;
case X509_VFY_ERROR_UNSUPPORTED_DIGEST:
printf("Unsupported digest");
break;
case X509_INVALID_PRIV_KEY:
printf("Invalid private key");
break;
}
}
#endif /* CONFIG_SSL_FULL_MODE */

View File

@ -54,7 +54,6 @@
#include <stdio.h>
#include <time.h>
#include "bigint.h"
#include "crypto.h"
static bigint *bi_int_multiply(BI_CTX *ctx, bigint *bi, comp i);
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom);
@ -1366,6 +1365,7 @@ static void precompute_slide_window(BI_CTX *ctx, int window, bigint *g1)
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint on which to perform the mod power operation.
* @param biexp [in] The bigint exponent.
* @return The result of the mod exponentiation operation
* @see bi_set_mod().
*/
bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
@ -1467,6 +1467,7 @@ bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
* @param bi [in] The bigint to perform the exp/mod.
* @param bim [in] The temporary modulus.
* @param biexp [in] The bigint exponent.
* @return The result of the mod exponentiation operation
* @see bi_set_mod().
*/
bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
@ -1493,4 +1494,45 @@ bigint *bi_mod_power2(BI_CTX *ctx, bigint *bi, bigint *bim, bigint *biexp)
return biR;
}
#endif
#ifdef CONFIG_BIGINT_CRT
/**
* @Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
*
* @param ctx [in] The bigint session context.
* @param bi [in] The bigint to perform the exp/mod.
* @param dP [in] CRT's dP bigint
* @param dQ [in] CRT's dQ bigint
* @param p [in] CRT's p bigint
* @param q [in] CRT's q bigint
* @param qInv [in] CRT's qInv bigint
* @return The result of the CRT operation
*/
bigint *bi_crt(BI_CTX *ctx, bigint *bi,
bigint *dP, bigint *dQ,
bigint *p, bigint *q, bigint *qInv)
{
bigint *m1, *m2, *h;
/* Montgomery has a condition the 0 < x, y < m and these products violate
* that condition. So disable Montgomery when using CRT */
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 1;
#endif
ctx->mod_offset = BIGINT_P_OFFSET;
m1 = bi_mod_power(ctx, bi_copy(bi), dP);
ctx->mod_offset = BIGINT_Q_OFFSET;
m2 = bi_mod_power(ctx, bi, dQ);
h = bi_subtract(ctx, bi_add(ctx, m1, p), bi_copy(m2), NULL);
h = bi_multiply(ctx, h, qInv);
ctx->mod_offset = BIGINT_P_OFFSET;
h = bi_residue(ctx, h);
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 0; /* reset for any further operation */
#endif
return bi_add(ctx, m2, bi_multiply(ctx, q, h));
}
#endif
/** @} */

View File

@ -90,4 +90,11 @@ bigint *bi_square(BI_CTX *ctx, bigint *bi);
#define bi_square(A, B) bi_multiply(A, bi_copy(B), B)
#endif
#ifdef CONFIG_BIGINT_CRT
bigint *bi_crt(BI_CTX *ctx, bigint *bi,
bigint *dP, bigint *dQ,
bigint *p, bigint *q,
bigint *qInv);
#endif
#endif

