1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-21 10:26:06 +03:00

Merge branch 'esp8266' of https://github.com/ficeto/Arduino into ficeto-esp8266

This commit is contained in:
Ivan Grokhotkov 2015-05-14 01:58:59 +03:00
commit 6e00fe8e83
26 changed files with 7287 additions and 59 deletions

View File

@ -38,6 +38,7 @@ extern "C" {
#include "pgmspace.h" #include "pgmspace.h"
#include "esp8266_peri.h" #include "esp8266_peri.h"
#include "twi.h" #include "twi.h"
#include "spiffs/spiffs.h"
void yield(void); void yield(void);
@ -211,6 +212,7 @@ void loop(void);
#include "WString.h" #include "WString.h"
#include "HardwareSerial.h" #include "HardwareSerial.h"
#include "FileSystem.h"
#include "Esp.h" #include "Esp.h"
uint16_t makeWord(uint16_t w); uint16_t makeWord(uint16_t w);

178
cores/esp8266/FileSystem.cpp Executable file
View File

@ -0,0 +1,178 @@
/****
* Sming Framework Project - Open Source framework for high efficiency native ESP8266 development.
* Created 2015 by Skurydin Alexey
* http://github.com/anakod/Sming
* All files of the Sming Core are provided under the LGPL v3 license.
****/
#include "FileSystem.h"
#include "WString.h"
file_t fileOpen(const String name, FileOpenFlags flags)
{
int repeats = 0;
bool notExist;
bool canRecreate = (flags & eFO_CreateIfNotExist) == eFO_CreateIfNotExist;
int res;
do
{
notExist = false;
res = SPIFFS_open(&_filesystemStorageHandle, name.c_str(), (spiffs_flags)flags, 0);
int code = SPIFFS_errno(&_filesystemStorageHandle);
if (res < 0)
{
debugf("open errno %d\n", code);
notExist = (code == SPIFFS_ERR_NOT_FOUND || code == SPIFFS_ERR_DELETED || code == SPIFFS_ERR_FILE_DELETED || code == SPIFFS_ERR_IS_FREE);
//debugf("recreate? %d %d %d", notExist, canRecreate, (repeats < 3));
if (notExist && canRecreate)
fileDelete(name); // fix for deleted files
}
} while (notExist && canRecreate && repeats++ < 3);
return res;
}
void fileClose(file_t file)
{
SPIFFS_close(&_filesystemStorageHandle, file);
}
size_t fileWrite(file_t file, const void* data, size_t size)
{
int res = SPIFFS_write(&_filesystemStorageHandle, file, (void *)data, size);
if (res < 0)
{
debugf("write errno %d\n", SPIFFS_errno(&_filesystemStorageHandle));
return res;
}
return res;
}
size_t fileRead(file_t file, void* data, size_t size)
{
int res = SPIFFS_read(&_filesystemStorageHandle, file, data, size);
if (res < 0)
{
debugf("read errno %d\n", SPIFFS_errno(&_filesystemStorageHandle));
return res;
}
return res;
}
int fileSeek(file_t file, int offset, SeekOriginFlags origin)
{
return SPIFFS_lseek(&_filesystemStorageHandle, file, offset, origin);
}
bool fileIsEOF(file_t file)
{
return SPIFFS_eof(&_filesystemStorageHandle, file);
}
int32_t fileTell(file_t file)
{
return SPIFFS_tell(&_filesystemStorageHandle, file);
}
int fileFlush(file_t file)
{
return SPIFFS_fflush(&_filesystemStorageHandle, file);
}
int fileStats(const String name, spiffs_stat *stat)
{
return SPIFFS_stat(&_filesystemStorageHandle, name.c_str(), stat);
}
int fileStats(file_t file, spiffs_stat *stat)
{
return SPIFFS_fstat(&_filesystemStorageHandle, file, stat);
}
void fileDelete(const String name)
{
SPIFFS_remove(&_filesystemStorageHandle, name.c_str());
}
void fileDelete(file_t file)
{
SPIFFS_fremove(&_filesystemStorageHandle, file);
}
bool fileExist(const String name)
{
spiffs_stat stat = {0};
if (fileStats(name.c_str(), &stat) < 0) return false;
return stat.name[0] != '\0';
}
int fileLastError(file_t fd)
{
return SPIFFS_errno(&_filesystemStorageHandle);
}
void fileClearLastError(file_t fd)
{
_filesystemStorageHandle.errno = SPIFFS_OK;
}
void fileSetContent(const String fileName, const char *content)
{
file_t file = fileOpen(fileName.c_str(), eFO_CreateNewAlways | eFO_WriteOnly);
fileWrite(file, content, os_strlen(content));
fileClose(file);
}
uint32_t fileGetSize(const String fileName)
{
file_t file = fileOpen(fileName.c_str(), eFO_ReadOnly);
// Get size
fileSeek(file, 0, eSO_FileEnd);
int size = fileTell(file);
fileClose(file);
return size;
}
String fileGetContent(const String fileName)
{
file_t file = fileOpen(fileName.c_str(), eFO_ReadOnly);
// Get size
fileSeek(file, 0, eSO_FileEnd);
int size = fileTell(file);
if (size <= 0)
{
fileClose(file);
return "";
}
fileSeek(file, 0, eSO_FileStart);
char* buffer = new char[size + 1];
buffer[size] = 0;
fileRead(file, buffer, size);
fileClose(file);
String res = buffer;
delete[] buffer;
return res;
}
int fileGetContent(const String fileName, char* buffer, int bufSize)
{
if (buffer == NULL || bufSize == 0) return 0;
*buffer = 0;
file_t file = fileOpen(fileName.c_str(), eFO_ReadOnly);
// Get size
fileSeek(file, 0, eSO_FileEnd);
int size = fileTell(file);
if (size <= 0 || bufSize <= size)
{
fileClose(file);
return 0;
}
buffer[size] = 0;
fileSeek(file, 0, eSO_FileStart);
fileRead(file, buffer, size);
fileClose(file);
return size;
}

