mirror of
https://github.com/esp8266/Arduino.git
synced 2025-07-30 16:24:09 +03:00
Initial Arduino IDE based on Processing.
This commit is contained in:
297
core/wiring.c
Executable file
297
core/wiring.c
Executable file
@ -0,0 +1,297 @@
|
||||
/*
|
||||
wiring.c - Wiring API Partial Implementation
|
||||
Part of Arduino / Wiring Lite
|
||||
|
||||
Copyright (c) 2005 David A. Mellis
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General
|
||||
Public License along with this library; if not, write to the
|
||||
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||||
Boston, MA 02111-1307 USA
|
||||
|
||||
$Id: wiring.c,v 1.7 2005/05/28 21:04:15 mellis Exp $
|
||||
*/
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <avr/signal.h>
|
||||
#include <avr/delay.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
// from Pascal's avrlib
|
||||
#include "global.h"
|
||||
//#include "a2d.h"
|
||||
#include "timer.h"
|
||||
#include "uart.h"
|
||||
|
||||
// timer.h #defines delay to be delay_us, we need to undefine
|
||||
// it so our delay can be in milliseconds.
|
||||
#undef delay
|
||||
|
||||
#include "BConstants.h"
|
||||
#include "wiring.h"
|
||||
|
||||
// Get the hardware port of the given virtual pin number. This comes from
|
||||
// the pins_*.c file for the active board configuration.
|
||||
int digitalPinToPort(int pin)
|
||||
{
|
||||
return digital_pin_to_port[pin].port;
|
||||
}
|
||||
|
||||
// Get the bit location within the hardware port of the given virtual pin.
|
||||
// This comes from the pins_*.c file for the active board configuration.
|
||||
int digitalPinToBit(int pin)
|
||||
{
|
||||
return digital_pin_to_port[pin].bit;
|
||||
}
|
||||
|
||||
int analogOutPinToPort(int pin)
|
||||
{
|
||||
return analog_out_pin_to_port[pin].port;
|
||||
}
|
||||
|
||||
int analogOutPinToBit(int pin)
|
||||
{
|
||||
return analog_out_pin_to_port[pin].bit;
|
||||
}
|
||||
|
||||
int analogInPinToBit(int pin)
|
||||
{
|
||||
return analog_in_pin_to_port[pin].bit;
|
||||
}
|
||||
|
||||
void pinMode(int pin, int mode)
|
||||
{
|
||||
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
||||
if (mode == INPUT)
|
||||
cbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin));
|
||||
else
|
||||
sbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin));
|
||||
}
|
||||
}
|
||||
|
||||
void digitalWrite(int pin, int val)
|
||||
{
|
||||
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
||||
// If the pin that support PWM output, we need to turn it off
|
||||
// before doing a digital write.
|
||||
|
||||
if (analogOutPinToBit(pin) == 1)
|
||||
timer1PWMAOff();
|
||||
|
||||
if (analogOutPinToBit(pin) == 2)
|
||||
timer1PWMBOff();
|
||||
|
||||
if (val == LOW)
|
||||
cbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin));
|
||||
else
|
||||
sbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin));
|
||||
}
|
||||
}
|
||||
|
||||
int digitalRead(int pin)
|
||||
{
|
||||
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
||||
// If the pin that support PWM output, we need to turn it off
|
||||
// before getting a digital reading.
|
||||
|
||||
if (analogOutPinToBit(pin) == 1)
|
||||
timer1PWMAOff();
|
||||
|
||||
if (analogOutPinToBit(pin) == 2)
|
||||
timer1PWMBOff();
|
||||
|
||||
return (_SFR_IO8(port_to_input[digitalPinToPort(pin)]) >> digitalPinToBit(pin)) & 0x01;
|
||||
}
|
||||
|
||||
return LOW;
|
||||
}
|
||||
|
||||
/*
|
||||
int analogRead(int pin)
|
||||
{
|
||||
unsigned long start_time = millis();
|
||||
int ch = analogInPinToBit(pin);
|
||||
volatile unsigned int low, high;
|
||||
|
||||
//return a2dConvert10bit(ch);
|
||||
|
||||
a2dSetChannel(ch);
|
||||
a2dStartConvert();
|
||||
|
||||
// wait until the conversion is complete or we
|
||||
// time out. without the timeout, this sometimes
|
||||
// becomes an infinite loop. page 245 of the atmega8
|
||||
// datasheet says the conversion should take at most
|
||||
// 260 microseconds, so if two milliseconds have ticked
|
||||
// by, something's wrong.
|
||||
//while (!a2dIsComplete() && millis() - start_time < 50);
|
||||
while (!a2dIsComplete());
|
||||
|
||||
// a2Convert10bit sometimes read ADCL and ADCH in the
|
||||
// wrong order (?) causing it to sometimes miss reading,
|
||||
// especially if called multiple times in rapid succession.
