1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00

use a function to calculate best match clock register for SPI

TEST:

Frequency: 1000000  -> [0x009C1001] EQU: 0	 Pre: 39     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 1000000
Frequency: 4000000  -> [0x00001001] EQU: 0	 Pre: 0	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 40000000
Frequency: 2000000  -> [0x00041001] EQU: 0	 Pre: 1	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 20000000
Frequency: 1600000  -> [0x00004002] EQU: 0	 Pre: 0	     N: 4	 H: 0	 L: 2	 - Back Calculated Frequency: 16000000
Frequency: 1610000  -> [0x00004002] EQU: 0	 Pre: 0	     N: 4	 H: 0	 L: 2	 - Back Calculated Frequency: 16000000
Frequency: 1000000  -> [0x000C1001] EQU: 0	 Pre: 3	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 10000000
Frequency: 8000000  -> [0x00101001] EQU: 0	 Pre: 4	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 8000000
Frequency: 5000000  -> [0x001C1001] EQU: 0	 Pre: 7	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 5000000
Frequency: 4000000  -> [0x00241001] EQU: 0	 Pre: 9	     N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 4000000
Frequency: 2000000  -> [0x004C1001] EQU: 0	 Pre: 19	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 2000000
Frequency: 1000000  -> [0x009C1001] EQU: 0	 Pre: 39	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 1000000
Frequency: 500000   -> [0x013C1001] EQU: 0	 Pre: 79	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 500000
Frequency: 250000   -> [0x027C1001] EQU: 0	 Pre: 159	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 250000
Frequency: 125000   -> [0x04FC1001] EQU: 0	 Pre: 319	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 125000
Frequency: 6666666  -> [0x00141001] EQU: 0	 Pre: 5	 	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 6666666
Frequency: 6000000  -> [0x00181001] EQU: 0	 Pre: 6	 	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 5714285
Frequency: 3000000  -> [0x00202001] EQU: 0	 Pre: 8	 	 N: 2	 H: 0	 L: 1	 - Back Calculated Frequency: 2962962
Frequency: 100	    -> [0x7FFFF020] EQU: 0	 Pre: 8191	 N: 63	 H: 0	 L: 32	 - Back Calculated Frequency: 152
Frequency: 125000   -> [0x04FC1001] EQU: 0	 Pre: 319	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 125000
Frequency: 16457    -> [0x25F81001] EQU: 0	 Pre: 2430	 N: 1	 H: 0	 L: 1	 - Back Calculated Frequency: 16454
This commit is contained in:
Markus Sattler 2015-05-08 00:48:08 +02:00
parent 49fc1980fe
commit d7a88c3ea3