59
cores/esp8266/FileSystem.h Executable file
View File

@ -0,0 +1,59 @@
/****
* Sming Framework Project - Open Source framework for high efficiency native ESP8266 development.
* Created 2015 by Skurydin Alexey
* http://github.com/anakod/Sming
* All files of the Sming Core are provided under the LGPL v3 license.
****/
#ifndef _SMING_CORE_FILESYSTEM_H_
#define _SMING_CORE_FILESYSTEM_H_
#include "spiffs/spiffs.h"
class String;
enum FileOpenFlags
{
eFO_ReadOnly = SPIFFS_RDONLY,
eFO_WriteOnly = SPIFFS_WRONLY,
eFO_ReadWrite = eFO_ReadOnly | eFO_WriteOnly,
eFO_CreateIfNotExist = SPIFFS_CREAT,
eFO_Append = SPIFFS_APPEND,
eFO_Truncate = SPIFFS_TRUNC,
eFO_CreateNewAlways = eFO_CreateIfNotExist | eFO_Truncate
};
static FileOpenFlags operator|(FileOpenFlags lhs, FileOpenFlags rhs)
{
return (FileOpenFlags) ((int)lhs| (int)rhs);
}
typedef enum
{
eSO_FileStart = SPIFFS_SEEK_SET,
eSO_CurrentPos = SPIFFS_SEEK_CUR,
eSO_FileEnd = SPIFFS_SEEK_END
} SeekOriginFlags;
file_t fileOpen(const String name, FileOpenFlags flags);
void fileClose(file_t file);
size_t fileWrite(file_t file, const void* data, size_t size);
size_t fileRead(file_t file, void* data, size_t size);
int fileSeek(file_t file, int offset, SeekOriginFlags origin);
bool fileIsEOF(file_t file);
int32_t fileTell(file_t file);
int fileFlush(file_t file);
int fileLastError(file_t fd);
void fileClearLastError(file_t fd);
void fileSetContent(const String fileName, const char *content);
uint32_t fileGetSize(const String fileName);
String fileGetContent(const String fileName);
int fileGetContent(const String fileName, char* buffer, int bufSize);
int fileStats(const String name, spiffs_stat *stat);
int fileStats(file_t file, spiffs_stat *stat);
void fileDelete(const String name);
void fileDelete(file_t file);
bool fileExist(const String name);
#endif /* _SMING_CORE_FILESYSTEM_H_ */