View File

@ -1,285 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file crypto.h
*/
#ifndef HEADER_CRYPTO_H
#define HEADER_CRYPTO_H
#ifdef __cplusplus
extern "C" {
#endif
#include "bigint.h"
/**************************************************************************
* AES declarations
**************************************************************************/
#define AES_MAXROUNDS 14
#define AES_BLOCKSIZE 16
#define AES_IV_SIZE 16
typedef struct aes_key_st
{
uint16_t rounds;
uint16_t key_size;
uint32_t ks[(AES_MAXROUNDS+1)*8];
uint8_t iv[AES_IV_SIZE];
} AES_CTX;
typedef enum
{
AES_MODE_128,
AES_MODE_256
} AES_MODE;
void AES_set_key(AES_CTX *ctx, const uint8_t *key,
const uint8_t *iv, AES_MODE mode);
void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg,
uint8_t *out, int length);
void AES_cbc_decrypt(AES_CTX *ks, const uint8_t *in, uint8_t *out, int length);
void AES_convert_key(AES_CTX *ctx);
/**************************************************************************
* RC4 declarations
**************************************************************************/
typedef struct
{
uint8_t x, y, m[256];
} RC4_CTX;
void RC4_setup(RC4_CTX *s, const uint8_t *key, int length);
void RC4_crypt(RC4_CTX *s, const uint8_t *msg, uint8_t *data, int length);
/**************************************************************************
* SHA1 declarations
**************************************************************************/
#define SHA1_SIZE 20
/*
* This structure will hold context information for the SHA-1
* hashing operation
*/
typedef struct
{
uint32_t Intermediate_Hash[SHA1_SIZE/4]; /* Message Digest */
uint32_t Length_Low; /* Message length in bits */
uint32_t Length_High; /* Message length in bits */
uint16_t Message_Block_Index; /* Index into message block array */
uint8_t Message_Block[64]; /* 512-bit message blocks */
} SHA1_CTX;
void SHA1Init(SHA1_CTX *);
void SHA1Update(SHA1_CTX *, const uint8_t * msg, int len);
void SHA1Final(SHA1_CTX *, uint8_t *digest);
/**************************************************************************
* MD5 declarations
**************************************************************************/
/* MD5 context. */
#define MD5_SIZE 16
typedef struct
{
uint32_t state[4]; /* state (ABCD) */
uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
uint8_t buffer[64]; /* input buffer */
} MD5_CTX;
EXP_FUNC void STDCALL MD5Init(MD5_CTX *);
EXP_FUNC void STDCALL MD5Update(MD5_CTX *, const uint8_t *msg, int len);
EXP_FUNC void STDCALL MD5Final(MD5_CTX *, uint8_t *digest);
/**************************************************************************
* HMAC declarations
**************************************************************************/
void hmac_md5(const uint8_t *msg, int length, const uint8_t *key,
int key_len, uint8_t *digest);
void hmac_sha1(const uint8_t *msg, int length, const uint8_t *key,
int key_len, uint8_t *digest);
/**************************************************************************
* RNG declarations
**************************************************************************/
EXP_FUNC void STDCALL RNG_initialize(const uint8_t *seed_buf, int size);
EXP_FUNC void STDCALL RNG_terminate(void);
EXP_FUNC void STDCALL get_random(int num_rand_bytes, uint8_t *rand_data);
void get_random_NZ(int num_rand_bytes, uint8_t *rand_data);
/**************************************************************************
* RSA declarations
**************************************************************************/
typedef struct
{
bigint *m; /* modulus */
bigint *e; /* public exponent */
bigint *d; /* private exponent */
#ifdef CONFIG_BIGINT_CRT
bigint *p; /* p as in m = pq */
bigint *q; /* q as in m = pq */
bigint *dP; /* d mod (p-1) */
bigint *dQ; /* d mod (q-1) */
bigint *qInv; /* q^-1 mod p */
#endif
int num_octets;
BI_CTX *bi_ctx;
} RSA_CTX;
void RSA_priv_key_new(RSA_CTX **rsa_ctx,
const uint8_t *modulus, int mod_len,
const uint8_t *pub_exp, int pub_len,
const uint8_t *priv_exp, int priv_len
#ifdef CONFIG_BIGINT_CRT
, const uint8_t *p, int p_len,
const uint8_t *q, int q_len,
const uint8_t *dP, int dP_len,
const uint8_t *dQ, int dQ_len,
const uint8_t *qInv, int qInv_len
#endif
);
void RSA_pub_key_new(RSA_CTX **rsa_ctx,
const uint8_t *modulus, int mod_len,
const uint8_t *pub_exp, int pub_len);
void RSA_free(RSA_CTX *ctx);
int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
int is_decryption);
bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg);
#ifdef CONFIG_SSL_CERT_VERIFICATION
bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
bigint *modulus, bigint *pub_exp);
bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg);
int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
uint8_t *out_data, int is_signing);
void RSA_print(const RSA_CTX *ctx);
#endif
/**************************************************************************
* ASN1 declarations
**************************************************************************/
#define X509_OK 0
#define X509_NOT_OK -1
#define X509_VFY_ERROR_NO_TRUSTED_CERT -2
#define X509_VFY_ERROR_BAD_SIGNATURE -3
#define X509_VFY_ERROR_NOT_YET_VALID -4
#define X509_VFY_ERROR_EXPIRED -5
#define X509_VFY_ERROR_SELF_SIGNED -6
#define X509_VFY_ERROR_INVALID_CHAIN -7
#define X509_VFY_ERROR_UNSUPPORTED_DIGEST -8
#define X509_INVALID_PRIV_KEY -9
/*
* The Distinguished Name
*/
#define X509_NUM_DN_TYPES 3
#define X509_COMMON_NAME 0
#define X509_ORGANIZATION 1
#define X509_ORGANIZATIONAL_TYPE 2
#define ASN1_INTEGER 0x02
#define ASN1_BIT_STRING 0x03
#define ASN1_OCTET_STRING 0x04
#define ASN1_NULL 0x05
#define ASN1_OID 0x06
#define ASN1_PRINTABLE_STR 0x13
#define ASN1_TELETEX_STR 0x14
#define ASN1_IA5_STR 0x16
#define ASN1_UTC_TIME 0x17
#define ASN1_SEQUENCE 0x30
#define ASN1_SET 0x31
#define ASN1_IMPLICIT_TAG 0x80
#define ASN1_EXPLICIT_TAG 0xa0
#define SALT_SIZE 8
struct _x509_ctx
{
char *ca_cert_dn[X509_NUM_DN_TYPES];
char *cert_dn[X509_NUM_DN_TYPES];
#if defined(_WIN32_WCE)
long not_before;
long not_after;
#else
time_t not_before;
time_t not_after;
#endif
uint8_t *signature;
uint16_t sig_len;
uint8_t sig_type;
RSA_CTX *rsa_ctx;
bigint *digest;
struct _x509_ctx *next;
};
typedef struct _x509_ctx X509_CTX;
#ifdef CONFIG_SSL_CERT_VERIFICATION
typedef struct
{
X509_CTX *cert[CONFIG_X509_MAX_CA_CERTS];
} CA_CERT_CTX;
#endif
int asn1_get_private_key(const uint8_t *buf, int len, RSA_CTX **rsa_ctx);
int asn1_next_obj(const uint8_t *buf, int *offset, int obj_type);
int asn1_skip_obj(const uint8_t *buf, int *offset, int obj_type);
int asn1_get_int(const uint8_t *buf, int *offset, uint8_t **object);
int x509_new(const uint8_t *cert, int *len, X509_CTX **ctx);
void x509_free(X509_CTX *x509_ctx);
#ifdef CONFIG_SSL_CERT_VERIFICATION
int x509_verify(const CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert);
const uint8_t *x509_get_signature(const uint8_t *asn1_signature, int *len);
#endif
#ifdef CONFIG_SSL_FULL_MODE
void x509_print(CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert);
void x509_display_error(int error);
#endif
/**************************************************************************
* MISC declarations
**************************************************************************/
extern const char * const unsupported_str;
typedef void (*crypt_func)(void *, const uint8_t *, uint8_t *, int);
typedef void (*hmac_func)(const uint8_t *msg, int length, const uint8_t *key,
int key_len, uint8_t *digest);
int get_file(const char *filename, uint8_t **buf);
#if defined(CONFIG_SSL_FULL_MODE) || defined(WIN32) || defined(CONFIG_DEBUG)
EXP_FUNC void STDCALL print_blob(const char *format, const uint8_t *data, int size, ...);
#else
#define print_blob(...)
#endif
EXP_FUNC int STDCALL base64_decode(const char *in, int len,
uint8_t *out, int *outlen);
#ifdef __cplusplus
}
#endif
#endif