View File

@ -22,39 +22,16 @@
#include "SPI.h" #include "SPI.h"
#include "HardwareSerial.h" #include "HardwareSerial.h"
typedef struct { typedef union {
uint32_t divider; uint32_t regValue;
union { struct {
uint32_t regValue; unsigned regL :6;
struct { unsigned regH :6;
unsigned regL :6; unsigned regN :6;
unsigned regH :6; unsigned regPre :13;
unsigned regN :6; unsigned regEQU :1;
unsigned regPre :13;
unsigned regEQU :1;
};
}; };
} spiClockDiv_t; } spiClk_t;
// todo find way of calculation for the divider
static const spiClockDiv_t spiClockDiv[] = {
{ 0, (0x80000000) }, ///< [0] EQU: 1 Pre: 0 N: 0 H: 0 L: 0 Div: 0 @80Mhz = 80 MHz @160Mhz = 160 MHz
{ 2, (0x00001001) }, ///< [1] EQU: 0 Pre: 0 N: 1 H: 0 L: 1 Div: 2 @80Mhz = 40 MHz @160Mhz = 80 MHz
{ 4, (0x00041001) }, ///< [2] EQU: 0 Pre: 1 N: 1 H: 0 L: 1 Div: 4 @80Mhz = 20 MHz @160Mhz = 40 MHz
{ 6, (0x000fffc0) }, ///< [3] EQU: 0 Pre: 3 N: 63 H: 63 L: 0 Div: 6 @80Mhz = 16 MHz @160Mhz = 32 MHz
{ 8, (0x000c1001) }, ///< [4] EQU: 0 Pre: 3 N: 1 H: 0 L: 1 Div: 8 @80Mhz = 10 MHz @160Mhz = 20 MHz
{ 10, (0x00101001) }, ///< [5] EQU: 0 Pre: 4 N: 1 H: 0 L: 1 Div: 10 @80Mhz = 8 MHz @160Mhz = 16 MHz
{ 16, (0x001c1001) }, ///< [6] EQU: 0 Pre: 7 N: 1 H: 0 L: 1 Div: 16 @80Mhz = 5 MHz @160Mhz = 10 MHz
{ 20, (0x00241001) }, ///< [7] EQU: 0 Pre: 9 N: 1 H: 0 L: 1 Div: 20 @80Mhz = 4 MHz @160Mhz = 8 MHz
{ 40, (0x004c1001) }, ///< [8] EQU: 0 Pre: 19 N: 1 H: 0 L: 1 Div: 40 @80Mhz = 2 MHz @160Mhz = 4 MHz
{ 80, (0x009c1001) }, ///< [9] EQU: 0 Pre: 39 N: 1 H: 0 L: 1 Div: 80 @80Mhz = 1 MHz @160Mhz = 2 MHz
{ 160, (0x013c1001) }, ///< [10] EQU: 0 Pre: 79 N: 1 H: 0 L: 1 Div: 160 @80Mhz = 500 KHz @160Mhz = 1 MHz
{ 320, (0x027c1001) }, ///< [11] EQU: 0 Pre: 159 N: 1 H: 0 L: 1 Div: 320 @80Mhz = 250 KHz @160Mhz = 500 KHz
{ 640, (0x04fc1001) } ///< [12] EQU: 0 Pre: 319 N: 1 H: 0 L: 1 Div: 640 @80Mhz = 125 KHz @160Mhz = 250 KHz
};
static const uint8_t spiClockDiv_count = (sizeof(spiClockDiv) / sizeof(spiClockDiv_t));
SPIClass SPI; SPIClass SPI;
@ -65,15 +42,10 @@ void SPIClass::begin() {
pinMode(SCK, SPECIAL); ///< GPIO14 pinMode(SCK, SPECIAL); ///< GPIO14
pinMode(MISO, SPECIAL); ///< GPIO12 pinMode(MISO, SPECIAL); ///< GPIO12
pinMode(MOSI, SPECIAL); ///< GPIO13 pinMode(MOSI, SPECIAL); ///< GPIO13
/*
for(uint8_t i = 0; i < (spiClockDiv_count); i++) {
os_printf("[%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d\t Div: %d - %d\n", i, spiClockDiv[i].regEQU, spiClockDiv[i].regPre, spiClockDiv[i].regN, spiClockDiv[i].regH, spiClockDiv[i].regL, spiClockDiv[i].divider );
}
*/
GPMUX = 0x105; // note crash if SPI flash Frequency < 40MHz GPMUX = 0x105; // note crash if SPI flash Frequency < 40MHz
SPI1C = 0; SPI1C = 0;
setFrequency(1000000); ///< 1Mhz setFrequency(1000000); ///< 1MHz
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE; SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
SPI1U1 = (7 << SPILMOSI) | (7 << SPILMISO); SPI1U1 = (7 << SPILMOSI) | (7 << SPILMISO);
SPI1C1 = 0; SPI1C1 = 0;
@ -96,15 +68,15 @@ void SPIClass::endTransaction() {
void SPIClass::setDataMode(uint8_t dataMode) { void SPIClass::setDataMode(uint8_t dataMode) {
/** /**
SPI_MODE0 0x00 - CPOL: 0 CPHA: 0 SPI_MODE0 0x00 - CPOL: 0 CPHA: 0
SPI_MODE1 0x01 - CPOL: 0 CPHA: 1 SPI_MODE1 0x01 - CPOL: 0 CPHA: 1
SPI_MODE2 0x10 - CPOL: 1 CPHA: 0 SPI_MODE2 0x10 - CPOL: 1 CPHA: 0
