1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-07-26 07:02:15 +03:00

Allman now (#6080)

* switch restyle script for CI

* remove confirmation

* restyle with allman
This commit is contained in:
Allman-astyler
2019-05-13 16:41:34 +02:00
committed by david gauchard
parent 625c3a62c4
commit 98125f8860
255 changed files with 51238 additions and 42984 deletions

View File

@ -1,481 +1,508 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#include "utility/w5100.h"
#include <string.h>
#include <stdlib.h>
#include "Dhcp.h"
#include "Arduino.h"
#include "utility/util.h"
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
_dhcpLeaseTime=0;
_dhcpT1=0;
_dhcpT2=0;
_lastCheck=0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease(){
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease(){
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
_dhcpInitialTransactionId = _dhcpTransactionId;
_dhcpUdpSocket.stop();
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0)
{
// Couldn't get a socket
return 0;
}
presend_DHCP();
int result = 0;
unsigned long startTime = millis();
while(_dhcp_state != STATE_DHCP_LEASED)
{
if(_dhcp_state == STATE_DHCP_START)
{
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_DISCOVER;
}
else if(_dhcp_state == STATE_DHCP_REREQUEST){
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
else if(_dhcp_state == STATE_DHCP_DISCOVER)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_OFFER)
{
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
}
else if(_dhcp_state == STATE_DHCP_REQUEST)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_ACK)
{
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if(_dhcpLeaseTime == 0){
_dhcpLeaseTime = DEFAULT_LEASE;
}
//calculate T1 & T2 if we didn't get it
if(_dhcpT1 == 0){
//T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if(_dhcpT2 == 0){
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpT1 << 1;
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
}
else if(messageType == DHCP_NAK)
_dhcp_state = STATE_DHCP_START;
}
if(messageType == 255)
{
messageType = 0;
_dhcp_state = STATE_DHCP_START;
}
if(result != 1 && ((millis() - startTime) > _timeout))
break;
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
return result;
}
void DhcpClass::presend_DHCP()
{
}
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
{
uint8_t buffer[32];
memset(buffer, 0, 32);
IPAddress dest_addr( 255, 255, 255, 255 ); // Broadcast address
if (-1 == _dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT))
{
// FIXME Need to return errors
return;
}
buffer[0] = DHCP_BOOTREQUEST; // op
buffer[1] = DHCP_HTYPE10MB; // htype
buffer[2] = DHCP_HLENETHERNET; // hlen
buffer[3] = DHCP_HOPS; // hops
// xid
unsigned long xid = htonl(_dhcpTransactionId);
memcpy(buffer + 4, &(xid), 4);
// 8, 9 - seconds elapsed
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
buffer[9] = (secondsElapsed & 0x00ff);
// flags
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
memcpy(buffer + 10, &(flags), 2);
// ciaddr: already zeroed
// yiaddr: already zeroed
// siaddr: already zeroed
// giaddr: already zeroed
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 28);
memset(buffer, 0, 32); // clear local buffer
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 16);
memset(buffer, 0, 32); // clear local buffer
// leave zeroed out for sname && file
// put in W5100 transmit buffer x 6 (192 bytes)
for(int i = 0; i < 6; i++) {
_dhcpUdpSocket.write(buffer, 32);
}
// OPT - Magic Cookie
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24)& 0xFF);
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16)& 0xFF);
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8)& 0xFF);
buffer[3] = (uint8_t)(MAGIC_COOKIE& 0xFF);
// OPT - message type
buffer[4] = dhcpMessageType;
buffer[5] = 0x01;
buffer[6] = messageType; //DHCP_REQUEST;
// OPT - client identifier
buffer[7] = dhcpClientIdentifier;
buffer[8] = 0x07;
buffer[9] = 0x01;
memcpy(buffer + 10, _dhcpMacAddr, 6);
// OPT - host name
buffer[16] = hostName;
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
strcpy((char*)&(buffer[18]), HOST_NAME);
printByte((char*)&(buffer[24]), _dhcpMacAddr[3]);
printByte((char*)&(buffer[26]), _dhcpMacAddr[4]);
printByte((char*)&(buffer[28]), _dhcpMacAddr[5]);
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 30);
if(messageType == DHCP_REQUEST)
{
buffer[0] = dhcpRequestedIPaddr;
buffer[1] = 0x04;
buffer[2] = _dhcpLocalIp[0];
buffer[3] = _dhcpLocalIp[1];
buffer[4] = _dhcpLocalIp[2];
buffer[5] = _dhcpLocalIp[3];
buffer[6] = dhcpServerIdentifier;
buffer[7] = 0x04;
buffer[8] = _dhcpDhcpServerIp[0];
buffer[9] = _dhcpDhcpServerIp[1];
buffer[10] = _dhcpDhcpServerIp[2];
buffer[11] = _dhcpDhcpServerIp[3];
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 12);
}
buffer[0] = dhcpParamRequest;
buffer[1] = 0x06;
buffer[2] = subnetMask;
buffer[3] = routersOnSubnet;
buffer[4] = dns;
buffer[5] = domainName;
buffer[6] = dhcpT1value;
buffer[7] = dhcpT2value;
buffer[8] = endOption;
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 9);
_dhcpUdpSocket.endPacket();
}
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
{
uint8_t type = 0;
uint8_t opt_len = 0;
unsigned long startTime = millis();
while(_dhcpUdpSocket.parsePacket() <= 0)
{
if((millis() - startTime) > responseTimeout)
{
return 255;
}
delay(50);
}
// start reading in the packet
RIP_MSG_FIXED fixedMsg;
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
if(fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT)
{
transactionId = ntohl(fixedMsg.xid);
if(memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 || (transactionId < _dhcpInitialTransactionId) || (transactionId > _dhcpTransactionId))
{
// Need to read the rest of the packet here regardless
_dhcpUdpSocket.flush();
return 0;
}
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
// Skip to the option part
// Doing this a byte at a time so we don't have to put a big buffer
// on the stack (as we don't have lots of memory lying around)
for (int i =0; i < (240 - (int)sizeof(RIP_MSG_FIXED)); i++)
{
_dhcpUdpSocket.read(); // we don't care about the returned byte
}
while (_dhcpUdpSocket.available() > 0)
{
switch (_dhcpUdpSocket.read())
{
case endOption :
break;
case padOption :
break;
case dhcpMessageType :
opt_len = _dhcpUdpSocket.read();
type = _dhcpUdpSocket.read();
break;
case subnetMask :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
break;
case routersOnSubnet :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dns :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
for (int i = 0; i < opt_len-4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dhcpServerIdentifier :
opt_len = _dhcpUdpSocket.read();
if ((_dhcpDhcpServerIp[0] == 0 && _dhcpDhcpServerIp[1] == 0 &&
_dhcpDhcpServerIp[2] == 0 && _dhcpDhcpServerIp[3] == 0) ||
IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP())
{
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
}
else
{
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
break;
}
}
}
// Need to skip to end of the packet regardless here
_dhcpUdpSocket.flush();
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease(){
//this uses a signed / unsigned trick to deal with millis overflow
unsigned long now = millis();
signed long snow = (long)now;
int rc=DHCP_CHECK_NONE;
if (_lastCheck != 0){
signed long factor;
//calc how many ms past the timeout we are
factor = snow - (long)_secTimeout;
//if on or passed the timeout, reduce the counters
if ( factor >= 0 ){
//next timeout should be now plus 1000 ms minus parts of second in factor
_secTimeout = snow + 1000 - factor % 1000;
//how many seconds late are we, minimum 1
factor = factor / 1000 +1;
//reduce the counters by that mouch
//if we can assume that the cycle time (factor) is fairly constant
//and if the remainder is less than cycle time * 2
//do it early instead of late
if(_renewInSec < factor*2 )
_renewInSec = 0;
else
_renewInSec -= factor;
if(_rebindInSec < factor*2 )
_rebindInSec = 0;
else
_rebindInSec -= factor;
}
//if we have a lease but should renew, do it
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <=0){
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
//if we have a lease or is renewing but should bind, do it
if( (_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <=0){
//this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
}
else{
_secTimeout = snow + 1000;
}
_lastCheck = now;
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);
}
IPAddress DhcpClass::getSubnetMask()
{
return IPAddress(_dhcpSubnetMask);
}
IPAddress DhcpClass::getGatewayIp()
{
return IPAddress(_dhcpGatewayIp);
}
IPAddress DhcpClass::getDhcpServerIp()
{
return IPAddress(_dhcpDhcpServerIp);
}
IPAddress DhcpClass::getDnsServerIp()
{
return IPAddress(_dhcpDnsServerIp);
}
void DhcpClass::printByte(char * buf, uint8_t n ) {
char *str = &buf[1];
buf[0]='0';
do {
unsigned long m = n;
n /= 16;
char c = m - 16 * n;
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
}
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#include "utility/w5100.h"
#include <string.h>
#include <stdlib.h>
#include "Dhcp.h"
#include "Arduino.h"
#include "utility/util.h"
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
_dhcpLeaseTime = 0;
_dhcpT1 = 0;
_dhcpT2 = 0;
_lastCheck = 0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease()
{
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease()
{
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
_dhcpInitialTransactionId = _dhcpTransactionId;
_dhcpUdpSocket.stop();
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0)
{
// Couldn't get a socket
return 0;
}
presend_DHCP();
int result = 0;
unsigned long startTime = millis();
while (_dhcp_state != STATE_DHCP_LEASED)
{
if (_dhcp_state == STATE_DHCP_START)
{
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_DISCOVER;
}
else if (_dhcp_state == STATE_DHCP_REREQUEST)
{
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
else if (_dhcp_state == STATE_DHCP_DISCOVER)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if (messageType == DHCP_OFFER)
{
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
}
else if (_dhcp_state == STATE_DHCP_REQUEST)
{
uint32_t respId;
messageType = parseDHCPResponse(_responseTimeout, respId);
if (messageType == DHCP_ACK)
{
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if (_dhcpLeaseTime == 0)
{
_dhcpLeaseTime = DEFAULT_LEASE;
}
//calculate T1 & T2 if we didn't get it
if (_dhcpT1 == 0)
{
//T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if (_dhcpT2 == 0)
{
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpT1 << 1;
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
}
else if (messageType == DHCP_NAK)
{
_dhcp_state = STATE_DHCP_START;
}
}
if (messageType == 255)
{
messageType = 0;
_dhcp_state = STATE_DHCP_START;
}
if (result != 1 && ((millis() - startTime) > _timeout))
{
break;
}
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
return result;
}
void DhcpClass::presend_DHCP()
{
}
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
{
uint8_t buffer[32];
memset(buffer, 0, 32);
IPAddress dest_addr(255, 255, 255, 255); // Broadcast address
if (-1 == _dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT))
{
// FIXME Need to return errors
return;
}
buffer[0] = DHCP_BOOTREQUEST; // op
buffer[1] = DHCP_HTYPE10MB; // htype
buffer[2] = DHCP_HLENETHERNET; // hlen
buffer[3] = DHCP_HOPS; // hops
// xid
unsigned long xid = htonl(_dhcpTransactionId);
memcpy(buffer + 4, &(xid), 4);
// 8, 9 - seconds elapsed
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
buffer[9] = (secondsElapsed & 0x00ff);
// flags
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
memcpy(buffer + 10, &(flags), 2);
// ciaddr: already zeroed
// yiaddr: already zeroed
// siaddr: already zeroed
// giaddr: already zeroed
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 28);
memset(buffer, 0, 32); // clear local buffer
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 16);
memset(buffer, 0, 32); // clear local buffer
// leave zeroed out for sname && file
// put in W5100 transmit buffer x 6 (192 bytes)
for (int i = 0; i < 6; i++)
{
_dhcpUdpSocket.write(buffer, 32);
}
// OPT - Magic Cookie
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24) & 0xFF);
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16) & 0xFF);
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8) & 0xFF);
buffer[3] = (uint8_t)(MAGIC_COOKIE & 0xFF);
// OPT - message type
buffer[4] = dhcpMessageType;
buffer[5] = 0x01;
buffer[6] = messageType; //DHCP_REQUEST;
// OPT - client identifier
buffer[7] = dhcpClientIdentifier;
buffer[8] = 0x07;
buffer[9] = 0x01;
memcpy(buffer + 10, _dhcpMacAddr, 6);
// OPT - host name
buffer[16] = hostName;
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
strcpy((char*) & (buffer[18]), HOST_NAME);
printByte((char*) & (buffer[24]), _dhcpMacAddr[3]);
printByte((char*) & (buffer[26]), _dhcpMacAddr[4]);
printByte((char*) & (buffer[28]), _dhcpMacAddr[5]);
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 30);
if (messageType == DHCP_REQUEST)
{
buffer[0] = dhcpRequestedIPaddr;
buffer[1] = 0x04;
buffer[2] = _dhcpLocalIp[0];
buffer[3] = _dhcpLocalIp[1];
buffer[4] = _dhcpLocalIp[2];
buffer[5] = _dhcpLocalIp[3];
buffer[6] = dhcpServerIdentifier;
buffer[7] = 0x04;
buffer[8] = _dhcpDhcpServerIp[0];
buffer[9] = _dhcpDhcpServerIp[1];
buffer[10] = _dhcpDhcpServerIp[2];
buffer[11] = _dhcpDhcpServerIp[3];
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 12);
}
buffer[0] = dhcpParamRequest;
buffer[1] = 0x06;
buffer[2] = subnetMask;
buffer[3] = routersOnSubnet;
buffer[4] = dns;
buffer[5] = domainName;
buffer[6] = dhcpT1value;
buffer[7] = dhcpT2value;
buffer[8] = endOption;
//put data in W5100 transmit buffer
_dhcpUdpSocket.write(buffer, 9);
_dhcpUdpSocket.endPacket();
}
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
{
uint8_t type = 0;
uint8_t opt_len = 0;
unsigned long startTime = millis();
while (_dhcpUdpSocket.parsePacket() <= 0)
{
if ((millis() - startTime) > responseTimeout)
{
return 255;
}
delay(50);
}
// start reading in the packet
RIP_MSG_FIXED fixedMsg;
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
if (fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT)
{
transactionId = ntohl(fixedMsg.xid);
if (memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 || (transactionId < _dhcpInitialTransactionId) || (transactionId > _dhcpTransactionId))
{
// Need to read the rest of the packet here regardless
_dhcpUdpSocket.flush();
return 0;
}
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
// Skip to the option part
// Doing this a byte at a time so we don't have to put a big buffer
// on the stack (as we don't have lots of memory lying around)
for (int i = 0; i < (240 - (int)sizeof(RIP_MSG_FIXED)); i++)
{
_dhcpUdpSocket.read(); // we don't care about the returned byte
}
while (_dhcpUdpSocket.available() > 0)
{
switch (_dhcpUdpSocket.read())
{
case endOption :
break;
case padOption :
break;
case dhcpMessageType :
opt_len = _dhcpUdpSocket.read();
type = _dhcpUdpSocket.read();
break;
case subnetMask :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
break;
case routersOnSubnet :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
for (int i = 0; i < opt_len - 4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dns :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
for (int i = 0; i < opt_len - 4; i++)
{
_dhcpUdpSocket.read();
}
break;
case dhcpServerIdentifier :
opt_len = _dhcpUdpSocket.read();
if ((_dhcpDhcpServerIp[0] == 0 && _dhcpDhcpServerIp[1] == 0 &&
_dhcpDhcpServerIp[2] == 0 && _dhcpDhcpServerIp[3] == 0) ||
IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP())
{
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
}
else
{
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
while (opt_len--)
{
_dhcpUdpSocket.read();
}
break;
}
}
}
// Need to skip to end of the packet regardless here
_dhcpUdpSocket.flush();
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease()
{
//this uses a signed / unsigned trick to deal with millis overflow
unsigned long now = millis();
signed long snow = (long)now;
int rc = DHCP_CHECK_NONE;
if (_lastCheck != 0)
{
signed long factor;
//calc how many ms past the timeout we are
factor = snow - (long)_secTimeout;
//if on or passed the timeout, reduce the counters
if (factor >= 0)
{
//next timeout should be now plus 1000 ms minus parts of second in factor
_secTimeout = snow + 1000 - factor % 1000;
//how many seconds late are we, minimum 1
factor = factor / 1000 + 1;
//reduce the counters by that mouch
//if we can assume that the cycle time (factor) is fairly constant
//and if the remainder is less than cycle time * 2
//do it early instead of late
if (_renewInSec < factor * 2)
{
_renewInSec = 0;
}
else
{
_renewInSec -= factor;
}
if (_rebindInSec < factor * 2)
{
_rebindInSec = 0;
}
else
{
_rebindInSec -= factor;
}
}
//if we have a lease but should renew, do it
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <= 0)
{
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
//if we have a lease or is renewing but should bind, do it
if ((_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <= 0)
{
//this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
}
else
{
_secTimeout = snow + 1000;
}
_lastCheck = now;
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);
}
IPAddress DhcpClass::getSubnetMask()
{
return IPAddress(_dhcpSubnetMask);
}
IPAddress DhcpClass::getGatewayIp()
{
return IPAddress(_dhcpGatewayIp);
}
IPAddress DhcpClass::getDhcpServerIp()
{
return IPAddress(_dhcpDhcpServerIp);
}
IPAddress DhcpClass::getDnsServerIp()
{
return IPAddress(_dhcpDnsServerIp);
}
void DhcpClass::printByte(char * buf, uint8_t n)
{
char *str = &buf[1];
buf[0] = '0';
do
{
unsigned long m = n;
n /= 16;
char c = m - 16 * n;
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
} while (n);
}