View File

@ -24,7 +24,7 @@
#include <string.h>
#include <stdarg.h>
#include <stdio.h>
#include "crypto.h"
#include "crypto_misc.h"
#ifdef CONFIG_WIN32_USE_CRYPTO_LIB
#include "wincrypt.h"
#endif

View File

@ -1,88 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* HMAC implementation - This code was originally taken from RFC2104
*/
#include <string.h>
#include "crypto.h"
/**
* Perform HMAC-MD5
*/
void hmac_md5(const uint8_t *msg, int length, const uint8_t *key,
int key_len, uint8_t *digest)
{
MD5_CTX context;
uint8_t k_ipad[64];
uint8_t k_opad[64];
int i;
memset(k_ipad, 0, sizeof k_ipad);
memset(k_opad, 0, sizeof k_opad);
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
for (i = 0; i < 64; i++)
{
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
MD5Init(&context);
MD5Update(&context, k_ipad, 64);
MD5Update(&context, msg, length);
MD5Final(&context, digest);
MD5Init(&context);
MD5Update(&context, k_opad, 64);
MD5Update(&context, digest, MD5_SIZE);
MD5Final(&context, digest);
}
/**
* Perform HMAC-SHA1
*/
void hmac_sha1(const uint8_t *msg, int length, const uint8_t *key,
int key_len, uint8_t *digest)
{
SHA1_CTX context;
uint8_t k_ipad[64];
uint8_t k_opad[64];
int i;
memset(k_ipad, 0, sizeof k_ipad);
memset(k_opad, 0, sizeof k_opad);
memcpy(k_ipad, key, key_len);
memcpy(k_opad, key, key_len);
for (i = 0; i < 64; i++)
{
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
SHA1Init(&context);
SHA1Update(&context, k_ipad, 64);
SHA1Update(&context, msg, length);
SHA1Final(&context, digest);
SHA1Init(&context);
SHA1Update(&context, k_opad, 64);
SHA1Update(&context, digest, SHA1_SIZE);
SHA1Final(&context, digest);
}

View File

@ -250,18 +250,18 @@ static int pem_decrypt(const char *where, const char *end,
goto error;
/* work out the key */
MD5Init(&md5_ctx);
MD5Update(&md5_ctx, (const uint8_t *)password, strlen(password));
MD5Update(&md5_ctx, iv, SALT_SIZE);
MD5Final(&md5_ctx, key);
MD5_Init(&md5_ctx);
MD5_Update(&md5_ctx, (const uint8_t *)password, strlen(password));
MD5_Update(&md5_ctx, iv, SALT_SIZE);
MD5_Final(key, &md5_ctx);
if (is_aes_256)
{
MD5Init(&md5_ctx);
MD5Update(&md5_ctx, key, MD5_SIZE);
MD5Update(&md5_ctx, (const uint8_t *)password, strlen(password));
MD5Update(&md5_ctx, iv, SALT_SIZE);
MD5Final(&md5_ctx, &key[MD5_SIZE]);
MD5_Init(&md5_ctx);
MD5_Update(&md5_ctx, key, MD5_SIZE);
MD5_Update(&md5_ctx, (const uint8_t *)password, strlen(password));
MD5_Update(&md5_ctx, iv, SALT_SIZE);
MD5_Final(&key[MD5_SIZE], &md5_ctx);
}
/* decrypt using the key/iv */

