1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-07-11 15:22:13 +03:00

Move UART HAL into separate file, clean up code

This commit is contained in:
Ivan Grokhotkov
2016-01-25 11:49:27 +03:00
parent e255f25cfd
commit 7960b63357
4 changed files with 707 additions and 505 deletions

View File

@ -28,390 +28,71 @@
#include <string.h> #include <string.h>
#include <inttypes.h> #include <inttypes.h>
#include "Arduino.h" #include "Arduino.h"
#include "cbuf.h"
#include "interrupts.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "user_interface.h"
}
#include "HardwareSerial.h" #include "HardwareSerial.h"
#define UART_TX_FIFO_SIZE 0x80
struct uart_ {
int uart_nr;
int baud_rate;
bool rxEnabled;
bool txEnabled;
uint8_t rxPin;
uint8_t txPin;
};
static const int UART0 = 0;
static const int UART1 = 1;
static const int UART_NO = -1;
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);
void uart_write_char(uart_t* uart, char c) {
if(uart == 0 || !uart->txEnabled)
return;
while((USS(uart->uart_nr) >> USTXC) >= 0x7f);
USF(uart->uart_nr) = c;
}
void uart_write(uart_t* uart, const char* buf, size_t size) {
if(uart == 0 || !uart->txEnabled)
return;
while(size--)
uart_write_char(uart, *buf++);
}
uint8_t uart_read_char(uart_t* uart){
if(uart == 0 || !uart->rxEnabled)
return 0;
return USF(uart->uart_nr) & 0xff;
}
uint8_t uart_rx_available(uart_t* uart){
if(uart == 0 || !uart->rxEnabled)
return 0;
return (USS(uart->uart_nr) >> USRXC) & 0xff;
}
uint8_t uart_tx_free(uart_t* uart){
if(uart == 0 || !uart->txEnabled)
return 0;
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
}
void uart_wait_tx_empty(uart_t* uart){
if(uart == 0 || !uart->txEnabled)
return;
while(((USS(uart->uart_nr) >> USTXC) & 0xff) > 0) delay(0);
}
void uart_flush(uart_t* uart) {
if(uart == 0)
return;
uint32_t tmp = 0x00000000;
if(uart->rxEnabled) {
tmp |= (1 << UCRXRST);
}
if(uart->txEnabled) {
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_set_baudrate(uart_t* uart, int baud_rate) {
if(uart == 0)
return;
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart) {
if(uart == 0)
return 0;
return uart->baud_rate;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
uart_t* uart_init(int uart_nr, int baudrate, byte config, byte mode, uint8_t use_tx) {
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
if(uart == 0) {
return 0;
}
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
uart->rxEnabled = (mode != SERIAL_TX_ONLY);
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = (uart->rxEnabled)?3:255;
if(uart->rxEnabled) {
if (use_tx == 2) {
uart->txPin = 2;
pinMode(uart->rxPin, FUNCTION_4);
} else {
uart->txPin = 1;
pinMode(uart->rxPin, SPECIAL);
}
} else uart->txPin = 255;
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rxEnabled = false;
uart->txEnabled = (mode != SERIAL_RX_ONLY);
uart->rxPin = 255;
uart->txPin = (uart->txEnabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->txEnabled) pinMode(uart->txPin, SPECIAL);
break;
case UART_NO:
default:
// big fail!