View File

@ -1,178 +1,179 @@
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#ifndef Dhcp_h
#define Dhcp_h
#include "EthernetUdp.h"
/* DHCP state machine. */
#define STATE_DHCP_START 0
#define STATE_DHCP_DISCOVER 1
#define STATE_DHCP_REQUEST 2
#define STATE_DHCP_LEASED 3
#define STATE_DHCP_REREQUEST 4
#define STATE_DHCP_RELEASE 5
#define DHCP_FLAGSBROADCAST 0x8000
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 /* from server to client */
#define DHCP_CLIENT_PORT 68 /* from client to server */
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1
#define DHCP_BOOTREPLY 2
/* DHCP message type */
#define DHCP_DISCOVER 1
#define DHCP_OFFER 2
#define DHCP_REQUEST 3
#define DHCP_DECLINE 4
#define DHCP_ACK 5
#define DHCP_NAK 6
#define DHCP_RELEASE 7
#define DHCP_INFORM 8
#define DHCP_HTYPE10MB 1
#define DHCP_HTYPE100MB 2
#define DHCP_HLENETHERNET 6
#define DHCP_HOPS 0
#define DHCP_SECS 0
#define MAGIC_COOKIE 0x63825363
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
/* timeServer = 4,
nameServer = 5,*/
dns = 6,
/*logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,*/
hostName = 12,
/*bootFileSize = 13,
meritDumpFile = 14,*/
domainName = 15,
/*swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,*/
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
/*dhcpOptionOverload = 52,*/
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
/*dhcpMsg = 56,
dhcpMaxMsgSize = 57,*/
dhcpT1value = 58,
dhcpT2value = 59,
/*dhcpClassIdentifier = 60,*/
dhcpClientIdentifier = 61,
endOption = 255
};
typedef struct __attribute__((packed)) _RIP_MSG_FIXED
{
uint8_t op;
uint8_t htype;
uint8_t hlen;
uint8_t hops;
uint32_t xid;
uint16_t secs;
uint16_t flags;
uint8_t ciaddr[4];
uint8_t yiaddr[4];
uint8_t siaddr[4];
uint8_t giaddr[4];
uint8_t chaddr[6];
}RIP_MSG_FIXED;
class DhcpClass {
private:
uint32_t _dhcpInitialTransactionId;
uint32_t _dhcpTransactionId;
uint8_t _dhcpMacAddr[6];
uint8_t _dhcpLocalIp[4];
uint8_t _dhcpSubnetMask[4];
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
signed long _renewInSec;
signed long _rebindInSec;
signed long _lastCheck;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _secTimeout;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
public:
IPAddress getLocalIp();
IPAddress getSubnetMask();
IPAddress getGatewayIp();
IPAddress getDhcpServerIp();
IPAddress getDnsServerIp();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
int checkLease();
};
#endif
// DHCP Library v0.3 - April 25, 2009
// Author: Jordan Terrell - blog.jordanterrell.com
#ifndef Dhcp_h
#define Dhcp_h
#include "EthernetUdp.h"
/* DHCP state machine. */
#define STATE_DHCP_START 0
#define STATE_DHCP_DISCOVER 1
#define STATE_DHCP_REQUEST 2
#define STATE_DHCP_LEASED 3
#define STATE_DHCP_REREQUEST 4
#define STATE_DHCP_RELEASE 5
#define DHCP_FLAGSBROADCAST 0x8000
/* UDP port numbers for DHCP */
#define DHCP_SERVER_PORT 67 /* from server to client */
#define DHCP_CLIENT_PORT 68 /* from client to server */
/* DHCP message OP code */
#define DHCP_BOOTREQUEST 1
#define DHCP_BOOTREPLY 2
/* DHCP message type */
#define DHCP_DISCOVER 1
#define DHCP_OFFER 2
#define DHCP_REQUEST 3
#define DHCP_DECLINE 4
#define DHCP_ACK 5
#define DHCP_NAK 6
#define DHCP_RELEASE 7
#define DHCP_INFORM 8
#define DHCP_HTYPE10MB 1
#define DHCP_HTYPE100MB 2
#define DHCP_HLENETHERNET 6
#define DHCP_HOPS 0
#define DHCP_SECS 0
#define MAGIC_COOKIE 0x63825363
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
padOption = 0,
subnetMask = 1,
timerOffset = 2,
routersOnSubnet = 3,
/* timeServer = 4,
nameServer = 5,*/
dns = 6,
/* logServer = 7,
cookieServer = 8,
lprServer = 9,
impressServer = 10,
resourceLocationServer = 11,*/
hostName = 12,
/* bootFileSize = 13,
meritDumpFile = 14,*/
domainName = 15,
/* swapServer = 16,
rootPath = 17,
extentionsPath = 18,
IPforwarding = 19,
nonLocalSourceRouting = 20,
policyFilter = 21,
maxDgramReasmSize = 22,
defaultIPTTL = 23,
pathMTUagingTimeout = 24,
pathMTUplateauTable = 25,
ifMTU = 26,
allSubnetsLocal = 27,
broadcastAddr = 28,
performMaskDiscovery = 29,
maskSupplier = 30,
performRouterDiscovery = 31,
routerSolicitationAddr = 32,
staticRoute = 33,
trailerEncapsulation = 34,
arpCacheTimeout = 35,
ethernetEncapsulation = 36,
tcpDefaultTTL = 37,
tcpKeepaliveInterval = 38,
tcpKeepaliveGarbage = 39,
nisDomainName = 40,
nisServers = 41,
ntpServers = 42,
vendorSpecificInfo = 43,
netBIOSnameServer = 44,
netBIOSdgramDistServer = 45,
netBIOSnodeType = 46,
netBIOSscope = 47,
xFontServer = 48,
xDisplayManager = 49,*/
dhcpRequestedIPaddr = 50,
dhcpIPaddrLeaseTime = 51,
/*dhcpOptionOverload = 52,*/
dhcpMessageType = 53,
dhcpServerIdentifier = 54,
dhcpParamRequest = 55,
/* dhcpMsg = 56,
dhcpMaxMsgSize = 57,*/
dhcpT1value = 58,
dhcpT2value = 59,
/*dhcpClassIdentifier = 60,*/
dhcpClientIdentifier = 61,
endOption = 255
};
typedef struct __attribute__((packed)) _RIP_MSG_FIXED
{
uint8_t op;
uint8_t htype;
uint8_t hlen;
uint8_t hops;
uint32_t xid;
uint16_t secs;
uint16_t flags;
uint8_t ciaddr[4];
uint8_t yiaddr[4];
uint8_t siaddr[4];
uint8_t giaddr[4];
uint8_t chaddr[6];
} RIP_MSG_FIXED;
class DhcpClass
{
private:
uint32_t _dhcpInitialTransactionId;
uint32_t _dhcpTransactionId;
uint8_t _dhcpMacAddr[6];
uint8_t _dhcpLocalIp[4];
uint8_t _dhcpSubnetMask[4];
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
signed long _renewInSec;
signed long _rebindInSec;
signed long _lastCheck;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _secTimeout;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
public:
IPAddress getLocalIp();
IPAddress getSubnetMask();
IPAddress getGatewayIp();
IPAddress getDhcpServerIp();
IPAddress getDnsServerIp();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
int checkLease();
};
#endif