281
ssl/md5.c
View File

@ -1,281 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* This file implements the MD5 algorithm as defined in RFC1321
*/
#include <string.h>
#include "crypto.h"
/* Constants for MD5Transform routine.
*/
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
/* ----- static functions ----- */
static void MD5Transform(uint32_t state[4], const uint8_t block[64]);
static void Encode(uint8_t *output, uint32_t *input, uint32_t len);
static void Decode(uint32_t *output, const uint8_t *input, uint32_t len);
static const uint8_t PADDING[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* F, G, H and I are basic MD5 functions.
*/
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
Rotation is separate from addition to prevent recomputation. */
#define FF(a, b, c, d, x, s, ac) { \
(a) += F ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) { \
(a) += G ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) { \
(a) += H ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) { \
(a) += I ((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \
}
/**
* MD5 initialization - begins an MD5 operation, writing a new ctx.
*/
EXP_FUNC void STDCALL MD5Init(MD5_CTX *ctx)
{
ctx->count[0] = ctx->count[1] = 0;
/* Load magic initialization constants.
*/
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/**
* Accepts an array of octets as the next portion of the message.
*/
EXP_FUNC void STDCALL MD5Update(MD5_CTX *ctx, const uint8_t * msg, int len)
{
uint32_t x;
int i, partLen;
/* Compute number of bytes mod 64 */
x = (uint32_t)((ctx->count[0] >> 3) & 0x3F);
/* Update number of bits */
if ((ctx->count[0] += ((uint32_t)len << 3)) < ((uint32_t)len << 3))
ctx->count[1]++;
ctx->count[1] += ((uint32_t)len >> 29);
partLen = 64 - x;
/* Transform as many times as possible. */
if (len >= partLen)
{
memcpy(&ctx->buffer[x], msg, partLen);
MD5Transform(ctx->state, ctx->buffer);
for (i = partLen; i + 63 < len; i += 64)
MD5Transform(ctx->state, &msg[i]);
x = 0;
}
else
i = 0;
/* Buffer remaining input */
memcpy(&ctx->buffer[x], &msg[i], len-i);
}
/**
* Return the 128-bit message digest into the user's array
*/
EXP_FUNC void STDCALL MD5Final(MD5_CTX *ctx, uint8_t *digest)
{
uint8_t bits[8];
uint32_t x, padLen;
/* Save number of bits */
Encode(bits, ctx->count, 8);
/* Pad out to 56 mod 64.
*/
x = (uint32_t)((ctx->count[0] >> 3) & 0x3f);
padLen = (x < 56) ? (56 - x) : (120 - x);
MD5Update(ctx, PADDING, padLen);
/* Append length (before padding) */
MD5Update(ctx, bits, 8);
/* Store state in digest */
Encode(digest, ctx->state, MD5_SIZE);
}
/**
* MD5 basic transformation. Transforms state based on block.
*/
static void MD5Transform(uint32_t state[4], const uint8_t block[64])
{
uint32_t a = state[0], b = state[1], c = state[2],
d = state[3], x[MD5_SIZE];
Decode(x, block, 64);
/* Round 1 */
FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */
HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/**
* Encodes input (uint32_t) into output (uint8_t). Assumes len is
* a multiple of 4.
*/
static void Encode(uint8_t *output, uint32_t *input, uint32_t len)
{
uint32_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
{
output[j] = (uint8_t)(input[i] & 0xff);
output[j+1] = (uint8_t)((input[i] >> 8) & 0xff);
output[j+2] = (uint8_t)((input[i] >> 16) & 0xff);
output[j+3] = (uint8_t)((input[i] >> 24) & 0xff);
}
}
/**
* Decodes input (uint8_t) into output (uint32_t). Assumes len is
* a multiple of 4.
*/
static void Decode(uint32_t *output, const uint8_t *input, uint32_t len)
{
uint32_t i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((uint32_t)input[j]) | (((uint32_t)input[j+1]) << 8) |
(((uint32_t)input[j+2]) << 16) | (((uint32_t)input[j+3]) << 24);
}

View File

@ -190,16 +190,16 @@ static int p8_decrypt(const char *uni_pass, int uni_pass_len,
}
/* get the key - no IV since we are using RC4 */
SHA1Init(&sha_ctx);
SHA1Update(&sha_ctx, d, sizeof(d));
SHA1Update(&sha_ctx, p, sizeof(p));
SHA1Final(&sha_ctx, Ai);
SHA1_Init(&sha_ctx);
SHA1_Update(&sha_ctx, d, sizeof(d));
SHA1_Update(&sha_ctx, p, sizeof(p));
SHA1_Final(Ai, &sha_ctx);
for (i = 1; i < iter; i++)
{
SHA1Init(&sha_ctx);
SHA1Update(&sha_ctx, Ai, SHA1_SIZE);
SHA1Final(&sha_ctx, Ai);
SHA1_Init(&sha_ctx);
SHA1_Update(&sha_ctx, Ai, SHA1_SIZE);
SHA1_Final(Ai, &sha_ctx);
}
/* do the decryption */