os_free(uart);
return 0;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
return uart;
}
void uart_uninit(uart_t* uart) {
if(uart == 0)
return;
switch(uart->rxPin) {
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->txPin) {
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
os_free(uart);
}
void uart_swap(uart_t* uart, uint8_t use_tx) {
if(uart == 0)
return;
switch(uart->uart_nr) {
case UART0:
if(((uart->txPin == 1 || uart->txPin == 2) && uart->txEnabled) || (uart->rxPin == 3 && uart->rxEnabled)) {
if(uart->txEnabled){ //TX
pinMode(uart->txPin, INPUT);
uart->txPin = 15;
}
if(uart->rxEnabled){ //RX
pinMode(uart->rxPin, INPUT);
uart->rxPin = 13;
}
if(uart->txEnabled) pinMode(uart->txPin, FUNCTION_4); //TX
if(uart->rxEnabled) pinMode(uart->rxPin, FUNCTION_4); //RX
IOSWAP |= (1 << IOSWAPU0);
} else {
if(uart->txEnabled){ //TX
pinMode(uart->txPin, INPUT);
uart->txPin = (use_tx == 2)?2:1;
}
if(uart->rxEnabled){ //RX
pinMode(uart->rxPin, INPUT);
uart->rxPin = 3;
}
if(uart->txEnabled) pinMode(uart->txPin, (use_tx == 2)?FUNCTION_4:SPECIAL); //TX
if(uart->rxEnabled) pinMode(3, SPECIAL); //RX
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_tx(uart_t* uart, uint8_t use_tx) {
if(uart == 0)
return;
switch(uart->uart_nr) {
case UART0:
if(uart->txEnabled) {
if (uart->txPin == 1 && use_tx == 2) {
pinMode(uart->txPin, INPUT);
uart->txPin = 2;
pinMode(uart->txPin, FUNCTION_4);
} else if (uart->txPin == 2 && use_tx != 2) {
pinMode(uart->txPin, INPUT);
uart->txPin = 1;
pinMode(uart->txPin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_pins(uart_t* uart, uint8_t tx, uint8_t rx) {
if(uart == 0)
return;
if(uart->uart_nr == UART0) { // Only UART0 allows pin changes
if(uart->txEnabled && uart->txPin != tx) {
if( rx == 13 && tx == 15) {
uart_swap(uart, 15);
} else if (rx == 3 && (tx == 1 || tx == 2)) {
if (uart->rxPin != rx) uart_swap(uart, tx);
else uart_set_tx(uart, tx);
}
}
if(uart->rxEnabled && uart->rxPin != rx && rx == 13 && tx == 15) {
uart_swap(uart, 15);
}
}
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_ignore_char(char c) {}
void uart0_write_char(char c) {
while(((USS(0) >> USTXC) & 0xff) >= 0x7F) delay(0);
USF(0) = c;
}
void uart1_write_char(char c) {
while(((USS(1) >> USTXC) & 0xff) >= 0x7F) delay(0);
USF(1) = c;
}
static int s_uart_debug_nr = UART0;
void uart_set_debug(int uart_nr) {
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int uart_get_debug() {
return s_uart_debug_nr;
}
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial::HardwareSerial(int uart_nr) HardwareSerial::HardwareSerial(int uart_nr)
: _uart_nr(uart_nr) : _uart_nr(uart_nr)
, _uart(0) , _uart(0)
{} {}
void HardwareSerial::begin(unsigned long baud, byte config, byte mode, uint8_t use_tx) { void HardwareSerial::begin(unsigned long baud, SerialConfig config, SerialMode mode, uint8_t tx_pin)
if(uart_get_debug() == _uart_nr) {
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO); uart_set_debug(UART_NO);
if (_uart)
os_free(_uart);
_uart = uart_init(_uart_nr, baud, config, mode, use_tx);
} }
void HardwareSerial::end() { if (_uart) {
if(uart_get_debug() == _uart_nr) free(_uart);
}
_uart = uart_init(_uart_nr, baud, (int) config, (int) mode, tx_pin);