View File

@ -58,9 +58,9 @@ void DNSClient::begin(const IPAddress& aDNSServer)
int DNSClient::inet_aton_ethlib(const char* aIPAddrString, IPAddress& aResult)
{
// See if we've been given a valid IP address
const char* p =aIPAddrString;
const char* p = aIPAddrString;
while (*p &&
( (*p == '.') || (*p >= '0') || (*p <= '9') ))
((*p == '.') || (*p >= '0') || (*p <= '9')))
{
p++;
}
@ -69,8 +69,8 @@ int DNSClient::inet_aton_ethlib(const char* aIPAddrString, IPAddress& aResult)
{
// It's looking promising, we haven't found any invalid characters
p = aIPAddrString;
int segment =0;
int segmentValue =0;
int segment = 0;
int segmentValue = 0;
while (*p && (segment < 4))
{
if (*p == '.')
@ -91,7 +91,7 @@ int DNSClient::inet_aton_ethlib(const char* aIPAddrString, IPAddress& aResult)
else
{
// Next digit
segmentValue = (segmentValue*10)+(*p - '0');
segmentValue = (segmentValue * 10) + (*p - '0');
}
p++;
}
@ -117,7 +117,7 @@ int DNSClient::inet_aton_ethlib(const char* aIPAddrString, IPAddress& aResult)
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
{
int ret =0;
int ret = 0;
// See if it's a numeric IP address
if (inet_aton_ethlib(aHostname, aResult))
@ -131,13 +131,13 @@ int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
{
return INVALID_SERVER;
}
// Find a socket to use
if (iUdp.begin(1024+(millis() & 0xF)) == 1)
if (iUdp.begin(1024 + (millis() & 0xF)) == 1)
{
// Try up to three times
int retries = 0;
// while ((retries < 3) && (ret <= 0))
// while ((retries < 3) && (ret <= 0))
{
// Send DNS request
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
@ -213,28 +213,28 @@ uint16_t DNSClient::BuildRequest(const char* aName)
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
// Build question
const char* start =aName;
const char* end =start;
const char* start = aName;
const char* end = start;
uint8_t len;
// Run through the name being requested
while (*end)
{
// Find out how long this section of the name is
end = start;
while (*end && (*end != '.') )
while (*end && (*end != '.'))
{
end++;
}
if (end-start > 0)
if (end - start > 0)
{
// Write out the size of this section
len = end-start;
len = end - start;
iUdp.write(&len, sizeof(len));
// And then write out the section
iUdp.write((uint8_t*)start, end-start);
iUdp.write((uint8_t*)start, end - start);
}
start = end+1;
start = end + 1;
}
// We've got to the end of the question name, so
@ -257,10 +257,12 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
uint32_t startTime = millis();
// Wait for a response packet
while(iUdp.parsePacket() <= 0)
while (iUdp.parsePacket() <= 0)
{
if((millis() - startTime) > aTimeout)
if ((millis() - startTime) > aTimeout)
{
return TIMED_OUT;
}
delay(50);
}
@ -268,8 +270,8 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// Read the UDP header
uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
// Check that it's a response from the right server and the right port
if ( (iDNSServer != iUdp.remoteIP()) ||
(iUdp.remotePort() != DNS_PORT) )
if ((iDNSServer != iUdp.remoteIP()) ||
(iUdp.remotePort() != DNS_PORT))
{
// It's not from who we expected
return INVALID_SERVER;
@ -287,8 +289,8 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
uint16_t header_flags = htons(staging);
memcpy(&staging, &header[0], sizeof(uint16_t));
// Check that it's a response to this request
if ( ( iRequestId != staging ) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) )
if ((iRequestId != staging) ||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG))
{
// Mark the entire packet as read
iUdp.flush();
@ -296,7 +298,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
}
// Check for any errors in the response (or in our request)
// although we don't do anything to get round these
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) )
if ((header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK))
{
// Mark the entire packet as read
iUdp.flush();
@ -306,7 +308,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// And make sure we've got (at least) one answer
memcpy(&staging, &header[6], sizeof(uint16_t));
uint16_t answerCount = htons(staging);
if (answerCount == 0 )
if (answerCount == 0)
{
// Mark the entire packet as read
iUdp.flush();
@ -315,7 +317,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// Skip over any questions
memcpy(&staging, &header[4], sizeof(uint16_t));
for (uint16_t i =0; i < htons(staging); i++)
for (uint16_t i = 0; i < htons(staging); i++)
{
// Skip over the name
uint8_t len;
@ -326,7 +328,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
{
// Don't need to actually read the data out for the string, just
// advance ptr to beyond it
while(len--)
while (len--)
{
iUdp.read(); // we don't care about the returned byte
}
@ -334,7 +336,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
} while (len != 0);
// Now jump over the type and class
for (int i =0; i < 4; i++)
for (int i = 0; i < 4; i++)
{
iUdp.read(); // we don't care about the returned byte
}
@ -345,7 +347,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// type A answer) and some authority and additional resource records but
// we're going to ignore all of them.
for (uint16_t i =0; i < answerCount; i++)
for (uint16_t i = 0; i < answerCount; i++)
{
// Skip the name
uint8_t len;
@ -360,7 +362,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// And it's got a length
// Don't need to actually read the data out for the string,
// just advance ptr to beyond it
while(len--)
while (len--)
{
iUdp.read(); // we don't care about the returned byte
}
@ -388,7 +390,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
// Ignore the Time-To-Live as we don't do any caching
for (int i =0; i < TTL_SIZE; i++)
for (int i = 0; i < TTL_SIZE; i++)
{
iUdp.read(); // we don't care about the returned byte
}
@ -397,7 +399,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
// Don't need header_flags anymore, so we can reuse it here
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) )
if ((htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN))
{
if (htons(header_flags) != 4)
{
@ -412,7 +414,7 @@ uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
else
{
// This isn't an answer type we're after, move onto the next one
for (uint16_t i =0; i < htons(header_flags); i++)
for (uint16_t i = 0; i < htons(header_flags); i++)
{
iUdp.read(); // we don't care about the returned byte
}

View File

@ -1,41 +1,41 @@
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#ifndef DNSClient_h
#define DNSClient_h
#include <EthernetUdp.h>
class DNSClient
{
public:
// ctor
void begin(const IPAddress& aDNSServer);
/** Convert a numeric IP address string into a four-byte IP address.
@param aIPAddrString IP address to convert
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int inet_aton_ethlib(const char *aIPAddrString, IPAddress& aResult);
/** Resolve the given hostname to an IP address.
@param aHostname Name to be resolved
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int getHostByName(const char* aHostname, IPAddress& aResult);
protected:
uint16_t BuildRequest(const char* aName);
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
IPAddress iDNSServer;
uint16_t iRequestId;
EthernetUDP iUdp;
};
#endif
// Arduino DNS client for WizNet5100-based Ethernet shield
// (c) Copyright 2009-2010 MCQN Ltd.
// Released under Apache License, version 2.0
#ifndef DNSClient_h
#define DNSClient_h
#include <EthernetUdp.h>
class DNSClient
{
public:
// ctor
void begin(const IPAddress& aDNSServer);
/** Convert a numeric IP address string into a four-byte IP address.
@param aIPAddrString IP address to convert
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int inet_aton_ethlib(const char *aIPAddrString, IPAddress& aResult);
/** Resolve the given hostname to an IP address.
@param aHostname Name to be resolved
@param aResult IPAddress structure to store the returned IP address
@result 1 if aIPAddrString was successfully converted to an IP address,
else error code
*/
int getHostByName(const char* aHostname, IPAddress& aResult);
protected:
uint16_t BuildRequest(const char* aName);
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
IPAddress iDNSServer;
uint16_t iRequestId;
EthernetUDP iUdp;
};
#endif

View File

@ -3,10 +3,14 @@
#include "Dhcp.h"
// XXX: don't make assumptions about the value of MAX_SOCK_NUM.
uint8_t EthernetClass::_state[MAX_SOCK_NUM] = {
0, 0, 0, 0 };
uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] = {
0, 0, 0, 0 };
uint8_t EthernetClass::_state[MAX_SOCK_NUM] =
{
0, 0, 0, 0
};
uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] =
{
0, 0, 0, 0
};
#ifdef ESP8266
static DhcpClass s_dhcp;
@ -15,128 +19,131 @@ static DhcpClass s_dhcp;
int EthernetClass::begin(uint8_t *mac_address)
{
#ifndef ESP8266
static DhcpClass s_dhcp;
static DhcpClass s_dhcp;
#endif
_dhcp = &s_dhcp;
_dhcp = &s_dhcp;
// Initialise the basic info
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac_address);
W5100.setIPAddress(IPAddress(0,0,0,0).raw_address());
SPI.endTransaction();
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac_address);
if(ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
// Initialise the basic info
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
W5100.setMACAddress(mac_address);
W5100.setIPAddress(IPAddress(0, 0, 0, 0).raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
}
return ret;
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns_server = local_ip;
dns_server[3] = 1;
begin(mac_address, local_ip, dns_server);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = local_ip;
gateway[3] = 1;
begin(mac_address, local_ip, dns_server, gateway);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(mac_address, local_ip, dns_server, gateway, subnet);
}
void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac);
W5100.setIPAddress(local_ip.raw_address());
W5100.setGatewayIp(gateway.raw_address());
W5100.setSubnetMask(subnet.raw_address());
SPI.endTransaction();
_dnsServerAddress = dns_server;
}
int EthernetClass::maintain(){
int rc = DHCP_CHECK_NONE;
if(_dhcp != NULL){
//we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch ( rc ){
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
// Now try to get our config info from a DHCP server
int ret = _dhcp->beginWithDHCP(mac_address);
if (ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
break;
default:
//this is actually a error, it will retry though
break;
}
}
return rc;
return ret;
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip)
{
// Assume the DNS server will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress dns_server = local_ip;
dns_server[3] = 1;
begin(mac_address, local_ip, dns_server);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server)
{
// Assume the gateway will be the machine on the same network as the local IP
// but with last octet being '1'
IPAddress gateway = local_ip;
gateway[3] = 1;
begin(mac_address, local_ip, dns_server, gateway);
}
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
{
IPAddress subnet(255, 255, 255, 0);
begin(mac_address, local_ip, dns_server, gateway, subnet);
}
void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
{
W5100.init();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setMACAddress(mac);
W5100.setIPAddress(local_ip.raw_address());
W5100.setGatewayIp(gateway.raw_address());
W5100.setSubnetMask(subnet.raw_address());
SPI.endTransaction();
_dnsServerAddress = dns_server;
}
int EthernetClass::maintain()
{
int rc = DHCP_CHECK_NONE;
if (_dhcp != NULL)
{
//we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch (rc)
{
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
SPI.endTransaction();
_dnsServerAddress = _dhcp->getDnsServerIp();
break;
default:
//this is actually a error, it will retry though
break;
}
}
return rc;
}
IPAddress EthernetClass::localIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getIPAddress(ret.raw_address());
SPI.endTransaction();
return ret;
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getIPAddress(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::subnetMask()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getSubnetMask(ret.raw_address());
SPI.endTransaction();
return ret;
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getSubnetMask(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::gatewayIP()
{
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getGatewayIp(ret.raw_address());
SPI.endTransaction();
return ret;
IPAddress ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.getGatewayIp(ret.raw_address());
SPI.endTransaction();
return ret;
}
IPAddress EthernetClass::dnsServerIP()
{
return _dnsServerAddress;
return _dnsServerAddress;
}
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_ETHERNET)

View File

@ -10,30 +10,31 @@
#define MAX_SOCK_NUM 4
class EthernetClass {
class EthernetClass
{
private:
IPAddress _dnsServerAddress;
DhcpClass* _dhcp;
IPAddress _dnsServerAddress;
DhcpClass* _dhcp;
public:
static uint8_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
// Initialise the Ethernet shield to use the provided MAC address and gain the rest of the
// configuration through DHCP.
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
int begin(uint8_t *mac_address);
void begin(uint8_t *mac_address, IPAddress local_ip);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
int maintain();
static uint8_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
// Initialise the Ethernet shield to use the provided MAC address and gain the rest of the
// configuration through DHCP.
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
int begin(uint8_t *mac_address);
void begin(uint8_t *mac_address, IPAddress local_ip);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
int maintain();
IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsServerIP();
IPAddress localIP();
IPAddress subnetMask();
IPAddress gatewayIP();
IPAddress dnsServerIP();
friend class EthernetClient;
friend class EthernetServer;
friend class EthernetClient;
friend class EthernetServer;
};
#if !defined(NO_GLOBAL_INSTANCES) && !defined(NO_GLOBAL_ETHERNET)