View File

@ -1,79 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* An implementation of the RC4/ARC4 algorithm.
* Originally written by Christophe Devine.
*/
#include <string.h>
#include "crypto.h"
/**
* Get ready for an encrypt/decrypt operation
*/
void RC4_setup(RC4_CTX *ctx, const uint8_t *key, int length)
{
int i, j = 0, k = 0, a;
uint8_t *m;
ctx->x = 0;
ctx->y = 0;
m = ctx->m;
for (i = 0; i < 256; i++)
m[i] = i;
for (i = 0; i < 256; i++)
{
a = m[i];
j = (uint8_t)(j + a + key[k]);
m[i] = m[j];
m[j] = a;
if (++k >= length)
k = 0;
}
}
/**
* Perform the encrypt/decrypt operation (can use it for either since
* this is a stream cipher).
*/
void RC4_crypt(RC4_CTX *ctx, const uint8_t *msg, uint8_t *out, int length)
{
int i;
uint8_t *m, x, y, a, b;
out = (uint8_t *)msg;
x = ctx->x;
y = ctx->y;
m = ctx->m;
for (i = 0; i < length; i++)
{
a = m[++x];
y += a;
m[x] = b = m[y];
m[y] = a;
out[i] ^= m[(uint8_t)(a + b)];
}
ctx->x = x;
ctx->y = y;
}

View File

@ -25,11 +25,7 @@
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include "crypto.h"
#ifdef CONFIG_BIGINT_CRT
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi);
#endif
#include "crypto_misc.h"
void RSA_priv_key_new(RSA_CTX **ctx,
const uint8_t *modulus, int mod_len,
@ -180,7 +176,7 @@ int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data,
bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
{
#ifdef CONFIG_BIGINT_CRT
return bi_crt(c, bi_msg);
return bi_crt(c->bi_ctx, bi_msg, c->dP, c->dQ, c->p, c->q, c->qInv);
#else
BI_CTX *ctx = c->bi_ctx;
ctx->mod_offset = BIGINT_M_OFFSET;
@ -188,39 +184,6 @@ bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
#endif
}
#ifdef CONFIG_BIGINT_CRT
/**
* Use the Chinese Remainder Theorem to quickly perform RSA decrypts.
* This should really be in bigint.c (and was at one stage), but needs
* access to the RSA_CTX context...
*/
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi)
{
BI_CTX *ctx = rsa->bi_ctx;
bigint *m1, *m2, *h;
/* Montgomery has a condition the 0 < x, y < m and these products violate
* that condition. So disable Montgomery when using CRT */
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 1;
#endif
ctx->mod_offset = BIGINT_P_OFFSET;
m1 = bi_mod_power(ctx, bi_copy(bi), rsa->dP);
ctx->mod_offset = BIGINT_Q_OFFSET;
m2 = bi_mod_power(ctx, bi, rsa->dQ);
h = bi_subtract(ctx, bi_add(ctx, m1, rsa->p), bi_copy(m2), NULL);
h = bi_multiply(ctx, h, rsa->qInv);
ctx->mod_offset = BIGINT_P_OFFSET;
h = bi_residue(ctx, h);
#if defined(CONFIG_BIGINT_MONTGOMERY)
ctx->use_classical = 0; /* reset for any further operation */
#endif
return bi_add(ctx, m2, bi_multiply(ctx, rsa->q, h));
}
#endif
#ifdef CONFIG_SSL_FULL_MODE
/**
* Used for diagnostics.
@ -294,7 +257,6 @@ bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
int i, size;
bigint *decrypted_bi, *dat_bi;
bigint *bir = NULL;
block = (uint8_t *)malloc(sig_len);
/* decrypt */