View File

@ -76,6 +76,7 @@ void delayMicroseconds(unsigned int us) {
void init() { void init() {
initPins(); initPins();
timer1_isr_init(); timer1_isr_init();
//spiffs_mount();
os_timer_setfn(&micros_overflow_timer, (os_timer_func_t*) &micros_overflow_tick, 0); os_timer_setfn(&micros_overflow_timer, (os_timer_func_t*) &micros_overflow_tick, 0);
os_timer_arm(&micros_overflow_timer, 60000, REPEAT); os_timer_arm(&micros_overflow_timer, 60000, REPEAT);
} }

20
cores/esp8266/spiffs/LICENSE Executable file
View File

@ -0,0 +1,20 @@
The MIT License (MIT)
Copyright (c) 2013-2015 Peter Andersson (pelleplutt1976<at>gmail.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

44
cores/esp8266/spiffs/Makefile Executable file
View File

@ -0,0 +1,44 @@
#############################################################
# Required variables for each makefile
# Discard this section from all parent makefiles
# Expected variables (with automatic defaults):
# CSRCS (all "C" files in the dir)
# SUBDIRS (all subdirs with a Makefile)
# GEN_LIBS - list of libs to be generated ()
# GEN_IMAGES - list of images to be generated ()
# COMPONENTS_xxx - a list of libs/objs in the form
# subdir/lib to be extracted and rolled up into
# a generated lib/image xxx.a ()
#
ifndef PDIR
GEN_LIBS = spiffs.a
endif
#############################################################
# Configuration i.e. compile options etc.
# Target specific stuff (defines etc.) goes in here!
# Generally values applying to a tree are captured in the
# makefile at its root level - these are then overridden
# for a subtree within the makefile rooted therein
#
#DEFINES +=
#############################################################
# Recursion Magic - Don't touch this!!
#
# Each subtree potentially has an include directory
# corresponding to the common APIs applicable to modules
# rooted at that subtree. Accordingly, the INCLUDE PATH
# of a module can only contain the include directories up
# its parent path, and not its siblings
#
# Required for each makefile to inherit from the parent
#
INCLUDES := $(INCLUDES) -I $(PDIR)include
INCLUDES += -I ./
INCLUDES += -I ../libc
INCLUDES += -I ../platform
PDIR := ../$(PDIR)
sinclude $(PDIR)Makefile