}
void HardwareSerial::end()
{
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO); uart_set_debug(UART_NO);
}
uart_uninit(_uart); uart_uninit(_uart);
} }
void HardwareSerial::swap(uint8_t use_tx) { void HardwareSerial::swap(uint8_t tx_pin)
if(_uart == 0) {
if(!_uart) {
return; return;
uart_swap(_uart, use_tx); }
uart_swap(_uart, tx_pin);
} }
void HardwareSerial::set_tx(uint8_t use_tx) { void HardwareSerial::set_tx(uint8_t tx_pin)
if(_uart == 0) {
if(!_uart) {
return; return;
uart_set_tx(_uart, use_tx); }
uart_set_tx(_uart, tx_pin);
} }
void HardwareSerial::pins(uint8_t tx, uint8_t rx) { void HardwareSerial::pins(uint8_t tx, uint8_t rx)
if(_uart == 0) {
if(!_uart) {
return; return;
}
uart_set_pins(_uart, tx, rx); uart_set_pins(_uart, tx, rx);
} }
void HardwareSerial::setDebugOutput(bool en) { void HardwareSerial::setDebugOutput(bool en)
if(_uart == 0) {
if(!_uart) {
return; return;
}
if(en) { if(en) {
if(_uart->txEnabled) if(uart_tx_enabled(_uart)) {
uart_set_debug(_uart->uart_nr); uart_set_debug(_uart_nr);
else } else {
uart_set_debug(UART_NO); uart_set_debug(UART_NO);
}
} else { } else {
// disable debug for this interface // disable debug for this interface
if(uart_get_debug() == _uart_nr) { if(uart_get_debug() == _uart_nr) {
@ -420,58 +101,76 @@ void HardwareSerial::setDebugOutput(bool en) {
} }
} }
bool ICACHE_RAM_ATTR HardwareSerial::isTxEnabled(void) { bool HardwareSerial::isTxEnabled(void)
return _uart != 0 && _uart->txEnabled; {
return _uart && uart_tx_enabled(_uart);
} }
bool ICACHE_RAM_ATTR HardwareSerial::isRxEnabled(void) { bool HardwareSerial::isRxEnabled(void)
return _uart != 0 && _uart->rxEnabled; {
return _uart && uart_rx_enabled(_uart);
} }
int HardwareSerial::available(void) { int HardwareSerial::available(void)
if(_uart == 0 || !_uart->rxEnabled) {
if(!_uart || !uart_rx_enabled(_uart)) {
return 0; return 0;
}
int result = static_cast<int>(uart_rx_available(_uart)); int result = static_cast<int>(uart_rx_available(_uart));
if (!result) { if (!result) {
optimistic_yield(USD(_uart->uart_nr) / 128); optimistic_yield(USD(_uart_nr) / 128);
} }
return result; return result;
} }
int HardwareSerial::peek(void) { int HardwareSerial::peek(void)
{
return -1; return -1;
} }
int HardwareSerial::read(void) { int HardwareSerial::read(void)
if(_uart == 0 || !_uart->rxEnabled) {
if(!_uart || !uart_rx_enabled(_uart)) {
return -1; return -1;
return static_cast<int>(uart_read_char(_uart));
} }
int HardwareSerial::availableForWrite(void) { return uart_read_char(_uart);
if(_uart == 0 || !_uart->txEnabled) }
int HardwareSerial::availableForWrite(void)
{
if(!_uart || !uart_tx_enabled(_uart)) {
return 0; return 0;
}
return static_cast<int>(uart_tx_free(_uart)); return static_cast<int>(uart_tx_free(_uart));
} }
void HardwareSerial::flush() { void HardwareSerial::flush()
if(_uart == 0 || !_uart->txEnabled) {
if(!_uart || !uart_tx_enabled(_uart)) {
return; return;
}
uart_wait_tx_empty(_uart); uart_wait_tx_empty(_uart);
} }
size_t HardwareSerial::write(uint8_t c) { size_t HardwareSerial::write(uint8_t c)
if(_uart == 0 || !_uart->txEnabled) {
if(!_uart || !uart_tx_enabled(_uart)) {
return 0; return 0;
}