View File

@ -1,236 +0,0 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* SHA1 implementation - as defined in FIPS PUB 180-1 published April 17, 1995.
* This code was originally taken from RFC3174
*/
#include <string.h>
#include "crypto.h"
/*
* Define the SHA1 circular left shift macro
*/
#define SHA1CircularShift(bits,word) \
(((word) << (bits)) | ((word) >> (32-(bits))))
/* ----- static functions ----- */
static void SHA1PadMessage(SHA1_CTX *ctx);
static void SHA1ProcessMessageBlock(SHA1_CTX *ctx);
/**
* Initialize the SHA1 context
*/
void SHA1Init(SHA1_CTX *ctx)
{
ctx->Length_Low = 0;
ctx->Length_High = 0;
ctx->Message_Block_Index = 0;
ctx->Intermediate_Hash[0] = 0x67452301;
ctx->Intermediate_Hash[1] = 0xEFCDAB89;
ctx->Intermediate_Hash[2] = 0x98BADCFE;
ctx->Intermediate_Hash[3] = 0x10325476;
ctx->Intermediate_Hash[4] = 0xC3D2E1F0;
}
/**
* Accepts an array of octets as the next portion of the message.
*/
void SHA1Update(SHA1_CTX *ctx, const uint8_t *msg, int len)
{
while (len--)
{
ctx->Message_Block[ctx->Message_Block_Index++] = (*msg & 0xFF);
ctx->Length_Low += 8;
if (ctx->Length_Low == 0)
ctx->Length_High++;
if (ctx->Message_Block_Index == 64)
SHA1ProcessMessageBlock(ctx);
msg++;
}
}
/**
* Return the 160-bit message digest into the user's array
*/
void SHA1Final(SHA1_CTX *ctx, uint8_t *digest)
{
int i;
SHA1PadMessage(ctx);
memset(ctx->Message_Block, 0, 64);
ctx->Length_Low = 0; /* and clear length */
ctx->Length_High = 0;
for (i = 0; i < SHA1_SIZE; i++)
{
digest[i] = ctx->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) );
}
}
/**
* Process the next 512 bits of the message stored in the array.
*/
static void SHA1ProcessMessageBlock(SHA1_CTX *ctx)
{
const uint32_t K[] = { /* Constants defined in SHA-1 */
0x5A827999,
0x6ED9EBA1,
0x8F1BBCDC,
0xCA62C1D6
};
int t; /* Loop counter */
uint32_t temp; /* Temporary word value */
uint32_t W[80]; /* Word sequence */
uint32_t A, B, C, D, E; /* Word buffers */
/*
* Initialize the first 16 words in the array W
*/
for (t = 0; t < 16; t++)
{
W[t] = ctx->Message_Block[t * 4] << 24;
W[t] |= ctx->Message_Block[t * 4 + 1] << 16;
W[t] |= ctx->Message_Block[t * 4 + 2] << 8;
W[t] |= ctx->Message_Block[t * 4 + 3];
}
for (t = 16; t < 80; t++)
{
W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = ctx->Intermediate_Hash[0];
B = ctx->Intermediate_Hash[1];
C = ctx->Intermediate_Hash[2];
D = ctx->Intermediate_Hash[3];
E = ctx->Intermediate_Hash[4];
for (t = 0; t < 20; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | ((~B) & D)) + E + W[t] + K[0];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 20; t < 40; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 40; t < 60; t++)
{
temp = SHA1CircularShift(5,A) +
((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
for (t = 60; t < 80; t++)
{
temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
E = D;
D = C;
C = SHA1CircularShift(30,B);
B = A;
A = temp;
}
ctx->Intermediate_Hash[0] += A;
ctx->Intermediate_Hash[1] += B;
ctx->Intermediate_Hash[2] += C;
ctx->Intermediate_Hash[3] += D;
ctx->Intermediate_Hash[4] += E;
ctx->Message_Block_Index = 0;
}
/*
* According to the standard, the message must be padded to an even
* 512 bits. The first padding bit must be a '1'. The last 64
* bits represent the length of the original message. All bits in
* between should be 0. This function will pad the message
* according to those rules by filling the Message_Block array
* accordingly. It will also call the ProcessMessageBlock function
* provided appropriately. When it returns, it can be assumed that
* the message digest has been computed.
*
* @param ctx [in, out] The SHA1 context
*/
static void SHA1PadMessage(SHA1_CTX *ctx)
{
/*
* Check to see if the current message block is too small to hold
* the initial padding bits and length. If so, we will pad the
* block, process it, and then continue padding into a second
* block.
*/
if (ctx->Message_Block_Index > 55)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
while(ctx->Message_Block_Index < 64)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
SHA1ProcessMessageBlock(ctx);
while (ctx->Message_Block_Index < 56)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
}
else
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
while(ctx->Message_Block_Index < 56)
{
ctx->Message_Block[ctx->Message_Block_Index++] = 0;
}
}
/*
* Store the message length as the last 8 octets
*/
ctx->Message_Block[56] = ctx->Length_High >> 24;
ctx->Message_Block[57] = ctx->Length_High >> 16;
ctx->Message_Block[58] = ctx->Length_High >> 8;
ctx->Message_Block[59] = ctx->Length_High;
ctx->Message_Block[60] = ctx->Length_Low >> 24;
ctx->Message_Block[61] = ctx->Length_Low >> 16;
ctx->Message_Block[62] = ctx->Length_Low >> 8;
ctx->Message_Block[63] = ctx->Length_Low;
SHA1ProcessMessageBlock(ctx);
}

View File

@ -56,7 +56,7 @@ extern "C" {
#endif
#include <time.h>
#include "crypto.h"
//#include "crypto.h"
/* need to predefine before ssl_lib.h gets to it */
#define SSL_SESSION_ID_SIZE 32
@ -221,10 +221,11 @@ EXP_FUNC SSL * STDCALL ssl_server_new(SSL_CTX *ssl_ctx, int client_fd);
* @param session_id [in] A 32 byte session id for session resumption. This
* can be null if no session resumption is being used or required. This option
* is not used in skeleton mode.
* @param sess_id_size The size of the session id (max 32)
* @return An SSL object reference. Use ssl_handshake_status() to check
* if a handshake succeeded.
*/
EXP_FUNC SSL * STDCALL ssl_client_new(SSL_CTX *ssl_ctx, int client_fd, const uint8_t *session_id);
EXP_FUNC SSL * STDCALL ssl_client_new(SSL_CTX *ssl_ctx, int client_fd, const uint8_t *session_id, uint8_t sess_id_size);
/**
* @brief Free any used resources on this connection.
@ -286,6 +287,15 @@ EXP_FUNC SSL * STDCALL ssl_find(SSL_CTX *ssl_ctx, int client_fd);
*/
EXP_FUNC const uint8_t * STDCALL ssl_get_session_id(const SSL *ssl);
/**
* @brief Get the session id size for a handshake.
*
* This will be 32 for a ssl server and may be something else for a ssl client.
* @param ssl [in] An SSL object reference.
* @return The number of valid bytes in a handshaking sequence
*/
EXP_FUNC uint8_t STDCALL ssl_get_session_id_size(const SSL *ssl);
/**
* @brief Return the cipher id (in the SSL form).
* @param ssl [in] An SSL object reference.