View File

View File

@ -0,0 +1,306 @@
* QUICK AND DIRTY INTEGRATION EXAMPLE
So, assume you're running a Cortex-M3 board with a 2 MB SPI flash on it. The
SPI flash has 64kB blocks. Your project is built using gnumake, and now you
want to try things out.
First, you simply copy the files in src/ to your own source folder. Exclude
all files in test folder. Then you point out these files in your make script
for compilation.
Also copy the spiffs_config.h over from the src/default/ folder.
Try building. This fails, nagging about inclusions and u32_t and whatnot. Open
the spiffs_config.h and delete the bad inclusions. Also, add following
typedefs:
typedef signed int s32_t;
typedef unsigned int u32_t;
typedef signed short s16_t;
typedef unsigned short u16_t;
typedef signed char s8_t;
typedef unsigned char u8_t;
Now it should build. Over to the mounting business. Assume you already
implemented the read, write and erase functions to your SPI flash:
void my_spi_read(int addr, int size, char *buf)
void my_spi_write(int addr, int size, char *buf)
void my_spi_erase(int addr, int size)
In your main.c or similar, include the spiffs.h and do that spiffs struct:
#include <spiffs.h>
static spiffs fs;
Also, toss up some of the needed buffers:
#define LOG_PAGE_SIZE 256
static u8_t spiffs_work_buf[LOG_PAGE_SIZE*2];
static u8_t spiffs_fds[32*4];
static u8_t spiffs_cache_buf[(LOG_PAGE_SIZE+32)*4];
Now, write the my_spiffs_mount function:
void my_spiffs_mount() {
spiffs_config cfg;
cfg.phys_size = 2*1024*1024; // use all spi flash
cfg.phys_addr = 0; // start spiffs at start of spi flash
cfg.phys_erase_block = 65536; // according to datasheet
cfg.log_block_size = 65536; // let us not complicate things
cfg.log_page_size = LOG_PAGE_SIZE; // as we said
cfg.hal_read_f = my_spi_read;
cfg.hal_write_f = my_spi_write;
cfg.hal_erase_f = my_spi_erase;
int res = SPIFFS_mount(&fs,
&cfg,
spiffs_work_buf,
spiffs_fds,
sizeof(spiffs_fds),
spiffs_cache_buf,
sizeof(spiffs_cache_buf),
0);
printf("mount res: %i\n", res);
}
Now, build warns about the my_spi_read, write and erase functions. Wrong
signatures, so go wrap them:
static s32_t my_spiffs_read(u32_t addr, u32_t size, u8_t *dst) {
my_spi_read(addr, size, dst);
return SPIFFS_OK;
}
static s32_t my_spiffs_write(u32_t addr, u32_t size, u8_t *src) {
my_spi_write(addr, size, dst);
return SPIFFS_OK;
}
static s32_t my_spiffs_erase(u32_t addr, u32_t size) {
my_spi_erase(addr, size);
return SPIFFS_OK;
}
Redirect the config in my_spiffs_mount to the wrappers instead:
cfg.hal_read_f = my_spiffs_read;
cfg.hal_write_f = my_spiffs_write;
cfg.hal_erase_f = my_spiffs_erase;
Ok, now you should be able to build and run. However, you get this output:
mount res: -1
but you wanted
mount res: 0
This is probably due to you having experimented with your SPI flash, so it
contains rubbish from spiffs's point of view. Do a mass erase and run again.
If all is ok now, you're good to go. Try creating a file and read it back:
static void test_spiffs() {
char buf[12];
// Surely, I've mounted spiffs before entering here
spiffs_file fd = SPIFFS_open(&fs, "my_file", SPIFFS_CREAT | SPIFFS_TRUNC | SPIFFS_RDWR, 0);
if (SPIFFS_write(&fs, fd, (u8_t *)"Hello world", 12) < 0) printf("errno %i\n", SPIFFS_errno(&fs));
SPIFFS_close(&fs, fd);
fd = SPIFFS_open(&fs, "my_file", SPIFFS_RDWR, 0);
if (SPIFFS_read(&fs, fd, (u8_t *)buf, 12) < 0) printf("errno %i\n", SPIFFS_errno(&fs));
SPIFFS_close(&fs, fd);
printf("--> %s <--\n", buf);
}
Compile, run, cross fingers hard, and you'll get the output:
--> Hello world <--
Got errors? Check spiffs.h for error definitions to get a clue what went voodoo.
* THINGS TO CHECK
When you alter the spiffs_config values, make sure you also check the typedefs
in spiffs_config.h:
- spiffs_block_ix
- spiffs_page_ix
- spiffs_obj_id
- spiffs_span_ix
The sizes of these typedefs must not underflow, else spiffs might end up in
eternal loops. Each typedef is commented what check for.
Also, if you alter the code or just want to verify your configuration, you can
run
> make test
in the spiffs folder. This will run all testcases using the configuration in
default/spiffs_config.h and test/params_test.h. The tests are written for linux
but should run under cygwin also.
* INTEGRATING SPIFFS
In order to integrate spiffs to your embedded target, you will basically need:
- A SPI flash device which your processor can communicate with
- An implementation for reading, writing and erasing the flash
- Memory (flash or ram) for the code
- Memory (ram) for the stack
Other stuff may be needed, threaded systems might need mutexes and so on.
** Logical structure
First and foremost, one must decide how to divide up the SPI flash for spiffs.
Having the datasheet for the actual SPI flash in hand will help. Spiffs can be
defined to use all or only parts of the SPI flash.