uart_write_char(_uart, c); uart_write_char(_uart, c);
return 1; return 1;
} }
HardwareSerial::operator bool() const { HardwareSerial::operator bool() const
{
return _uart != 0; return _uart != 0;
} }
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);

View File

@ -28,71 +28,76 @@
#define HardwareSerial_h #define HardwareSerial_h
#include <inttypes.h> #include <inttypes.h>
#include "Stream.h" #include "Stream.h"
#include "uart.h"
#define SERIAL_TX_BUFFER_SIZE 256 enum SerialConfig {
#define SERIAL_RX_BUFFER_SIZE 256 SERIAL_5N1 = UART_5N1,
SERIAL_6N1 = UART_6N1,
SERIAL_7N1 = UART_7N1,
SERIAL_8N1 = UART_8N1,
SERIAL_5N2 = UART_5N2,
SERIAL_6N2 = UART_6N2,
SERIAL_7N2 = UART_7N2,
SERIAL_8N2 = UART_8N2,
SERIAL_5E1 = UART_5E1,
SERIAL_6E1 = UART_6E1,
SERIAL_7E1 = UART_7E1,
SERIAL_8E1 = UART_8E1,
SERIAL_5E2 = UART_5E2,
SERIAL_6E2 = UART_6E2,
SERIAL_7E2 = UART_7E2,
SERIAL_8E2 = UART_8E2,
SERIAL_5O1 = UART_5O1,
SERIAL_6O1 = UART_6O1,
SERIAL_7O1 = UART_7O1,
SERIAL_8O1 = UART_8O1,
SERIAL_5O2 = UART_5O2,
SERIAL_6O2 = UART_6O2,
SERIAL_7O2 = UART_7O2,
SERIAL_8O2 = UART_8O2,
};
// Define config for Serial.begin(baud, config); enum SerialMode {
#define SERIAL_5N1 0x10 SERIAL_FULL = UART_FULL,
#define SERIAL_6N1 0x14 SERIAL_RX_ONLY = UART_RX_ONLY,
#define SERIAL_7N1 0x18 SERIAL_TX_ONLY = UART_TX_ONLY
#define SERIAL_8N1 0x1c };
#define SERIAL_5N2 0x30
#define SERIAL_6N2 0x34
#define SERIAL_7N2 0x38
#define SERIAL_8N2 0x3c
#define SERIAL_5E1 0x12
#define SERIAL_6E1 0x16
#define SERIAL_7E1 0x1a
#define SERIAL_8E1 0x1e
#define SERIAL_5E2 0x32
#define SERIAL_6E2 0x36
#define SERIAL_7E2 0x3a
#define SERIAL_8E2 0x3e
#define SERIAL_5O1 0x13
#define SERIAL_6O1 0x17
#define SERIAL_7O1 0x1b
#define SERIAL_8O1 0x1f
#define SERIAL_5O2 0x33
#define SERIAL_6O2 0x37
#define SERIAL_7O2 0x3b
#define SERIAL_8O2 0x3f
#define SERIAL_FULL 0 class HardwareSerial: public Stream
#define SERIAL_RX_ONLY 1 {
#define SERIAL_TX_ONLY 2
struct uart_;
typedef struct uart_ uart_t;
class HardwareSerial: public Stream {
public: public:
HardwareSerial(int uart_nr); HardwareSerial(int uart_nr);
virtual ~HardwareSerial() {} virtual ~HardwareSerial() {}
void begin(unsigned long baud) { void begin(unsigned long baud)
{
begin(baud, SERIAL_8N1, SERIAL_FULL, 1); begin(baud, SERIAL_8N1, SERIAL_FULL, 1);
} }
void begin(unsigned long baud, uint8_t config) { void begin(unsigned long baud, SerialConfig config)
{
begin(baud, config, SERIAL_FULL, 1); begin(baud, config, SERIAL_FULL, 1);
} }
void begin(unsigned long baud, uint8_t config, uint8_t mode) { void begin(unsigned long baud, SerialConfig config, SerialMode mode)
{
begin(baud, config, mode, 1); begin(baud, config, mode, 1);
} }
void begin(unsigned long, uint8_t, uint8_t, uint8_t);
void begin(unsigned long baud, SerialConfig config, SerialMode mode, uint8_t tx_pin);
void end(); void end();
void swap() {
void swap()
{
swap(1); swap(1);
} }
void swap(uint8_t use_tx); //toggle between use of GPIO13/GPIO15 or GPIO3/GPIO(1/2) as RX and TX void swap(uint8_t tx_pin); //toggle between use of GPIO13/GPIO15 or GPIO3/GPIO(1/2) as RX and TX
/* /*
* Toggle between use of GPIO1 and GPIO2 as TX on UART 0. * Toggle between use of GPIO1 and GPIO2 as TX on UART 0.