View File

@ -33,7 +33,7 @@ ifndef CONFIG_PLATFORM_WIN32
performance: ../../$(STAGE)/perf_bigint
ssltesting: ../../$(STAGE)/ssltest
LIBS=../../$(STAGE)
CFLAGS += -I../../ssl -I../../config
CFLAGS += -I../../ssl -I../../config -I../../crypto
../../$(STAGE)/perf_bigint: perf_bigint.o $(LIBS)/libaxtls.a
$(CC) $(LDFLAGS) -o $@ $^ -L $(LIBS) -laxtls

View File

@ -250,9 +250,9 @@ static int SHA1_test(BI_CTX *bi_ctx)
"A9993E364706816ABA3E25717850C26C9CD0D89D");
bi_export(bi_ctx, ct_bi, ct, SHA1_SIZE);
SHA1Init(&ctx);
SHA1Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
SHA1Final(&ctx, digest);
SHA1_Init(&ctx);
SHA1_Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
SHA1_Final(digest, &ctx);
if (memcmp(digest, ct, sizeof(ct)))
{
@ -268,9 +268,9 @@ static int SHA1_test(BI_CTX *bi_ctx)
"84983E441C3BD26EBAAE4AA1F95129E5E54670F1");
bi_export(bi_ctx, ct_bi, ct, SHA1_SIZE);
SHA1Init(&ctx);
SHA1Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
SHA1Final(&ctx, digest);
SHA1_Init(&ctx);
SHA1_Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
SHA1_Final(digest, &ctx);
if (memcmp(digest, ct, sizeof(ct)))
{
@ -304,9 +304,9 @@ static int MD5_test(BI_CTX *bi_ctx)
"900150983CD24FB0D6963F7D28E17F72");
bi_export(bi_ctx, ct_bi, ct, MD5_SIZE);
MD5Init(&ctx);
MD5Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
MD5Final(&ctx, digest);
MD5_Init(&ctx);
MD5_Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
MD5_Final(digest, &ctx);
if (memcmp(digest, ct, sizeof(ct)))
{
@ -322,9 +322,9 @@ static int MD5_test(BI_CTX *bi_ctx)
bi_ctx, "D174AB98D277D9F5A5611C2C9F419D9F");
bi_export(bi_ctx, ct_bi, ct, MD5_SIZE);
MD5Init(&ctx);
MD5Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
MD5Final(&ctx, digest);
MD5_Init(&ctx);
MD5_Update(&ctx, (const uint8_t *)in_str, strlen(in_str));
MD5_Final(digest, &ctx);
if (memcmp(digest, ct, sizeof(ct)))
{
@ -1250,7 +1250,7 @@ static int SSL_client_test(
goto client_test_exit;
}
ssl = ssl_client_new(*ssl_ctx, client_fd, session_id);
ssl = ssl_client_new(*ssl_ctx, client_fd, session_id, sizeof(session_id));
/* check the return status */
if ((ret = ssl_handshake_status(ssl)))
@ -1469,7 +1469,7 @@ static void do_basic(void)
"../ssl/test/axTLS.ca_x509.cer", NULL))
goto error;
ssl_clnt = ssl_client_new(ssl_clnt_ctx, client_fd, NULL);
ssl_clnt = ssl_client_new(ssl_clnt_ctx, client_fd, NULL, 0);
/* check the return status */
if (ssl_handshake_status(ssl_clnt))
@ -1588,7 +1588,7 @@ void do_multi_clnt(multi_t *multi_data)
goto client_test_exit;
sleep(1);
ssl = ssl_client_new(multi_data->ssl_clnt_ctx, client_fd, NULL);
ssl = ssl_client_new(multi_data->ssl_clnt_ctx, client_fd, NULL, 0);
if ((res = ssl_handshake_status(ssl)))
{

View File

@ -834,14 +834,14 @@ void finished_digest(SSL *ssl, const char *label, uint8_t *digest)
q += strlen(label);
}
MD5Init(&md5_ctx);
MD5Update(&md5_ctx, ssl->all_pkts, ssl->all_pkts_len);
MD5Final(&md5_ctx, q);
MD5_Init(&md5_ctx);
MD5_Update(&md5_ctx, ssl->all_pkts, ssl->all_pkts_len);
MD5_Final(q, &md5_ctx);
q += MD5_SIZE;
SHA1Init(&sha1_ctx);
SHA1Update(&sha1_ctx, ssl->all_pkts, ssl->all_pkts_len);
SHA1Final(&sha1_ctx, q);
SHA1_Init(&sha1_ctx);
SHA1_Update(&sha1_ctx, ssl->all_pkts, ssl->all_pkts_len);
SHA1_Final(q, &sha1_ctx);
q += SHA1_SIZE;
if (label)
@ -1532,8 +1532,8 @@ int send_certificate(SSL *ssl)
* Find if an existing session has the same session id. If so, use the
* master secret from this session for session resumption.
*/
SSL_SESS *ssl_session_update(int max_sessions,
SSL_SESS *ssl_sessions[], SSL *ssl, const uint8_t *session_id)
SSL_SESS *ssl_session_update(int max_sessions, SSL_SESS *ssl_sessions[],
SSL *ssl, const uint8_t *session_id)
{
time_t tm = time(NULL);
time_t oldest_sess_time = tm;
@ -1641,6 +1641,14 @@ EXP_FUNC const uint8_t * STDCALL ssl_get_session_id(const SSL *ssl)
return ssl->session_id;
}
/*
* Get the session id size for a handshake.
*/
EXP_FUNC uint8_t STDCALL ssl_get_session_id_size(const SSL *ssl)
{
return ssl->sess_id_size;
}
/*
* Return the cipher id (in the SSL form).
*/