View File

@ -2,7 +2,7 @@
#include "utility/socket.h"
extern "C" {
#include "string.h"
#include "string.h"
}
#include "Arduino.h"
@ -14,161 +14,210 @@ extern "C" {
uint16_t EthernetClient::_srcport = 49152; //Use IANA recommended ephemeral port range 49152-65535
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM) {
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM)
{
}
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock) {
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock)
{
}
int EthernetClient::connect(const char* host, uint16_t port) {
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
int EthernetClient::connect(const char* host, uint16_t port)
{
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return connect(remote_addr, port);
} else {
return ret;
}
}
int EthernetClient::connect(IPAddress ip, uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
_sock = i;
break;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1)
{
return connect(remote_addr, port);
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
_srcport++;
if (_srcport == 0) _srcport = 49152; //Use IANA recommended ephemeral port range 49152-65535
socket(_sock, SnMR::TCP, _srcport, 0);
if (!::connect(_sock, rawIPAddress(ip), port)) {
_sock = MAX_SOCK_NUM;
return 0;
}
while (status() != SnSR::ESTABLISHED) {
delay(1);
if (status() == SnSR::CLOSED) {
_sock = MAX_SOCK_NUM;
return 0;
else
{
return ret;
}
}
return 1;
}
size_t EthernetClient::write(uint8_t b) {
return write(&b, 1);
int EthernetClient::connect(IPAddress ip, uint16_t port)
{
if (_sock != MAX_SOCK_NUM)
{
return 0;
}
for (int i = 0; i < MAX_SOCK_NUM; i++)
{
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT)
{
_sock = i;
break;
}
}
if (_sock == MAX_SOCK_NUM)
{
return 0;
}
_srcport++;
if (_srcport == 0)
{
_srcport = 49152; //Use IANA recommended ephemeral port range 49152-65535
}
socket(_sock, SnMR::TCP, _srcport, 0);
if (!::connect(_sock, rawIPAddress(ip), port))
{
_sock = MAX_SOCK_NUM;
return 0;
}
while (status() != SnSR::ESTABLISHED)
{
delay(1);
if (status() == SnSR::CLOSED)
{
_sock = MAX_SOCK_NUM;
return 0;
}
}
return 1;
}
size_t EthernetClient::write(const uint8_t *buf, size_t size) {
if (_sock == MAX_SOCK_NUM) {
setWriteError();
size_t EthernetClient::write(uint8_t b)
{
return write(&b, 1);
}
size_t EthernetClient::write(const uint8_t *buf, size_t size)
{
if (_sock == MAX_SOCK_NUM)
{
setWriteError();
return 0;
}
if (!send(_sock, buf, size))
{
setWriteError();
return 0;
}
return size;
}
int EthernetClient::available()
{
if (_sock != MAX_SOCK_NUM)
{
return recvAvailable(_sock);
}
return 0;
}
if (!send(_sock, buf, size)) {
setWriteError();
return 0;
}
return size;
}
int EthernetClient::available() {
if (_sock != MAX_SOCK_NUM)
return recvAvailable(_sock);
return 0;
int EthernetClient::read()
{
uint8_t b;
if (recv(_sock, &b, 1) > 0)
{
// recv worked
return b;
}
else
{
// No data available
return -1;
}
}
int EthernetClient::read() {
uint8_t b;
if ( recv(_sock, &b, 1) > 0 )
{
// recv worked
int EthernetClient::read(uint8_t *buf, size_t size)
{
return recv(_sock, buf, size);
}
int EthernetClient::peek()
{
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
{
return -1;
}
::peek(_sock, &b);
return b;
}
else
{
// No data available
return -1;
}
}
int EthernetClient::read(uint8_t *buf, size_t size) {
return recv(_sock, buf, size);
void EthernetClient::flush()
{
::flush(_sock);
}
int EthernetClient::peek() {
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
return -1;
::peek(_sock, &b);
return b;
void EthernetClient::stop()
{
if (_sock == MAX_SOCK_NUM)
{
return;
}
// attempt to close the connection gracefully (send a FIN to other side)
disconnect(_sock);
unsigned long start = millis();
// wait up to a second for the connection to close
uint8_t s;
do
{
s = status();
if (s == SnSR::CLOSED)
{
break; // exit the loop
}
delay(1);
} while (millis() - start < 1000);
// if it hasn't closed, close it forcefully
if (s != SnSR::CLOSED)
{
close(_sock);
}
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
void EthernetClient::flush() {
::flush(_sock);
uint8_t EthernetClient::connected()
{
if (_sock == MAX_SOCK_NUM)
{
return 0;
}
uint8_t s = status();
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
void EthernetClient::stop() {
if (_sock == MAX_SOCK_NUM)
return;
// attempt to close the connection gracefully (send a FIN to other side)
disconnect(_sock);
unsigned long start = millis();
// wait up to a second for the connection to close
uint8_t s;
do {
s = status();
if (s == SnSR::CLOSED)
break; // exit the loop
delay(1);
} while (millis() - start < 1000);
// if it hasn't closed, close it forcefully
if (s != SnSR::CLOSED) {
close(_sock);
}
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
uint8_t EthernetClient::connected() {
if (_sock == MAX_SOCK_NUM) return 0;
uint8_t s = status();
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
(s == SnSR::CLOSE_WAIT && !available()));
}
uint8_t EthernetClient::status() {
if (_sock == MAX_SOCK_NUM) return SnSR::CLOSED;
return socketStatus(_sock);
uint8_t EthernetClient::status()
{
if (_sock == MAX_SOCK_NUM)
{
return SnSR::CLOSED;
}
return socketStatus(_sock);
}
// the next function allows us to use the client returned by
// EthernetServer::available() as the condition in an if-statement.
EthernetClient::operator bool() {
return _sock != MAX_SOCK_NUM;
EthernetClient::operator bool()
{
return _sock != MAX_SOCK_NUM;
}
bool EthernetClient::operator==(const EthernetClient& rhs) {
return _sock == rhs._sock && _sock != MAX_SOCK_NUM && rhs._sock != MAX_SOCK_NUM;
bool EthernetClient::operator==(const EthernetClient& rhs)
{
return _sock == rhs._sock && _sock != MAX_SOCK_NUM && rhs._sock != MAX_SOCK_NUM;
}

View File

@ -1,41 +1,51 @@
#ifndef ethernetclient_h
#define ethernetclient_h
#include "Arduino.h"
#include "Arduino.h"
#include "Print.h"
#include "Client.h"
#include "IPAddress.h"
class EthernetClient : public Client {
class EthernetClient : public Client
{
public:
EthernetClient();
EthernetClient(uint8_t sock);
EthernetClient();
EthernetClient(uint8_t sock);
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
virtual bool operator==(const bool value) { return bool() == value; }
virtual bool operator!=(const bool value) { return bool() != value; }
virtual bool operator==(const EthernetClient&);
virtual bool operator!=(const EthernetClient& rhs) { return !this->operator==(rhs); };
uint8_t status();
virtual int connect(IPAddress ip, uint16_t port);
virtual int connect(const char *host, uint16_t port);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
virtual int available();
virtual int read();
virtual int read(uint8_t *buf, size_t size);
virtual int peek();
virtual void flush();
virtual void stop();
virtual uint8_t connected();
virtual operator bool();
virtual bool operator==(const bool value)
{
return bool() == value;
}
virtual bool operator!=(const bool value)
{
return bool() != value;
}
virtual bool operator==(const EthernetClient&);
virtual bool operator!=(const EthernetClient& rhs)
{
return !this->operator==(rhs);
};
friend class EthernetServer;
using Print::write;
friend class EthernetServer;
using Print::write;
private:
static uint16_t _srcport;
uint8_t _sock;
static uint16_t _srcport;
uint8_t _sock;
};
#endif

View File

@ -10,83 +10,96 @@ extern "C" {
EthernetServer::EthernetServer(uint16_t port)
{
_port = port;
_port = port;
}
void EthernetServer::begin()
{
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (client.status() == SnSR::CLOSED) {
socket(sock, SnMR::TCP, _port, 0);
listen(sock);
EthernetClass::_server_port[sock] = _port;
break;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
EthernetClient client(sock);
if (client.status() == SnSR::CLOSED)
{
socket(sock, SnMR::TCP, _port, 0);
listen(sock);
EthernetClass::_server_port[sock] = _port;
break;
}
}
}
}
void EthernetServer::accept()
{
int listening = 0;
int listening = 0;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port) {
if (client.status() == SnSR::LISTEN) {
listening = 1;
}
else if (client.status() == SnSR::CLOSE_WAIT && !client.available()) {
client.stop();
}
}
}
if (EthernetClass::_server_port[sock] == _port)
{
if (client.status() == SnSR::LISTEN)
{
listening = 1;
}
else if (client.status() == SnSR::CLOSE_WAIT && !client.available())
{
client.stop();
}
}
}
if (!listening) {
begin();
}
if (!listening)
{
begin();
}
}
EthernetClient EthernetServer::available()
{
accept();
accept();
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port) {
uint8_t s = client.status();
if (s == SnSR::ESTABLISHED || s == SnSR::CLOSE_WAIT) {
if (client.available()) {
// XXX: don't always pick the lowest numbered socket.
return client;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port)
{
uint8_t s = client.status();
if (s == SnSR::ESTABLISHED || s == SnSR::CLOSE_WAIT)
{
if (client.available())
{
// XXX: don't always pick the lowest numbered socket.
return client;
}
}
}
}
}
}
return EthernetClient(MAX_SOCK_NUM);
return EthernetClient(MAX_SOCK_NUM);
}
size_t EthernetServer::write(uint8_t b)
size_t EthernetServer::write(uint8_t b)
{
return write(&b, 1);
return write(&b, 1);
}
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
accept();
size_t n = 0;
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
EthernetClient client(sock);
accept();
if (EthernetClass::_server_port[sock] == _port &&
client.status() == SnSR::ESTABLISHED) {
n += client.write(buffer, size);
for (int sock = 0; sock < MAX_SOCK_NUM; sock++)
{
EthernetClient client(sock);
if (EthernetClass::_server_port[sock] == _port &&
client.status() == SnSR::ESTABLISHED)
{
n += client.write(buffer, size);
}
}
}
return n;
return n;
}

View File

@ -5,18 +5,19 @@
class EthernetClient;
class EthernetServer :
public Server {
class EthernetServer :
public Server
{
private:
uint16_t _port;
void accept();
uint16_t _port;
void accept();
public:
EthernetServer(uint16_t);
EthernetClient available();
virtual void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
using Print::write;
EthernetServer(uint16_t);
EthernetClient available();
virtual void begin();
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *buf, size_t size);
using Print::write;
};
#endif