* Note: UART 1 can't be used if GPIO2 is used with UART 0! * Note: UART 1 can't be used if GPIO2 is used with UART 0!
*/ */
void set_tx(uint8_t use_tx); void set_tx(uint8_t tx_pin);
/* /*
* UART 0 possible options are (1, 3), (2, 3) or (15, 13) * UART 0 possible options are (1, 3), (2, 3) or (15, 13)
@ -106,16 +111,20 @@ class HardwareSerial: public Stream {
int availableForWrite(void); int availableForWrite(void);
void flush(void) override; void flush(void) override;
size_t write(uint8_t) override; size_t write(uint8_t) override;
inline size_t write(unsigned long n) { inline size_t write(unsigned long n)
{
return write((uint8_t) n); return write((uint8_t) n);
} }
inline size_t write(long n) { inline size_t write(long n)
{
return write((uint8_t) n); return write((uint8_t) n);
} }
inline size_t write(unsigned int n) { inline size_t write(unsigned int n)
{
return write((uint8_t) n); return write((uint8_t) n);
} }
inline size_t write(int n) { inline size_t write(int n)
{
return write((uint8_t) n); return write((uint8_t) n);
} }
using Print::write; // pull in write(str) and write(buf, size) from Print using Print::write; // pull in write(str) and write(buf, size) from Print
@ -125,8 +134,6 @@ class HardwareSerial: public Stream {
bool isTxEnabled(void); bool isTxEnabled(void);
bool isRxEnabled(void); bool isRxEnabled(void);
protected:
protected: protected:
int _uart_nr; int _uart_nr;
uart_t* _uart; uart_t* _uart;

396
cores/esp8266/uart.c Normal file
View File

@ -0,0 +1,396 @@
/*
uart.cpp - esp8266 UART HAL
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* UART GPIOs
*
* UART0 TX: 1 or 2
* UART0 RX: 3
*
* UART0 SWAP TX: 15
* UART0 SWAP RX: 13
*
*
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
#include "Arduino.h"
#include "uart.h"
#include "esp8266_peri.h"
#include "user_interface.h"
static int s_uart_debug_nr = UART0;
struct uart_ {
int uart_nr;
int baud_rate;
bool rx_enabled;
bool tx_enabled;
uint8_t rx_pin;
uint8_t tx_pin;
};
void uart_write_char(uart_t* uart, char c)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while((USS(uart->uart_nr) >> USTXC) >= 0x7f);
USF(uart->uart_nr) = c;
}
void uart_write(uart_t* uart, const char* buf, size_t size)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while(size--) {
uart_write_char(uart, *buf++);
}
}
int uart_read_char(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
return -1;
}
return USF(uart->uart_nr) & 0xff;
}
size_t uart_rx_available(uart_t* uart)
{
if(uart == NULL || !uart->rx_enabled) {
return -1;
}
return (USS(uart->uart_nr) >> USRXC) & 0xff;
}
size_t uart_tx_free(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
return 0;
}
return UART_TX_FIFO_SIZE - ((USS(uart->uart_nr) >> USTXC) & 0xff);
}
void uart_wait_tx_empty(uart_t* uart)
{
if(uart == NULL || !uart->tx_enabled) {
return;
}
while(((USS(uart->uart_nr) >> USTXC) & 0xff) > 0) {
delay(0);
}
}
void uart_flush(uart_t* uart)
{
if(uart == NULL) {
return;
}
uint32_t tmp = 0x00000000;
if(uart->rx_enabled) {
tmp |= (1 << UCRXRST);
}
if(uart->tx_enabled) {
tmp |= (1 << UCTXRST);
}
USC0(uart->uart_nr) |= (tmp);
USC0(uart->uart_nr) &= ~(tmp);
}
void uart_set_baudrate(uart_t* uart, int baud_rate)
{
if(uart == NULL) {
return;
}
uart->baud_rate = baud_rate;
USD(uart->uart_nr) = (ESP8266_CLOCK / uart->baud_rate);
}
int uart_get_baudrate(uart_t* uart)
{
if(uart == NULL) {
return 0;
}
return uart->baud_rate;
}
uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin)
{
uart_t* uart = (uart_t*) malloc(sizeof(uart_t));
if(uart == NULL) {
return NULL;
}
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
uart->rx_enabled = (mode != UART_TX_ONLY);
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = (uart->rx_enabled)?3:255;
if(uart->rx_enabled) {
if (tx_pin == 2) {
uart->tx_pin = 2;
pinMode(uart->rx_pin, FUNCTION_4);
} else {
uart->tx_pin = 1;
pinMode(uart->rx_pin, SPECIAL);
}
} else {
uart->tx_pin = 255;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, SPECIAL);
}
IOSWAP &= ~(1 << IOSWAPU0);
break;
case UART1:
// Note: uart_interrupt_handler does not support RX on UART 1.