View File

@ -29,6 +29,8 @@ extern "C" {
#endif
#include "version.h"
#include "crypto.h"
#include "crypto_misc.h"
/* Mutexing definitions */
#if defined(CONFIG_SSL_CTX_MUTEXING)
@ -156,6 +158,7 @@ struct _SSL
uint8_t record_type;
uint8_t chain_length;
uint8_t cipher;
uint8_t sess_id_size;
int16_t next_state;
int16_t hs_status;
uint8_t *all_pkts;

View File

@ -35,7 +35,8 @@ static int send_cert_verify(SSL *ssl);
/*
* Establish a new SSL connection to an SSL server.
*/
EXP_FUNC SSL * STDCALL ssl_client_new(SSL_CTX *ssl_ctx, int client_fd, const uint8_t *session_id)
EXP_FUNC SSL * STDCALL ssl_client_new(SSL_CTX *ssl_ctx, int client_fd, const
uint8_t *session_id, uint8_t sess_id_size)
{
SSL *ssl;
int ret;
@ -45,7 +46,14 @@ EXP_FUNC SSL * STDCALL ssl_client_new(SSL_CTX *ssl_ctx, int client_fd, const uin
if (session_id && ssl_ctx->num_sessions)
{
memcpy(ssl->session_id, session_id, SSL_SESSION_ID_SIZE);
if (sess_id_size > SSL_SESSION_ID_SIZE) /* validity check */
{
ssl_free(ssl);
return NULL;
}
memcpy(ssl->session_id, session_id, sess_id_size);
ssl->sess_id_size = sess_id_size;
SET_SSL_FLAG(SSL_SESSION_RESUME); /* just flag for later */
}
@ -176,11 +184,11 @@ static int send_client_hello(SSL *ssl)
offset = 6 + SSL_RANDOM_SIZE;
/* give session resumption a go */
if (IS_SET_SSL_FLAG(SSL_SESSION_RESUME)) /* set initially bu user */
if (IS_SET_SSL_FLAG(SSL_SESSION_RESUME)) /* set initially by user */
{
buf[offset++] = SSL_SESSION_ID_SIZE;
memcpy(&buf[offset], ssl->session_id, SSL_SESSION_ID_SIZE);
offset += SSL_SESSION_ID_SIZE;
buf[offset++] = ssl->sess_id_size;
memcpy(&buf[offset], ssl->session_id, ssl->sess_id_size);
offset += ssl->sess_id_size;
CLR_SSL_FLAG(SSL_SESSION_RESUME); /* clear so we can set later */
}
else
@ -216,7 +224,7 @@ static int process_server_hello(SSL *ssl)
int offset;
int version = (buf[4] << 4) + buf[5];
int num_sessions = ssl->ssl_ctx->num_sessions;
uint8_t session_id_length;
uint8_t sess_id_size;
int ret = SSL_OK;
/* check that we are talking to a TLSv1 server */
@ -226,17 +234,25 @@ static int process_server_hello(SSL *ssl)
/* get the server random value */
memcpy(ssl->server_random, &buf[6], SSL_RANDOM_SIZE);
offset = 6 + SSL_RANDOM_SIZE; /* skip of session id size */
session_id_length = buf[offset++];
sess_id_size = buf[offset++];
if (num_sessions)
{
ssl->session = ssl_session_update(num_sessions,
ssl->ssl_ctx->ssl_sessions, ssl, &buf[offset]);
memcpy(ssl->session->session_id, &buf[offset], session_id_length);
memcpy(ssl->session->session_id, &buf[offset], sess_id_size);
/* pad the rest with 0's */
if (sess_id_size < SSL_SESSION_ID_SIZE)
{
memset(&ssl->session->session_id[sess_id_size], 0,
SSL_SESSION_ID_SIZE-sess_id_size);
}
}
memcpy(ssl->session_id, &buf[offset], session_id_length);
offset += session_id_length;
memcpy(ssl->session_id, &buf[offset], sess_id_size);
ssl->sess_id_size = sess_id_size;
offset += sess_id_size;
/* get the real cipher we are using */
ssl->cipher = buf[++offset];

View File

@ -311,12 +311,14 @@ static int send_server_hello(SSL *ssl)
/* retrieve id from session cache */
memcpy(&buf[offset], ssl->session->session_id, SSL_SESSION_ID_SIZE);
memcpy(ssl->session_id, ssl->session->session_id, SSL_SESSION_ID_SIZE);
ssl->sess_id_size = SSL_SESSION_ID_SIZE;
}
else /* generate our own session id */
#endif
{
get_random(SSL_SESSION_ID_SIZE, &buf[offset]);
memcpy(ssl->session_id, &buf[offset], SSL_SESSION_ID_SIZE);
ssl->sess_id_size = SSL_SESSION_ID_SIZE;
#ifndef CONFIG_SSL_SKELETON_MODE
/* store id in session cache */