View File

@ -1,30 +1,30 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
This version only offers minimal wrapping of socket.c/socket.h
Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
MIT License:
Copyright (c) 2008 Bjoern Hartmann
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
bjoern@cs.stanford.edu 12/30/2008
*/
#include "utility/w5100.h"
#include "utility/socket.h"
@ -36,188 +36,203 @@
EthernetUDP::EthernetUDP() : _sock(MAX_SOCK_NUM) {}
/* Start EthernetUDP socket, listening at local port PORT */
uint8_t EthernetUDP::begin(uint16_t port) {
if (_sock != MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT) {
_sock = i;
break;
uint8_t EthernetUDP::begin(uint16_t port)
{
if (_sock != MAX_SOCK_NUM)
{
return 0;
}
}
if (_sock == MAX_SOCK_NUM)
return 0;
for (int i = 0; i < MAX_SOCK_NUM; i++)
{
uint8_t s = socketStatus(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT)
{
_sock = i;
break;
}
}
_port = port;
_remaining = 0;
socket(_sock, SnMR::UDP, _port, 0);
if (_sock == MAX_SOCK_NUM)
{
return 0;
}
return 1;
_port = port;
_remaining = 0;
socket(_sock, SnMR::UDP, _port, 0);
return 1;
}
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available() {
return _remaining;
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available()
{
return _remaining;
}
/* Release any resources being used by this EthernetUDP instance */
void EthernetUDP::stop()
{
if (_sock == MAX_SOCK_NUM)
return;
if (_sock == MAX_SOCK_NUM)
{
return;
}
close(_sock);
close(_sock);
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
EthernetClass::_server_port[_sock] = 0;
_sock = MAX_SOCK_NUM;
}
int EthernetUDP::beginPacket(const char *host, uint16_t port)
{
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
// Look up the host first
int ret = 0;
DNSClient dns;
IPAddress remote_addr;
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1) {
return beginPacket(remote_addr, port);
} else {
return ret;
}
dns.begin(Ethernet.dnsServerIP());
ret = dns.getHostByName(host, remote_addr);
if (ret == 1)
{
return beginPacket(remote_addr, port);
}
else
{
return ret;
}
}
int EthernetUDP::beginPacket(IPAddress ip, uint16_t port)
{
_offset = 0;
return startUDP(_sock, rawIPAddress(ip), port);
_offset = 0;
return startUDP(_sock, rawIPAddress(ip), port);
}
int EthernetUDP::endPacket()
{
return sendUDP(_sock);
return sendUDP(_sock);
}
size_t EthernetUDP::write(uint8_t byte)
{
return write(&byte, 1);
return write(&byte, 1);
}
size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
{
uint16_t bytes_written = bufferData(_sock, _offset, buffer, size);
_offset += bytes_written;
return bytes_written;
uint16_t bytes_written = bufferData(_sock, _offset, buffer, size);
_offset += bytes_written;
return bytes_written;
}
int EthernetUDP::parsePacket()
{
// discard any remaining bytes in the last packet
clear_remaining();
// discard any remaining bytes in the last packet
clear_remaining();
if (recvAvailable(_sock) > 0)
{
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret =0;
//read 8 header bytes and get IP and port from it
ret = recv(_sock,tmpBuf,8);
if (ret > 0)
if (recvAvailable(_sock) > 0)
{
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret = 0;
//read 8 header bytes and get IP and port from it
ret = recv(_sock, tmpBuf, 8);
if (ret > 0)
{
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
// When we get here, any remaining bytes are the data
ret = _remaining;
// When we get here, any remaining bytes are the data
ret = _remaining;
}
return ret;
}
return ret;
}
// There aren't any packets available
return 0;
// There aren't any packets available
return 0;
}
int EthernetUDP::read()
{
uint8_t byte;
uint8_t byte;
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
{
// We read things without any problems
_remaining--;
return byte;
}
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
{
// We read things without any problems
_remaining--;
return byte;
}
// If we get here, there's no data available
return -1;
// If we get here, there's no data available
return -1;
}
int EthernetUDP::read(unsigned char* buffer, size_t len)
{
if (_remaining > 0)
{
int got;
if (_remaining <= len)
if (_remaining > 0)
{
// data should fit in the buffer
got = recv(_sock, buffer, _remaining);
}
else
{
// too much data for the buffer,
// grab as much as will fit
got = recv(_sock, buffer, len);
int got;
if (_remaining <= len)
{
// data should fit in the buffer
got = recv(_sock, buffer, _remaining);
}
else
{
// too much data for the buffer,
// grab as much as will fit
got = recv(_sock, buffer, len);
}
if (got > 0)
{
_remaining -= got;
return got;
}
}
if (got > 0)
{
_remaining -= got;
return got;
}
}
// If we get here, there's no data available or recv failed
return -1;
// If we get here, there's no data available or recv failed
return -1;
}
int EthernetUDP::peek()
{
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (!_remaining)
return -1;
::peek(_sock, &b);
return b;
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (!_remaining)
{
return -1;
}
::peek(_sock, &b);
return b;
}
void EthernetUDP::clear_remaining()
{
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5100 always behaves :)
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5100 always behaves :)
while (_remaining)
{
read();
}
while (_remaining)
{
read();
}
}
void EthernetUDP::flush()
{
endPacket();
endPacket();
}

View File

@ -1,38 +1,38 @@
/*
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
* This version only offers minimal wrapping of socket.c/socket.h
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
This version only offers minimal wrapping of socket.c/socket.h
Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
1) UDP does not guarantee the order in which assembled UDP packets are received. This
might not happen often in practice, but in larger network topologies, a UDP
packet can be received out of sequence.
2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
aware of it. Again, this may not be a concern in practice on small local networks.
For more information, see http://www.cafeaulait.org/course/week12/35.html
MIT License:
Copyright (c) 2008 Bjoern Hartmann
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef ethernetudp_h
#define ethernetudp_h
@ -41,62 +41,72 @@
#define UDP_TX_PACKET_MAX_SIZE 24
class EthernetUDP : public UDP {
class EthernetUDP : public UDP
{
private:
uint8_t _sock; // socket ID for Wiz5100
uint16_t _port; // local port to listen on
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
uint8_t _sock; // socket ID for Wiz5100
uint16_t _port; // local port to listen on
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
protected:
void clear_remaining();
void clear_remaining();
public:
EthernetUDP(); // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
EthernetUDP(); // Constructor
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop(); // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
using Print::write;
// Sending UDP packets
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port);
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port);
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket();
// Write a single byte into the packet
virtual size_t write(uint8_t);
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size);
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() { return _remoteIP; };
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() { return _remotePort; };
using Print::write;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket();
// Number of bytes remaining in the current packet
virtual int available();
// Read a single byte from the current packet
virtual int read();
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len);
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len)
{
return read((unsigned char*)buffer, len);
};
// Return the next byte from the current packet without moving on to the next byte
virtual int peek();
virtual void flush(); // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP()
{
return _remoteIP;
};
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort()
{
return _remotePort;
};
};
#endif

View File

@ -4,467 +4,488 @@
static uint16_t local_port;
/**
* @brief This Socket function initialize the channel in perticular mode, and set the port and wait for W5100 done it.
* @return 1 for success else 0.
*/
@brief This Socket function initialize the channel in perticular mode, and set the port and wait for W5100 done it.
@return 1 for success else 0.
*/
uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag)
{
if ((protocol == SnMR::TCP) || (protocol == SnMR::UDP) || (protocol == SnMR::IPRAW) || (protocol == SnMR::MACRAW) || (protocol == SnMR::PPPOE))
{
close(s);
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnMR(s, protocol | flag);
if (port != 0) {
W5100.writeSnPORT(s, port);
}
else {
local_port++; // if don't set the source port, set local_port number.
W5100.writeSnPORT(s, local_port);
if ((protocol == SnMR::TCP) || (protocol == SnMR::UDP) || (protocol == SnMR::IPRAW) || (protocol == SnMR::MACRAW) || (protocol == SnMR::PPPOE))
{
close(s);
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnMR(s, protocol | flag);
if (port != 0)
{
W5100.writeSnPORT(s, port);
}
else
{
local_port++; // if don't set the source port, set local_port number.
W5100.writeSnPORT(s, local_port);
}
W5100.execCmdSn(s, Sock_OPEN);
SPI.endTransaction();
return 1;
}
W5100.execCmdSn(s, Sock_OPEN);
SPI.endTransaction();
return 1;
}
return 0;
return 0;
}
uint8_t socketStatus(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint8_t status = W5100.readSnSR(s);
SPI.endTransaction();
return status;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
uint8_t status = W5100.readSnSR(s);
SPI.endTransaction();
return status;
}
/**
* @brief This function close the socket and parameter is "s" which represent the socket number
*/
@brief This function close the socket and parameter is "s" which represent the socket number
*/
void close(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_CLOSE);
W5100.writeSnIR(s, 0xFF);
SPI.endTransaction();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_CLOSE);
W5100.writeSnIR(s, 0xFF);
SPI.endTransaction();
}
/**
* @brief This function established the connection for the channel in passive (server) mode. This function waits for the request from the peer.
* @return 1 for success else 0.
*/
@brief This function established the connection for the channel in passive (server) mode. This function waits for the request from the peer.
@return 1 for success else 0.
*/
uint8_t listen(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (W5100.readSnSR(s) != SnSR::INIT) {
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (W5100.readSnSR(s) != SnSR::INIT)
{
SPI.endTransaction();
return 0;
}
W5100.execCmdSn(s, Sock_LISTEN);
SPI.endTransaction();
return 0;
}
W5100.execCmdSn(s, Sock_LISTEN);
SPI.endTransaction();
return 1;
return 1;
}
/**
* @brief This function established the connection for the channel in Active (client) mode.
* This function waits for the untill the connection is established.
*
* @return 1 for success else 0.
*/
@brief This function established the connection for the channel in Active (client) mode.
This function waits for the untill the connection is established.
@return 1 for success else 0.
*/
uint8_t connect(SOCKET s, const uint8_t * addr, uint16_t port)
{
if
if
(
((addr[0] == 0xFF) && (addr[1] == 0xFF) && (addr[2] == 0xFF) && (addr[3] == 0xFF)) ||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
(port == 0x00)
)
return 0;
((addr[0] == 0xFF) && (addr[1] == 0xFF) && (addr[2] == 0xFF) && (addr[3] == 0xFF)) ||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
(port == 0x00)
)
{
return 0;
}
// set destination IP
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
W5100.execCmdSn(s, Sock_CONNECT);
SPI.endTransaction();
// set destination IP
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
W5100.execCmdSn(s, Sock_CONNECT);
SPI.endTransaction();
return 1;
return 1;
}
/**
* @brief This function used for disconnect the socket and parameter is "s" which represent the socket number
* @return 1 for success else 0.
*/
@brief This function used for disconnect the socket and parameter is "s" which represent the socket number
@return 1 for success else 0.
*/
void disconnect(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_DISCON);
SPI.endTransaction();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_DISCON);
SPI.endTransaction();
}
/**
* @brief This function used to send the data in TCP mode
* @return 1 for success else 0.
*/
@brief This function used to send the data in TCP mode
@return 1 for success else 0.
*/
uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint8_t status=0;
uint16_t ret=0;
uint16_t freesize=0;
uint8_t status = 0;
uint16_t ret = 0;
uint16_t freesize = 0;
if (len > W5100.SSIZE)
ret = W5100.SSIZE; // check size not to exceed MAX size.
else
ret = len;
// if freebuf is available, start.
do
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
freesize = W5100.getTXFreeSize(s);
status = W5100.readSnSR(s);
SPI.endTransaction();
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT))
if (len > W5100.SSIZE)
{
ret = 0;
break;
}
yield();
}
while (freesize < ret);
// copy data
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
/* m2008.01 [bj] : reduce code */
if ( W5100.readSnSR(s) == SnSR::CLOSED )
{
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in TCP mode.
* It continues to wait for data as much as the application wants to receive.
*
* @return received data size for success else -1.
*/
int16_t recv(SOCKET s, uint8_t *buf, int16_t len)
{
// Check how much data is available
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
if ( ret == 0 )
{
// No data available.
uint8_t status = W5100.readSnSR(s);
if ( status == SnSR::LISTEN || status == SnSR::CLOSED || status == SnSR::CLOSE_WAIT )
{
// The remote end has closed its side of the connection, so this is the eof state
ret = 0;
ret = W5100.SSIZE; // check size not to exceed MAX size.
}
else
{
// The connection is still up, but there's no data waiting to be read
ret = -1;
ret = len;
}
}
else if (ret > len)
{
ret = len;
}
if ( ret > 0 )
{
W5100.recv_data_processing(s, buf, ret);
W5100.execCmdSn(s, Sock_RECV);
}
SPI.endTransaction();
return ret;
// if freebuf is available, start.
do
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
freesize = W5100.getTXFreeSize(s);
status = W5100.readSnSR(s);
SPI.endTransaction();
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT))
{
ret = 0;
break;
}
yield();
} while (freesize < ret);
// copy data
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ((W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK)
{
/* m2008.01 [bj] : reduce code */
if (W5100.readSnSR(s) == SnSR::CLOSED)
{
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
/**
@brief This function is an application I/F function which is used to receive the data in TCP mode.
It continues to wait for data as much as the application wants to receive.
@return received data size for success else -1.
*/
int16_t recv(SOCKET s, uint8_t *buf, int16_t len)
{
// Check how much data is available
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
if (ret == 0)
{
// No data available.
uint8_t status = W5100.readSnSR(s);
if (status == SnSR::LISTEN || status == SnSR::CLOSED || status == SnSR::CLOSE_WAIT)
{
// The remote end has closed its side of the connection, so this is the eof state
ret = 0;
}
else
{
// The connection is still up, but there's no data waiting to be read
ret = -1;
}
}
else if (ret > len)
{
ret = len;
}
if (ret > 0)
{
W5100.recv_data_processing(s, buf, ret);
W5100.execCmdSn(s, Sock_RECV);
}
SPI.endTransaction();
return ret;
}
int16_t recvAvailable(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
SPI.endTransaction();
return ret;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
int16_t ret = W5100.getRXReceivedSize(s);
SPI.endTransaction();
return ret;
}
/**
* @brief Returns the first byte in the receive queue (no checking)
*
* @return
*/
@brief Returns the first byte in the receive queue (no checking)
@return
*/
uint16_t peek(SOCKET s, uint8_t *buf)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.recv_data_processing(s, buf, 1, 1);
SPI.endTransaction();
return 1;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.recv_data_processing(s, buf, 1, 1);
SPI.endTransaction();
return 1;
}
/**
* @brief This function is an application I/F function which is used to send the data for other then TCP mode.
* Unlike TCP transmission, The peer's destination address and the port is needed.
*
* @return This function return send data size for success else -1.
*/
@brief This function is an application I/F function which is used to send the data for other then TCP mode.
Unlike TCP transmission, The peer's destination address and the port is needed.
@return This function return send data size for success else -1.
*/
uint16_t sendto(SOCKET s, const uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t port)
{
uint16_t ret=0;
uint16_t ret = 0;
if (len > W5100.SSIZE) ret = W5100.SSIZE; // check size not to exceed MAX size.
else ret = len;
if (len > W5100.SSIZE)
{
ret = W5100.SSIZE; // check size not to exceed MAX size.
}
else
{
ret = len;
}
if
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00)) ||(ret == 0)
)
{
/* +2008.01 [bj] : added return value */
ret = 0;
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00)) || (ret == 0)
)
{
/* +2008.01 [bj] : added return value */
ret = 0;
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
// copy data
// copy data
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ((W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK)
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT)); /* clear SEND_OK & TIMEOUT */
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
}
return ret;
}
/**
@brief This function is an application I/F function which is used to receive the data in other then
TCP mode. This function is used to receive UDP, IP_RAW and MAC_RAW mode, and handle the header as well.
@return This function return received data size for success else -1.
*/
uint16_t recvfrom(SOCKET s, uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t *port)
{
uint8_t head[8];
uint16_t data_len = 0;
uint16_t ptr = 0;
if (len > 0)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
ptr = W5100.readSnRX_RD(s);
switch (W5100.readSnMR(s) & 0x07)
{
case SnMR::UDP :
W5100.read_data(s, ptr, head, 0x08);
ptr += 8;
// read peer's IP address, port number.
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
*port = head[4];
*port = (*port << 8) + head[5];
data_len = head[6];
data_len = (data_len << 8) + head[7];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::IPRAW :
W5100.read_data(s, ptr, head, 0x06);
ptr += 6;
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
data_len = head[4];
data_len = (data_len << 8) + head[5];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::MACRAW:
W5100.read_data(s, ptr, head, 2);
ptr += 2;
data_len = head[0];
data_len = (data_len << 8) + head[1] - 2;
W5100.read_data(s, ptr, buf, data_len);
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
default :
break;
}
W5100.execCmdSn(s, Sock_RECV);
SPI.endTransaction();
}
return data_len;
}
/**
@brief Wait for buffered transmission to complete.
*/
void flush(SOCKET s)
{
// TODO
(void) s;
}
uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint16_t ret = 0;
if (len > W5100.SSIZE)
{
ret = W5100.SSIZE; // check size not to exceed MAX size.
}
else
{
ret = len;
}
if (ret == 0)
{
return 0;
}
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
while ((W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK)
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT)); /* clear SEND_OK & TIMEOUT */
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* in case of igmp, if send fails, then socket closed */
/* if you want change, remove this code. */
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len)
{
uint16_t ret = 0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (len > W5100.getTXFreeSize(s))
{
ret = W5100.getTXFreeSize(s); // check size not to exceed MAX size.
}
else
{
ret = len;
}
W5100.send_data_processing_offset(s, offset, buf, ret);
SPI.endTransaction();
return ret;
}
int startUDP(SOCKET s, const uint8_t* addr, uint16_t port)
{
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00))
)
{
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
SPI.endTransaction();
return 1;
}
}
int sendUDP(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ((W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK)
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT));
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
}
return ret;
}
/**
* @brief This function is an application I/F function which is used to receive the data in other then
* TCP mode. This function is used to receive UDP, IP_RAW and MAC_RAW mode, and handle the header as well.
*
* @return This function return received data size for success else -1.
*/
uint16_t recvfrom(SOCKET s, uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t *port)
{
uint8_t head[8];
uint16_t data_len=0;
uint16_t ptr=0;
if ( len > 0 )
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
ptr = W5100.readSnRX_RD(s);
switch (W5100.readSnMR(s) & 0x07)
{
case SnMR::UDP :
W5100.read_data(s, ptr, head, 0x08);
ptr += 8;
// read peer's IP address, port number.
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
*port = head[4];
*port = (*port << 8) + head[5];
data_len = head[6];
data_len = (data_len << 8) + head[7];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::IPRAW :
W5100.read_data(s, ptr, head, 0x06);
ptr += 6;
addr[0] = head[0];
addr[1] = head[1];
addr[2] = head[2];
addr[3] = head[3];
data_len = head[4];
data_len = (data_len << 8) + head[5];
W5100.read_data(s, ptr, buf, data_len); // data copy.
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
case SnMR::MACRAW:
W5100.read_data(s, ptr, head, 2);
ptr+=2;
data_len = head[0];
data_len = (data_len<<8) + head[1] - 2;
W5100.read_data(s, ptr, buf, data_len);
ptr += data_len;
W5100.writeSnRX_RD(s, ptr);
break;
default :
break;
}
W5100.execCmdSn(s, Sock_RECV);
SPI.endTransaction();
}
return data_len;
}
/**
* @brief Wait for buffered transmission to complete.
*/
void flush(SOCKET s) {
// TODO
(void) s;
}
uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len)
{
uint16_t ret=0;
if (len > W5100.SSIZE)
ret = W5100.SSIZE; // check size not to exceed MAX size.
else
ret = len;
if (ret == 0)
return 0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.send_data_processing(s, (uint8_t *)buf, ret);
W5100.execCmdSn(s, Sock_SEND);
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* in case of igmp, if send fails, then socket closed */
/* if you want change, remove this code. */
SPI.endTransaction();
close(s);
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
return ret;
}
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len)
{
uint16_t ret =0;
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
if (len > W5100.getTXFreeSize(s))
{
ret = W5100.getTXFreeSize(s); // check size not to exceed MAX size.
}
else
{
ret = len;
}
W5100.send_data_processing_offset(s, offset, buf, ret);
SPI.endTransaction();
return ret;
}
int startUDP(SOCKET s, const uint8_t* addr, uint16_t port)
{
if
(
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
((port == 0x00))
)
{
return 0;
}
else
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.writeSnDIPR(s, addr);
W5100.writeSnDPORT(s, port);
SPI.endTransaction();
/* Sent ok */
return 1;
}
}
int sendUDP(SOCKET s)
{
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
W5100.execCmdSn(s, Sock_SEND);
/* +2008.01 bj */
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
{
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
{
/* +2008.01 [bj]: clear interrupt */
W5100.writeSnIR(s, (SnIR::SEND_OK|SnIR::TIMEOUT));
SPI.endTransaction();
return 0;
}
SPI.endTransaction();
yield();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
}
/* +2008.01 bj */
W5100.writeSnIR(s, SnIR::SEND_OK);
SPI.endTransaction();
/* Sent ok */
return 1;
}