|
||||
//return a2dConvert10bit(ch);
|
||||
//return ADCW;
|
||||
low = ADCL;
|
||||
high = ADCH;
|
||||
|
||||
return (high << 8) | low;
|
||||
}
|
||||
*/
|
||||
|
||||
int analogRead(int pin)
|
||||
{
|
||||
unsigned int low, high, ch = analogInPinToBit(pin);
|
||||
|
||||
// the low 4 bits of ADMUX select the ADC channel
|
||||
ADMUX = (ADMUX & (unsigned int) 0xf0) | (ch & (unsigned int) 0x0f);
|
||||
|
||||
// without a delay, we seem to read from the wrong channel
|
||||
delay(1);
|
||||
|
||||
// start the conversion
|
||||
sbi(ADCSRA, ADSC);
|
||||
|
||||
// ADSC is cleared when the conversion finishes
|
||||
while (bit_is_set(ADCSRA, ADSC));
|
||||
|
||||
// we have to read ADCL first; doing so locks both ADCL
|
||||
// and ADCH until ADCH is read. reading ADCL second would
|
||||
// cause the results of each conversion to be discarded,
|
||||
// as ADCL and ADCH would be locked when it completed.
|
||||
low = ADCL;
|
||||
high = ADCH;
|
||||
|
||||
// combine the two bytes
|
||||
return (high << 8) | low;
|
||||
}
|
||||
|
||||
// Right now, PWM output only works on the pins with
|
||||
// hardware support. These are defined in the appropriate
|
||||
// pins_*.c file. For the rest of the pins, we default
|
||||
// to digital output.
|
||||
void analogWrite(int pin, int val)
|
||||
{
|
||||
// We need to make sure the PWM output is enabled for those pins
|
||||
// that support it, as we turn it off when digitally reading or
|
||||
// writing with them. Also, make sure the pin is in output mode
|
||||
// for consistenty with Wiring, which doesn't require a pinMode
|
||||
// call for the analog output pins.
|
||||
if (analogOutPinToBit(pin) == 1) {
|
||||
pinMode(pin, OUTPUT);
|
||||
timer1PWMAOn();
|
||||
timer1PWMASet(val);
|
||||
} else if (analogOutPinToBit(pin) == 2) {
|
||||
pinMode(pin, OUTPUT);
|
||||
timer1PWMBOn();
|
||||
timer1PWMBSet(val);
|
||||
} else if (val < 128)
|
||||
digitalWrite(pin, LOW);
|
||||
else
|
||||
digitalWrite(pin, HIGH);
|
||||
}
|
||||
|
||||
void beginSerial(int baud)
|
||||
{
|
||||
uartInit();
|
||||
uartSetBaudRate(baud);
|
||||
}
|
||||
|
||||
void serialWrite(unsigned char c)
|
||||
{
|
||||
uartSendByte(c);
|
||||
}
|
||||
|
||||
void printMode(int mode)
|
||||
{
|
||||
// do nothing, we only support serial printing, not lcd.
|
||||
}
|
||||
|
||||
void uartSendString(unsigned char *str)
|
||||
{
|
||||
while (*str)
|
||||
uartSendByte(*str++);
|
||||
}
|
||||
|
||||
void print(const char *format, ...)
|
||||
{
|
||||
char buf[256];
|
||||
va_list ap;
|
||||
|
||||
va_start(ap, format);
|
||||
vsnprintf(buf, 256, format, ap);
|
||||
va_end(ap);
|
||||
|
||||
uartSendString(buf);
|
||||
}
|
||||
|
||||
unsigned long millis()
|
||||
{
|
||||
// timer 0 increments every timer0GetPrescaler() cycles, and
|
||||
// overflows when it reaches 256. we calculate the total
|
||||
// number of clock cycles, then divide by the number of clock
|
||||
// cycles per millisecond.
|
||||
return timer0GetOverflowCount() * timer0GetPrescaler() * 256L / F_CPU * 1000L;
|
||||
}
|
||||
|
||||
void delay(unsigned long ms)
|
||||
{
|
||||
timerPause(ms);
|
||||
}
|
||||
|
||||
int main(void)
|
||||
{
|
||||
sei();
|
||||
|
||||
// timer 0 is used for millis() and delay()
|
||||
timer0Init();
|
||||
|
||||
// timer 1 is used for the hardware pwm
|
||||
timer1Init();
|
||||
timer1SetPrescaler(TIMER_CLK_DIV1);
|
||||
timer1PWMInit(8);
|
||||
|
||||
//a2dInit();
|
||||
//a2dSetPrescaler(ADC_PRESCALE_DIV128);
|
||||
|
||||
// set a2d reference to AVCC (5 volts)
|
||||
cbi(ADMUX, REFS1);
|
||||
sbi(ADMUX, REFS0);
|
||||
|
||||
// set a2d prescale factor to 128
|
||||
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
||||
// XXX: this will not work properly for other clock speeds, and
|
||||
// this code should use F_CPU to determine the prescale factor.
|
||||
sbi(ADCSRA, ADPS2);
|
||||
sbi(ADCSRA, ADPS1);
|
||||
sbi(ADCSRA, ADPS0);
|
||||
|
||||
// enable a2d conversions
|
||||
sbi(ADCSRA, ADEN);
|
||||
|
||||
setup();
|
||||
|
||||
for (;;)
|
||||
loop();
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user