uart->rx_enabled = false;
uart->tx_enabled = (mode != UART_RX_ONLY);
uart->rx_pin = 255;
uart->tx_pin = (uart->tx_enabled)?2:255; // GPIO7 as TX not possible! See GPIO pins used by UART
if(uart->tx_enabled) {
pinMode(uart->tx_pin, SPECIAL);
}
break;
case UART_NO:
default:
// big fail!
free(uart);
return NULL;
}
uart_set_baudrate(uart, baudrate);
USC0(uart->uart_nr) = config;
uart_flush(uart);
USC1(uart->uart_nr) = 0;
return uart;
}
void uart_uninit(uart_t* uart)
{
if(uart == NULL) {
return;
}
switch(uart->rx_pin) {
case 3:
pinMode(3, INPUT);
break;
case 13:
pinMode(13, INPUT);
break;
}
switch(uart->tx_pin) {
case 1:
pinMode(1, INPUT);
break;
case 2:
pinMode(2, INPUT);
break;
case 15:
pinMode(15, INPUT);
break;
}
os_free(uart);
}
void uart_swap(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
return;
}
switch(uart->uart_nr) {
case UART0:
if(((uart->tx_pin == 1 || uart->tx_pin == 2) && uart->tx_enabled) || (uart->rx_pin == 3 && uart->rx_enabled)) {
if(uart->tx_enabled) { //TX
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 15;
}
if(uart->rx_enabled) { //RX
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 13;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, FUNCTION_4); //TX
}
if(uart->rx_enabled) {
pinMode(uart->rx_pin, FUNCTION_4); //RX
}
IOSWAP |= (1 << IOSWAPU0);
} else {
if(uart->tx_enabled) { //TX
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = (tx_pin == 2)?2:1;
}
if(uart->rx_enabled) { //RX
pinMode(uart->rx_pin, INPUT);
uart->rx_pin = 3;
}
if(uart->tx_enabled) {
pinMode(uart->tx_pin, (tx_pin == 2)?FUNCTION_4:SPECIAL); //TX
}
if(uart->rx_enabled) {
pinMode(3, SPECIAL); //RX
}
IOSWAP &= ~(1 << IOSWAPU0);
}
break;
case UART1:
// Currently no swap possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_tx(uart_t* uart, int tx_pin)
{
if(uart == NULL) {
return;
}
switch(uart->uart_nr) {
case UART0:
if(uart->tx_enabled) {
if (uart->tx_pin == 1 && tx_pin == 2) {
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 2;
pinMode(uart->tx_pin, FUNCTION_4);
} else if (uart->tx_pin == 2 && tx_pin != 2) {
pinMode(uart->tx_pin, INPUT);
uart->tx_pin = 1;
pinMode(uart->tx_pin, SPECIAL);
}
}
break;
case UART1:
// GPIO7 as TX not possible! See GPIO pins used by UART
break;
default:
break;
}
}
void uart_set_pins(uart_t* uart, int tx, int rx)
{
if(uart == NULL) {
return;
}
if(uart->uart_nr == UART0) { // Only UART0 allows pin changes
if(uart->tx_enabled && uart->tx_pin != tx) {
if( rx == 13 && tx == 15) {
uart_swap(uart, 15);
} else if (rx == 3 && (tx == 1 || tx == 2)) {
if (uart->rx_pin != rx) {
uart_swap(uart, tx);
} else {
uart_set_tx(uart, tx);
}
}