View File

@ -22,21 +22,21 @@ extern uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len);
// Functions to allow buffered UDP send (i.e. where the UDP datagram is built up over a
// number of calls before being sent
/*
@brief This function sets up a UDP datagram, the data for which will be provided by one
or more calls to bufferData and then finally sent with sendUDP.
@return 1 if the datagram was successfully set up, or 0 if there was an error
@brief This function sets up a UDP datagram, the data for which will be provided by one
or more calls to bufferData and then finally sent with sendUDP.
@return 1 if the datagram was successfully set up, or 0 if there was an error
*/
extern int startUDP(SOCKET s, const uint8_t* addr, uint16_t port);
/*
@brief This function copies up to len bytes of data from buf into a UDP datagram to be
sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
@return Number of bytes successfully buffered
@brief This function copies up to len bytes of data from buf into a UDP datagram to be
sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
@return Number of bytes successfully buffered
*/
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len);
/*
@brief Send a UDP datagram built up from a sequence of startUDP followed by one or more
calls to bufferData.
@return 1 if the datagram was successfully sent, or 0 if there was an error
@brief Send a UDP datagram built up from a sequence of startUDP followed by one or more
calls to bufferData.
@return 1 if the datagram was successfully sent, or 0 if there was an error
*/
int sendUDP(SOCKET s);

View File

@ -1,11 +1,11 @@
/*
* Copyright (c) 2010 by Arduino LLC. All rights reserved.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
Copyright (c) 2010 by Arduino LLC. All rights reserved.
This file is free software; you can redistribute it and/or modify
it under the terms of either the GNU General Public License version 2
or the GNU Lesser General Public License version 2.1, both as
published by the Free Software Foundation.
*/
#include <stdio.h>
#include <string.h>
@ -24,202 +24,211 @@ W5100Class W5100;
void W5100Class::init(void)
{
delay(300);
delay(300);
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
SPI.begin();
initSS();
SPI.begin();
initSS();
#else
SPI.begin(SPI_CS);
// Set clock to 4Mhz (W5100 should support up to about 14Mhz)
SPI.setClockDivider(SPI_CS, 21);
SPI.setDataMode(SPI_CS, SPI_MODE0);
SPI.begin(SPI_CS);
// Set clock to 4Mhz (W5100 should support up to about 14Mhz)
SPI.setClockDivider(SPI_CS, 21);
SPI.setDataMode(SPI_CS, SPI_MODE0);
#endif
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
writeMR(1<<RST);
writeTMSR(0x55);
writeRMSR(0x55);
SPI.endTransaction();
SPI.beginTransaction(SPI_ETHERNET_SETTINGS);
writeMR(1 << RST);
writeTMSR(0x55);
writeRMSR(0x55);
SPI.endTransaction();
for (int i=0; i<MAX_SOCK_NUM; i++) {
SBASE[i] = TXBUF_BASE + SSIZE * i;
RBASE[i] = RXBUF_BASE + RSIZE * i;
}
for (int i = 0; i < MAX_SOCK_NUM; i++)
{
SBASE[i] = TXBUF_BASE + SSIZE * i;
RBASE[i] = RXBUF_BASE + RSIZE * i;
}
}
uint16_t W5100Class::getTXFreeSize(SOCKET s)
{
uint16_t val=0, val1=0;
do {
val1 = readSnTX_FSR(s);
if (val1 != 0)
val = readSnTX_FSR(s);
}
while (val != val1);
return val;
uint16_t val = 0, val1 = 0;
do
{
val1 = readSnTX_FSR(s);
if (val1 != 0)
{
val = readSnTX_FSR(s);
}
} while (val != val1);
return val;
}
uint16_t W5100Class::getRXReceivedSize(SOCKET s)
{
uint16_t val=0,val1=0;
do {
val1 = readSnRX_RSR(s);
if (val1 != 0)
val = readSnRX_RSR(s);
}
while (val != val1);
return val;
uint16_t val = 0, val1 = 0;
do
{
val1 = readSnRX_RSR(s);
if (val1 != 0)
{
val = readSnRX_RSR(s);
}
} while (val != val1);
return val;
}
void W5100Class::send_data_processing(SOCKET s, const uint8_t *data, uint16_t len)
{
// This is same as having no offset in a call to send_data_processing_offset
send_data_processing_offset(s, 0, data, len);
// This is same as having no offset in a call to send_data_processing_offset
send_data_processing_offset(s, 0, data, len);
}
void W5100Class::send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len)
{
uint16_t ptr = readSnTX_WR(s);
ptr += data_offset;
uint16_t offset = ptr & SMASK;
uint16_t dstAddr = offset + SBASE[s];
uint16_t ptr = readSnTX_WR(s);
ptr += data_offset;
uint16_t offset = ptr & SMASK;
uint16_t dstAddr = offset + SBASE[s];
if (offset + len > SSIZE)
{
// Wrap around circular buffer
uint16_t size = SSIZE - offset;
write(dstAddr, data, size);
write(SBASE[s], data + size, len - size);
}
else {
write(dstAddr, data, len);
}
if (offset + len > SSIZE)
{
// Wrap around circular buffer
uint16_t size = SSIZE - offset;
write(dstAddr, data, size);
write(SBASE[s], data + size, len - size);
}
else
{
write(dstAddr, data, len);
}
ptr += len;
writeSnTX_WR(s, ptr);
ptr += len;
writeSnTX_WR(s, ptr);
}
void W5100Class::recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek)
{
uint16_t ptr;
ptr = readSnRX_RD(s);
read_data(s, ptr, data, len);
if (!peek)
{
ptr += len;
writeSnRX_RD(s, ptr);
}
uint16_t ptr;
ptr = readSnRX_RD(s);
read_data(s, ptr, data, len);
if (!peek)
{
ptr += len;
writeSnRX_RD(s, ptr);
}
}
void W5100Class::read_data(SOCKET s, volatile uint16_t src, volatile uint8_t *dst, uint16_t len)
{
uint16_t size;
uint16_t src_mask;
uint16_t src_ptr;
uint16_t size;
uint16_t src_mask;
uint16_t src_ptr;
src_mask = src & RMASK;
src_ptr = RBASE[s] + src_mask;
src_mask = src & RMASK;
src_ptr = RBASE[s] + src_mask;
if( (src_mask + len) > RSIZE )
{
size = RSIZE - src_mask;
read(src_ptr, (uint8_t *)dst, size);
dst += size;
read(RBASE[s], (uint8_t *) dst, len - size);
}
else
read(src_ptr, (uint8_t *) dst, len);
if ((src_mask + len) > RSIZE)
{
size = RSIZE - src_mask;
read(src_ptr, (uint8_t *)dst, size);
dst += size;
read(RBASE[s], (uint8_t *) dst, len - size);
}
else
{
read(src_ptr, (uint8_t *) dst, len);
}
}
uint8_t W5100Class::write(uint16_t _addr, uint8_t _data)
{
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_data);
resetSS();
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
SPI.transfer(_data);
resetSS();
#else
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
SPI.transfer(SPI_CS, _data);
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
SPI.transfer(SPI_CS, _data);
#endif
return 1;
return 1;
}
uint16_t W5100Class::write(uint16_t _addr, const uint8_t *_buf, uint16_t _len)
{
for (uint16_t i=0; i<_len; i++)
{
for (uint16_t i = 0; i < _len; i++)
{
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
SPI.transfer(_buf[i]);
resetSS();
setSS();
SPI.transfer(0xF0);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
SPI.transfer(_buf[i]);
resetSS();
#else
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
SPI.transfer(SPI_CS, _buf[i]);
_addr++;
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
SPI.transfer(SPI_CS, _buf[i]);
_addr++;
#endif
}
return _len;
}
return _len;
}
uint8_t W5100Class::read(uint16_t _addr)
{
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
setSS();
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
uint8_t _data = SPI.transfer(0);
resetSS();
#else
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
uint8_t _data = SPI.transfer(SPI_CS, 0);
#endif
return _data;
}
uint16_t W5100Class::read(uint16_t _addr, uint8_t *_buf, uint16_t _len)
{
for (uint16_t i=0; i<_len; i++)
{
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
setSS();
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
_buf[i] = SPI.transfer(0);
uint8_t _data = SPI.transfer(0);
resetSS();
#else
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
_buf[i] = SPI.transfer(SPI_CS, 0);
_addr++;
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
uint8_t _data = SPI.transfer(SPI_CS, 0);
#endif
}
return _len;
return _data;
}
void W5100Class::execCmdSn(SOCKET s, SockCMD _cmd) {
// Send command to socket
writeSnCR(s, _cmd);
// Wait for command to complete
while (readSnCR(s))
;
uint16_t W5100Class::read(uint16_t _addr, uint8_t *_buf, uint16_t _len)
{
for (uint16_t i = 0; i < _len; i++)
{
#if defined(ARDUINO_ARCH_AVR) || defined(ESP8266)
setSS();
SPI.transfer(0x0F);
SPI.transfer(_addr >> 8);
SPI.transfer(_addr & 0xFF);
_addr++;
_buf[i] = SPI.transfer(0);
resetSS();
#else
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
_buf[i] = SPI.transfer(SPI_CS, 0);
_addr++;
#endif
}
return _len;
}
void W5100Class::execCmdSn(SOCKET s, SockCMD _cmd)
{
// Send command to socket
writeSnCR(s, _cmd);
// Wait for command to complete
while (readSnCR(s))
;
}