SPI_MODE3 0x11 - CPOL: 1 CPHA: 1 SPI_MODE3 0x11 - CPOL: 1 CPHA: 1
*/ */
bool CPOL = (dataMode&0x10); ///< CPOL (Clock Polarity) bool CPOL = (dataMode & 0x10); ///< CPOL (Clock Polarity)
bool CPHA = (dataMode&0x01); ///< CPHA (Clock Phase) bool CPHA = (dataMode & 0x01); ///< CPHA (Clock Phase)
if(CPHA) { if(CPHA) {
SPI1U |= (SPIUSME); SPI1U |= (SPIUSME);
@ -126,17 +98,92 @@ void SPIClass::setBitOrder(uint8_t bitOrder) {
} }
} }
/**
* calculate the Frequency based on the register value
* @param reg
* @return
*/
static uint32_t ClkRegToFreq(spiClk_t * reg) {
return (F_CPU / ((reg->regPre + 1) * (reg->regN + 1)));
}
void SPIClass::setFrequency(uint32_t freq) { void SPIClass::setFrequency(uint32_t freq) {
uint8_t i = 0; static uint32_t lastSetFrequency = 0;
static uint32_t lastSetRegister = 0;
if(freq >= F_CPU) {
setClockDivider(0x80000000);
return;
}
if(lastSetFrequency == freq && lastSetRegister == SPI1CLK) {
// do nothing (speed optimization)
return;
}
const spiClk_t minFreqReg = { 0x7FFFF000 };
uint32_t minFreq = ClkRegToFreq((spiClk_t*) &minFreqReg);
if(freq < minFreq) {
freq = minFreq;
}
uint8_t calN = 1;
spiClk_t bestReg = { 0 };
int32_t bestFreq = 0;
// find the best match // find the best match
if(freq < F_CPU) { while(calN <= 0x3F) { // 0x3F max for N
for(i = 1; i < (spiClockDiv_count-1); i++) {
if(freq >= (F_CPU/spiClockDiv[i].divider)) { spiClk_t reg = { 0 };
int32_t calFreq;
int32_t calPre;
int8_t calPreVari = -2;
reg.regN = calN;
while(calPreVari++ <= 1) { // test different variants for Pre (we calculate in int so we miss the decimals, testing is the easyest and fastest way)
calPre = (((F_CPU / (reg.regN + 1)) / freq) - 1) + calPreVari;
if(calPre > 0x1FFF) {
reg.regPre = 0x1FFF; // 8191
} else if(calPre <= 0) {
reg.regPre = 0;
} else {
reg.regPre = calPre;
}
reg.regL = ((reg.regN + 1) / 2);
// reg.regH = (reg.regN - reg.regL);
// test calculation
calFreq = ClkRegToFreq(&reg);
//os_printf("-----[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d = %d\n", reg.regValue, freq, reg.regEQU, reg.regPre, reg.regN, reg.regH, reg.regL, calFreq);
if(calFreq == (int32_t) freq) {
// accurate match use it!
memcpy(&bestReg, &reg, sizeof(bestReg));
break; break;
} else if(calFreq < (int32_t) freq) {
// never go over the requested frequency
if(abs(freq - calFreq) < abs(freq - bestFreq)) {
bestFreq = calFreq;
memcpy(&bestReg, &reg, sizeof(bestReg));
}
} }
} }
if(calFreq == (int32_t) freq) {
// accurate match use it!
break;
}
calN++;
} }
setClockDivider(spiClockDiv[i].regValue);
// os_printf("[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d\t - Real Frequency: %d\n", bestReg.regValue, freq, bestReg.regEQU, bestReg.regPre, bestReg.regN, bestReg.regH, bestReg.regL, ClkRegToFreq(&bestReg));
setClockDivider(bestReg.regValue);
lastSetRegister = SPI1CLK;
lastSetFrequency = freq;
} }
void SPIClass::setClockDivider(uint32_t clockDiv) { void SPIClass::setClockDivider(uint32_t clockDiv) {
@ -144,10 +191,12 @@ void SPIClass::setClockDivider(uint32_t clockDiv) {
} }
uint8_t SPIClass::transfer(uint8_t data) { uint8_t SPIClass::transfer(uint8_t data) {
while(SPI1CMD & SPIBUSY); while(SPI1CMD & SPIBUSY)
;
SPI1W0 = data; SPI1W0 = data;
SPI1CMD |= SPIBUSY; SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY); while(SPI1CMD & SPIBUSY)
;
return (uint8_t) (SPI1W0 & 0xff); return (uint8_t) (SPI1W0 & 0xff);
} }