If following seems arcane, read the "HOW TO CONFIG" chapter first.
- Decide the logical size of blocks. This must be a multiple of the biggest
physical SPI flash block size. To go safe, use the physical block size -
which in many cases is 65536 bytes.
- Decide the logical size of pages. This must be a 2nd logarithm part of the
logical block size. To go safe, use 256 bytes to start with.
- Decide how much of the SPI flash memory to be used for spiffs. This must be
on logical block boundary. If unsafe, use 1 megabyte to start with.
- Decide where on the SPI flash memory the spiffs area should start. This must
be on physical block/sector boundary. If unsafe, use address 0.
** SPI flash API
The target must provide three functions to spiffs:
- s32_t (*spiffs_read)(u32_t addr, u32_t size, u8_t *dst)
- s32_t (*spiffs_write)(u32_t addr, u32_t size, u8_t *src)
- s32_t (*spiffs_erase)(u32_t addr, u32_t size)
These functions define the only communication between the SPI flash and the
spiffs stack.
On success these must return 0 (or SPIFFS_OK). Anything else will be considered
an error.
The size for read and write requests will never exceed the logical page size,
but it may be less.
The address and size on erase requests will always be on physical block size
boundaries.
** Mount specification
In spiffs.h, there is a SPIFFS_mount function defined, used to mount spiffs on
the SPI flash.
s32_t SPIFFS_mount(
spiffs *fs,
spiffs_config *config,
u8_t *work,
u8_t *fd_space,
u32_t fd_space_size,
void *cache,
u32_t cache_size,
spiffs_check_callback check_cb_f)
- fs Points to a spiffs struct. This may be totally uninitialized.
- config Points to a spiffs_config struct. This struct must be
initialized when mounting. See below.
- work A ram memory buffer being double the size of the logical page
size. This buffer is used excessively by the spiffs stack. If
logical page size is 256, this buffer must be 512 bytes.
- fd_space A ram memory buffer used for file descriptors.
- fd_space_size The size of the file descriptor buffer. A file descriptor
normally is around 32 bytes depending on the build config -
the bigger the buffer, the more file descriptors are
available.
- cache A ram memory buffer used for cache. Ignored if cache is
disabled in build config.
- cache_size The size of the cache buffer. Ignored if cache is disabled in
build config. One cache page will be slightly larger than the
logical page size. The more ram, the more cache pages, the
quicker the system.
- check_cb_f Callback function for monitoring spiffs consistency checks and
mending operations. May be null.
The config struct must be initialized prior to mounting. One must always
define the SPI flash access functions:
spiffs_config.hal_read_f - pointing to the function reading the SPI flash
spiffs_config.hal_write_f - pointing to the function writing the SPI flash
spiffs_config.hal_erase_f - pointing to the function erasing the SPI flash
Depending on the build config - if SPIFFS_SINGLETON is set to zero - following
parameters must be defined:
spiffs_config.phys_size - the physical number of bytes accounted for
spiffs on the SPI flash
spiffs_config.phys_addr - the physical starting address on the SPI flash
spiffs_config.phys_erase_block - the physical size of the largest block/sector
on the SPI flash found within the spiffs
usage address space
spiffs_config.log_block_size - the logical size of a spiffs block
spiffs_config.log_page_size - the logical size of a spiffs page
If SPIFFS_SINGLETON is set to one, above parameters must be set ny defines in
the config header file, spiffs_config.h.
** Build config
makefile: The files needed to be compiled to your target resides in files.mk to
be included in your makefile, either by cut and paste or by inclusion.
Types: spiffs uses the types u8_t, s8_t, u16_t, s16_t, u32_t, s32_t; these must
be typedeffed.
spiffs_config.h: you also need to define a spiffs_config.h header. Example of
this is found in the default/ directory.
** RAM
Spiffs needs ram. It needs a working buffer being double the size of the
logical page size. It also needs at least one file descriptor. If cache is
enabled (highly recommended), it will also need a bunch of cache pages.
Say you have a logical page size of 256 bytes. You want to be able to have four
files open simultaneously, and you can give spiffs four cache pages. This
roughly sums up to:
256*2 (work buffer) +
32*4 (file descriptors) +
(256+32)*4 (cache pages) + 40 (cache metadata)
i.e. 1832 bytes.
This is apart from call stack usage.
To get the exact amount of bytes needed on your specific target, enable
SPIFFS_BUFFER_HELP in spiffs_config.h, rebuild and call:
SPIFFS_buffer_bytes_for_filedescs
SPIFFS_buffer_bytes_for_cache
Having these figures you can disable SPIFFS_BUFFER_HELP again to save flash.
* HOW TO CONFIG
TODO