View File

@ -1,11 +1,11 @@
/*
* Copyright (c) 2010 by Arduino LLC. All rights reserved.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
Copyright (c) 2010 by Arduino LLC. All rights reserved.
This file is free software; you can redistribute it and/or modify
it under the terms of either the GNU General Public License version 2
or the GNU Lesser General Public License version 2.1, both as
published by the Free Software Foundation.
*/
#ifndef W5100_H_INCLUDED
#define W5100_H_INCLUDED
@ -31,182 +31,188 @@ typedef uint8_t SOCKET;
#define IDM_AR1 0x8002
#define IDM_DR 0x8003
/*
class MR {
public:
static const uint8_t RST = 0x80;
static const uint8_t PB = 0x10;
static const uint8_t PPPOE = 0x08;
static const uint8_t LB = 0x04;
static const uint8_t AI = 0x02;
static const uint8_t IND = 0x01;
};
class MR {
public:
static const uint8_t RST = 0x80;
static const uint8_t PB = 0x10;
static const uint8_t PPPOE = 0x08;
static const uint8_t LB = 0x04;
static const uint8_t AI = 0x02;
static const uint8_t IND = 0x01;
};
*/
/*
class IR {
public:
static const uint8_t CONFLICT = 0x80;
static const uint8_t UNREACH = 0x40;
static const uint8_t PPPoE = 0x20;
static const uint8_t SOCK0 = 0x01;
static const uint8_t SOCK1 = 0x02;
static const uint8_t SOCK2 = 0x04;
static const uint8_t SOCK3 = 0x08;
static inline uint8_t SOCK(SOCKET ch) { return (0x01 << ch); };
};
class IR {
public:
static const uint8_t CONFLICT = 0x80;
static const uint8_t UNREACH = 0x40;
static const uint8_t PPPoE = 0x20;
static const uint8_t SOCK0 = 0x01;
static const uint8_t SOCK1 = 0x02;
static const uint8_t SOCK2 = 0x04;
static const uint8_t SOCK3 = 0x08;
static inline uint8_t SOCK(SOCKET ch) { return (0x01 << ch); };
};
*/
class SnMR {
class SnMR
{
public:
static const uint8_t CLOSE = 0x00;
static const uint8_t TCP = 0x01;
static const uint8_t UDP = 0x02;
static const uint8_t IPRAW = 0x03;
static const uint8_t MACRAW = 0x04;
static const uint8_t PPPOE = 0x05;
static const uint8_t ND = 0x20;
static const uint8_t MULTI = 0x80;
static const uint8_t CLOSE = 0x00;
static const uint8_t TCP = 0x01;
static const uint8_t UDP = 0x02;
static const uint8_t IPRAW = 0x03;
static const uint8_t MACRAW = 0x04;
static const uint8_t PPPOE = 0x05;
static const uint8_t ND = 0x20;
static const uint8_t MULTI = 0x80;
};
enum SockCMD {
Sock_OPEN = 0x01,
Sock_LISTEN = 0x02,
Sock_CONNECT = 0x04,
Sock_DISCON = 0x08,
Sock_CLOSE = 0x10,
Sock_SEND = 0x20,
Sock_SEND_MAC = 0x21,
Sock_SEND_KEEP = 0x22,
Sock_RECV = 0x40
enum SockCMD
{
Sock_OPEN = 0x01,
Sock_LISTEN = 0x02,
Sock_CONNECT = 0x04,
Sock_DISCON = 0x08,
Sock_CLOSE = 0x10,
Sock_SEND = 0x20,
Sock_SEND_MAC = 0x21,
Sock_SEND_KEEP = 0x22,
Sock_RECV = 0x40
};
/*class SnCmd {
public:
static const uint8_t OPEN = 0x01;
static const uint8_t LISTEN = 0x02;
static const uint8_t CONNECT = 0x04;
static const uint8_t DISCON = 0x08;
static const uint8_t CLOSE = 0x10;
static const uint8_t SEND = 0x20;
static const uint8_t SEND_MAC = 0x21;
static const uint8_t SEND_KEEP = 0x22;
static const uint8_t RECV = 0x40;
};
/* class SnCmd {
public:
static const uint8_t OPEN = 0x01;
static const uint8_t LISTEN = 0x02;
static const uint8_t CONNECT = 0x04;
static const uint8_t DISCON = 0x08;
static const uint8_t CLOSE = 0x10;
static const uint8_t SEND = 0x20;
static const uint8_t SEND_MAC = 0x21;
static const uint8_t SEND_KEEP = 0x22;
static const uint8_t RECV = 0x40;
};
*/
class SnIR {
class SnIR
{
public:
static const uint8_t SEND_OK = 0x10;
static const uint8_t TIMEOUT = 0x08;
static const uint8_t RECV = 0x04;
static const uint8_t DISCON = 0x02;
static const uint8_t CON = 0x01;
static const uint8_t SEND_OK = 0x10;
static const uint8_t TIMEOUT = 0x08;
static const uint8_t RECV = 0x04;
static const uint8_t DISCON = 0x02;
static const uint8_t CON = 0x01;
};
class SnSR {
class SnSR
{
public:
static const uint8_t CLOSED = 0x00;
static const uint8_t INIT = 0x13;
static const uint8_t LISTEN = 0x14;
static const uint8_t SYNSENT = 0x15;
static const uint8_t SYNRECV = 0x16;
static const uint8_t ESTABLISHED = 0x17;
static const uint8_t FIN_WAIT = 0x18;
static const uint8_t CLOSING = 0x1A;
static const uint8_t TIME_WAIT = 0x1B;
static const uint8_t CLOSE_WAIT = 0x1C;
static const uint8_t LAST_ACK = 0x1D;
static const uint8_t UDP = 0x22;
static const uint8_t IPRAW = 0x32;
static const uint8_t MACRAW = 0x42;
static const uint8_t PPPOE = 0x5F;
static const uint8_t CLOSED = 0x00;
static const uint8_t INIT = 0x13;
static const uint8_t LISTEN = 0x14;
static const uint8_t SYNSENT = 0x15;
static const uint8_t SYNRECV = 0x16;
static const uint8_t ESTABLISHED = 0x17;
static const uint8_t FIN_WAIT = 0x18;
static const uint8_t CLOSING = 0x1A;
static const uint8_t TIME_WAIT = 0x1B;
static const uint8_t CLOSE_WAIT = 0x1C;
static const uint8_t LAST_ACK = 0x1D;
static const uint8_t UDP = 0x22;
static const uint8_t IPRAW = 0x32;
static const uint8_t MACRAW = 0x42;
static const uint8_t PPPOE = 0x5F;
};
class IPPROTO {
class IPPROTO
{
public:
static const uint8_t IP = 0;
static const uint8_t ICMP = 1;
static const uint8_t IGMP = 2;
static const uint8_t GGP = 3;
static const uint8_t TCP = 6;
static const uint8_t PUP = 12;
static const uint8_t UDP = 17;
static const uint8_t IDP = 22;
static const uint8_t ND = 77;
static const uint8_t RAW = 255;
static const uint8_t IP = 0;
static const uint8_t ICMP = 1;
static const uint8_t IGMP = 2;
static const uint8_t GGP = 3;
static const uint8_t TCP = 6;
static const uint8_t PUP = 12;
static const uint8_t UDP = 17;
static const uint8_t IDP = 22;
static const uint8_t ND = 77;
static const uint8_t RAW = 255;
};
class W5100Class {
class W5100Class
{
public:
void init();
void init();
/**
* @brief This function is being used for copy the data form Receive buffer of the chip to application buffer.
*
* It calculate the actual physical address where one has to read
* the data from Receive buffer. Here also take care of the condition while it exceed
* the Rx memory uper-bound of socket.
*/
void read_data(SOCKET s, volatile uint16_t src, volatile uint8_t * dst, uint16_t len);
/**
* @brief This function is being called by send() and sendto() function also.
*
* This function read the Tx write pointer register and after copy the data in buffer update the Tx write pointer
* register. User should read upper byte first and lower byte later to get proper value.
*/
void send_data_processing(SOCKET s, const uint8_t *data, uint16_t len);
/**
* @brief A copy of send_data_processing that uses the provided ptr for the
* write offset. Only needed for the "streaming" UDP API, where
* a single UDP packet is built up over a number of calls to
* send_data_processing_ptr, because TX_WR doesn't seem to get updated
* correctly in those scenarios
* @param ptr value to use in place of TX_WR. If 0, then the value is read
* in from TX_WR
* @return New value for ptr, to be used in the next call
*/
// FIXME Update documentation
void send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len);
/**
@brief This function is being used for copy the data form Receive buffer of the chip to application buffer.
/**
* @brief This function is being called by recv() also.
*
* This function read the Rx read pointer register
* and after copy the data from receive buffer update the Rx write pointer register.
* User should read upper byte first and lower byte later to get proper value.
*/
void recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek = 0);
It calculate the actual physical address where one has to read
the data from Receive buffer. Here also take care of the condition while it exceed
the Rx memory uper-bound of socket.
*/
void read_data(SOCKET s, volatile uint16_t src, volatile uint8_t * dst, uint16_t len);
inline void setGatewayIp(uint8_t *_addr);
inline void getGatewayIp(uint8_t *_addr);
/**
@brief This function is being called by send() and sendto() function also.
inline void setSubnetMask(uint8_t *_addr);
inline void getSubnetMask(uint8_t *_addr);
This function read the Tx write pointer register and after copy the data in buffer update the Tx write pointer
register. User should read upper byte first and lower byte later to get proper value.
*/
void send_data_processing(SOCKET s, const uint8_t *data, uint16_t len);
/**
@brief A copy of send_data_processing that uses the provided ptr for the
write offset. Only needed for the "streaming" UDP API, where
a single UDP packet is built up over a number of calls to
send_data_processing_ptr, because TX_WR doesn't seem to get updated
correctly in those scenarios
@param ptr value to use in place of TX_WR. If 0, then the value is read
in from TX_WR
@return New value for ptr, to be used in the next call
*/
// FIXME Update documentation
void send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len);
inline void setMACAddress(uint8_t * addr);
inline void getMACAddress(uint8_t * addr);
/**
@brief This function is being called by recv() also.
inline void setIPAddress(uint8_t * addr);
inline void getIPAddress(uint8_t * addr);
This function read the Rx read pointer register
and after copy the data from receive buffer update the Rx write pointer register.
User should read upper byte first and lower byte later to get proper value.
*/
void recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek = 0);
inline void setRetransmissionTime(uint16_t timeout);