}
if(uart->rx_enabled && uart->rx_pin != rx && rx == 13 && tx == 15) {
uart_swap(uart, 15);
}
}
}
bool uart_tx_enabled(uart_t* uart)
{
if(uart == NULL) {
return false;
}
return uart->tx_enabled;
}
bool uart_rx_enabled(uart_t* uart)
{
if(uart == NULL) {
return false;
}
return uart->rx_enabled;
}
static void uart_ignore_char(char c)
{
}
static void uart0_write_char(char c)
{
while(((USS(0) >> USTXC) & 0xff) >= 0x7F) {
delay(0);
}
USF(0) = c;
}
static void uart1_write_char(char c)
{
while(((USS(1) >> USTXC) & 0xff) >= 0x7F) {
delay(0);
}
USF(1) = c;
}
void uart_set_debug(int uart_nr)
{
s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
}
int uart_get_debug()
{
return s_uart_debug_nr;
}

100
cores/esp8266/uart.h Normal file
View File

@ -0,0 +1,100 @@
/*
uart.h - UART HAL
Copyright (c) 2014 Ivan Grokhotkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ESP_UART_H
#include <stdint.h>
#include <stdbool.h>
#include <stddef.h>
#if defined (__cplusplus)
extern "C" {
#endif
#define UART0 0
#define UART1 1
#define UART_NO -1
// Options for `config` argument of uart_init
#define UART_5N1 0x10
#define UART_6N1 0x14
#define UART_7N1 0x18
#define UART_8N1 0x1c
#define UART_5N2 0x30
#define UART_6N2 0x34
#define UART_7N2 0x38
#define UART_8N2 0x3c
#define UART_5E1 0x12
#define UART_6E1 0x16
#define UART_7E1 0x1a
#define UART_8E1 0x1e
#define UART_5E2 0x32
#define UART_6E2 0x36
#define UART_7E2 0x3a
#define UART_8E2 0x3e
#define UART_5O1 0x13
#define UART_6O1 0x17
#define UART_7O1 0x1b
#define UART_8O1 0x1f
#define UART_5O2 0x33
#define UART_6O2 0x37
#define UART_7O2 0x3b
#define UART_8O2 0x3f
// Options for `mode` argument of uart_init
#define UART_FULL 0
#define UART_RX_ONLY 1
#define UART_TX_ONLY 2
#define UART_TX_FIFO_SIZE 0x80
struct uart_;
typedef struct uart_ uart_t;
uart_t* uart_init(int uart_nr, int baudrate, int config, int mode, int tx_pin);
void uart_uninit(uart_t* uart);
void uart_swap(uart_t* uart, int tx_pin);
void uart_set_tx(uart_t* uart, int tx_pin);
void uart_set_pins(uart_t* uart, int tx, int rx);
bool uart_tx_enabled(uart_t* uart);
bool uart_rx_enabled(uart_t* uart);
void uart_set_baudrate(uart_t* uart, int baud_rate);
int uart_get_baudrate(uart_t* uart);
void uart_write_char(uart_t* uart, char c);
void uart_write(uart_t* uart, const char* buf, size_t size);
int uart_read_char(uart_t* uart);
size_t uart_rx_available(uart_t* uart);
size_t uart_tx_free(uart_t* uart);
void uart_wait_tx_empty(uart_t* uart);
void uart_flush(uart_t* uart);
void uart_set_debug(int uart_nr);
int uart_get_debug();
#if defined (__cplusplus)
} // extern "C"
#endif
#endif // ESP_UART_H