inline void setRetransmissionCount(uint8_t _retry);
inline void setGatewayIp(uint8_t *_addr);
inline void getGatewayIp(uint8_t *_addr);
void execCmdSn(SOCKET s, SockCMD _cmd);
uint16_t getTXFreeSize(SOCKET s);
uint16_t getRXReceivedSize(SOCKET s);
inline void setSubnetMask(uint8_t *_addr);
inline void getSubnetMask(uint8_t *_addr);
// W5100 Registers
// ---------------
inline void setMACAddress(uint8_t * addr);
inline void getMACAddress(uint8_t * addr);
inline void setIPAddress(uint8_t * addr);
inline void getIPAddress(uint8_t * addr);
inline void setRetransmissionTime(uint16_t timeout);
inline void setRetransmissionCount(uint8_t _retry);
void execCmdSn(SOCKET s, SockCMD _cmd);
uint16_t getTXFreeSize(SOCKET s);
uint16_t getRXReceivedSize(SOCKET s);
// W5100 Registers
// ---------------
private:
static uint8_t write(uint16_t _addr, uint8_t _data);
static uint16_t write(uint16_t addr, const uint8_t *buf, uint16_t len);
static uint8_t read(uint16_t addr);
static uint16_t read(uint16_t addr, uint8_t *buf, uint16_t len);
static uint8_t write(uint16_t _addr, uint8_t _data);
static uint16_t write(uint16_t addr, const uint8_t *buf, uint16_t len);
static uint8_t read(uint16_t addr);
static uint16_t read(uint16_t addr, uint8_t *buf, uint16_t len);
#define __GP_REGISTER8(name, address) \
static inline void write##name(uint8_t _data) { \
write(address, _data); \
@ -233,37 +239,37 @@ private:
}
public:
__GP_REGISTER8 (MR, 0x0000); // Mode
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
__GP_REGISTER8 (IR, 0x0015); // Interrupt
__GP_REGISTER8 (IMR, 0x0016); // Interrupt Mask
__GP_REGISTER16(RTR, 0x0017); // Timeout address
__GP_REGISTER8 (RCR, 0x0019); // Retry count
__GP_REGISTER8 (RMSR, 0x001A); // Receive memory size
__GP_REGISTER8 (TMSR, 0x001B); // Transmit memory size
__GP_REGISTER8 (PATR, 0x001C); // Authentication type address in PPPoE mode
__GP_REGISTER8 (PTIMER, 0x0028); // PPP LCP Request Timer
__GP_REGISTER8 (PMAGIC, 0x0029); // PPP LCP Magic Number
__GP_REGISTER_N(UIPR, 0x002A, 4); // Unreachable IP address in UDP mode
__GP_REGISTER16(UPORT, 0x002E); // Unreachable Port address in UDP mode
__GP_REGISTER8(MR, 0x0000); // Mode
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
__GP_REGISTER8(IR, 0x0015); // Interrupt
__GP_REGISTER8(IMR, 0x0016); // Interrupt Mask
__GP_REGISTER16(RTR, 0x0017); // Timeout address
__GP_REGISTER8(RCR, 0x0019); // Retry count
__GP_REGISTER8(RMSR, 0x001A); // Receive memory size
__GP_REGISTER8(TMSR, 0x001B); // Transmit memory size
__GP_REGISTER8(PATR, 0x001C); // Authentication type address in PPPoE mode
__GP_REGISTER8(PTIMER, 0x0028); // PPP LCP Request Timer
__GP_REGISTER8(PMAGIC, 0x0029); // PPP LCP Magic Number
__GP_REGISTER_N(UIPR, 0x002A, 4); // Unreachable IP address in UDP mode
__GP_REGISTER16(UPORT, 0x002E); // Unreachable Port address in UDP mode
#undef __GP_REGISTER8
#undef __GP_REGISTER16
#undef __GP_REGISTER_N
// W5100 Socket registers
// ----------------------
// W5100 Socket registers
// ----------------------
private:
static inline uint8_t readSn(SOCKET _s, uint16_t _addr);
static inline uint8_t writeSn(SOCKET _s, uint16_t _addr, uint8_t _data);
static inline uint16_t readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
static inline uint16_t writeSn(SOCKET _s, uint16_t _addr, const uint8_t *_buf, uint16_t len);
static inline uint8_t readSn(SOCKET _s, uint16_t _addr);
static inline uint8_t writeSn(SOCKET _s, uint16_t _addr, uint8_t _data);
static inline uint16_t readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
static inline uint16_t writeSn(SOCKET _s, uint16_t _addr, const uint8_t *_buf, uint16_t len);
static const uint16_t CH_BASE = 0x0400;
static const uint16_t CH_SIZE = 0x0100;
static const uint16_t CH_BASE = 0x0400;
static const uint16_t CH_SIZE = 0x0100;
#define __SOCKET_REGISTER8(name, address) \
static inline void write##name(SOCKET _s, uint8_t _data) { \
@ -292,127 +298,186 @@ private:
static uint16_t read##name(SOCKET _s, uint8_t *_buff) { \
return readSn(_s, address, _buff, size); \
}
public:
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
#undef __SOCKET_REGISTER8
#undef __SOCKET_REGISTER16
#undef __SOCKET_REGISTER_N
private:
static const uint8_t RST = 7; // Reset BIT
static const uint8_t RST = 7; // Reset BIT
static const int SOCKETS = 4;
static const uint16_t SMASK = 0x07FF; // Tx buffer MASK
static const uint16_t RMASK = 0x07FF; // Rx buffer MASK
static const int SOCKETS = 4;
static const uint16_t SMASK = 0x07FF; // Tx buffer MASK
static const uint16_t RMASK = 0x07FF; // Rx buffer MASK
public:
static const uint16_t SSIZE = 2048; // Max Tx buffer size
static const uint16_t SSIZE = 2048; // Max Tx buffer size
private:
static const uint16_t RSIZE = 2048; // Max Rx buffer size
uint16_t SBASE[SOCKETS]; // Tx buffer base address
uint16_t RBASE[SOCKETS]; // Rx buffer base address
static const uint16_t RSIZE = 2048; // Max Rx buffer size
uint16_t SBASE[SOCKETS]; // Tx buffer base address
uint16_t RBASE[SOCKETS]; // Rx buffer base address
private:
#if defined(ARDUINO_ARCH_AVR)
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
inline static void initSS() { DDRB |= _BV(4); };
inline static void setSS() { PORTB &= ~_BV(4); };
inline static void resetSS() { PORTB |= _BV(4); };
inline static void initSS()
{
DDRB |= _BV(4);
};
inline static void setSS()
{
PORTB &= ~_BV(4);
};
inline static void resetSS()
{
PORTB |= _BV(4);
};
#elif defined(__AVR_ATmega32U4__)
inline static void initSS() { DDRB |= _BV(6); };
inline static void setSS() { PORTB &= ~_BV(6); };
inline static void resetSS() { PORTB |= _BV(6); };
inline static void initSS()
{
DDRB |= _BV(6);
};
inline static void setSS()
{
PORTB &= ~_BV(6);
};
inline static void resetSS()
{
PORTB |= _BV(6);
};
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB162__)
inline static void initSS() { DDRB |= _BV(0); };
inline static void setSS() { PORTB &= ~_BV(0); };
inline static void resetSS() { PORTB |= _BV(0); };
inline static void initSS()
{
DDRB |= _BV(0);
};
inline static void setSS()
{
PORTB &= ~_BV(0);
};
inline static void resetSS()
{
PORTB |= _BV(0);
};
#else
inline static void initSS() { DDRB |= _BV(2); };
inline static void setSS() { PORTB &= ~_BV(2); };
inline static void resetSS() { PORTB |= _BV(2); };
inline static void initSS()
{
DDRB |= _BV(2);
};
inline static void setSS()
{
PORTB &= ~_BV(2);
};
inline static void resetSS()
{
PORTB |= _BV(2);
};
#endif
#elif defined(ESP8266)
inline static void initSS() { pinMode(SS, OUTPUT); };
inline static void setSS() { GPOC = digitalPinToBitMask(SS); };
inline static void resetSS() { GPOS = digitalPinToBitMask(SS); };
inline static void initSS()
{
pinMode(SS, OUTPUT);
};
inline static void setSS()
{
GPOC = digitalPinToBitMask(SS);
};
inline static void resetSS()
{
GPOS = digitalPinToBitMask(SS);
};
#endif // ARDUINO_ARCH_AVR
};
extern W5100Class W5100;
uint8_t W5100Class::readSn(SOCKET _s, uint16_t _addr) {
return read(CH_BASE + _s * CH_SIZE + _addr);
uint8_t W5100Class::readSn(SOCKET _s, uint16_t _addr)
{
return read(CH_BASE + _s * CH_SIZE + _addr);
}
uint8_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t _data) {
return write(CH_BASE + _s * CH_SIZE + _addr, _data);
uint8_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t _data)
{
return write(CH_BASE + _s * CH_SIZE + _addr, _data);
}
uint16_t W5100Class::readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
return read(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
uint16_t W5100Class::readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len)
{
return read(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
}
uint16_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, const uint8_t *_buf, uint16_t _len) {
return write(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
uint16_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, const uint8_t *_buf, uint16_t _len)
{
return write(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
}
void W5100Class::getGatewayIp(uint8_t *_addr) {
readGAR(_addr);
void W5100Class::getGatewayIp(uint8_t *_addr)
{
readGAR(_addr);
}
void W5100Class::setGatewayIp(uint8_t *_addr) {
writeGAR(_addr);
void W5100Class::setGatewayIp(uint8_t *_addr)
{
writeGAR(_addr);
}
void W5100Class::getSubnetMask(uint8_t *_addr) {
readSUBR(_addr);
void W5100Class::getSubnetMask(uint8_t *_addr)
{
readSUBR(_addr);
}
void W5100Class::setSubnetMask(uint8_t *_addr) {
writeSUBR(_addr);
void W5100Class::setSubnetMask(uint8_t *_addr)
{
writeSUBR(_addr);
}
void W5100Class::getMACAddress(uint8_t *_addr) {
readSHAR(_addr);
void W5100Class::getMACAddress(uint8_t *_addr)
{
readSHAR(_addr);
}
void W5100Class::setMACAddress(uint8_t *_addr) {
writeSHAR(_addr);
void W5100Class::setMACAddress(uint8_t *_addr)
{
writeSHAR(_addr);
}
void W5100Class::getIPAddress(uint8_t *_addr) {
readSIPR(_addr);
void W5100Class::getIPAddress(uint8_t *_addr)
{
readSIPR(_addr);
}
void W5100Class::setIPAddress(uint8_t *_addr) {
writeSIPR(_addr);
void W5100Class::setIPAddress(uint8_t *_addr)
{
writeSIPR(_addr);
}
void W5100Class::setRetransmissionTime(uint16_t _timeout) {
writeRTR(_timeout);
void W5100Class::setRetransmissionTime(uint16_t _timeout)
{
writeRTR(_timeout);
}
void W5100Class::setRetransmissionCount(uint8_t _retry) {
writeRCR(_retry);
void W5100Class::setRetransmissionCount(uint8_t _retry)
{
writeRCR(_retry);
}
#endif