View File

@ -0,0 +1,239 @@
* USING SPIFFS
TODO
* SPIFFS DESIGN
Spiffs is inspired by YAFFS. However, YAFFS is designed for NAND flashes, and
for bigger targets with much more ram. Nevertheless, many wise thoughts have
been borrowed from YAFFS when writing spiffs. Kudos!
The main complication writing spiffs was that it cannot be assumed the target
has a heap. Spiffs must go along only with the work ram buffer given to it.
This forces extra implementation on many areas of spiffs.
** SPI flash devices using NOR technology
Below is a small description of how SPI flashes work internally. This is to
give an understanding of the design choices made in spiffs.
SPI flash devices are physically divided in blocks. On some SPI flash devices,
blocks are further divided into sectors. Datasheets sometimes name blocks as
sectors and vice versa.
Common memory capacaties for SPI flashes are 512kB up to 8MB of data, where
blocks may be 64kB. Sectors can be e.g. 4kB, if supported. Many SPI flashes
have uniform block sizes, whereas others have non-uniform - the latter meaning
that e.g. the first 16 blocks are 4kB big, and the rest are 64kB.
The entire memory is linear and can be read and written in random access.
Erasing can only be done block- or sectorwise; or by mass erase.
SPI flashes can normally be erased from 100.000 up to 1.000.000 cycles before
they fail.
A clean SPI flash from factory have all bits in entire memory set to one. A
mass erase will reset the device to this state. Block or sector erasing will
put the all bits in the area given by the sector or block to ones. Writing to a
NOR flash pulls ones to zeroes. Writing 0xFF to an address is simply a no-op.
Writing 0b10101010 to a flash address holding 0b00001111 will yield 0b00001010.
This way of "write by nand" is used considerably in spiffs.
Common characteristics of NOR flashes are quick reads, but slow writes.
And finally, unlike NAND flashes, NOR flashes seem to not need any error
correction. They always write correctly I gather.
** Spiffs logical structure
Some terminology before proceeding. Physical blocks/sectors means sizes stated
in the datasheet. Logical blocks and pages is something the integrator choose.
** Blocks and pages
Spiffs is allocated to a part or all of the memory of the SPI flash device.
This area is divided into logical blocks, which in turn are divided into
logical pages. The boundary of a logical block must coincide with one or more
physical blocks. The sizes for logical blocks and logical pages always remain
the same, they are uniform.
Example: non-uniform flash mapped to spiffs with 128kB logical blocks
PHYSICAL FLASH BLOCKS SPIFFS LOGICAL BLOCKS: 128kB
+-----------------------+ - - - +-----------------------+
| Block 1 : 16kB | | Block 1 : 128kB |
+-----------------------+ | |
| Block 2 : 16kB | | |
+-----------------------+ | |
| Block 3 : 16kB | | |
+-----------------------+ | |
| Block 4 : 16kB | | |
+-----------------------+ | |
| Block 5 : 64kB | | |
+-----------------------+ - - - +-----------------------+
| Block 6 : 64kB | | Block 2 : 128kB |
+-----------------------+ | |
| Block 7 : 64kB | | |
+-----------------------+ - - - +-----------------------+
| Block 8 : 64kB | | Block 3 : 128kB |
+-----------------------+ | |
| Block 9 : 64kB | | |
+-----------------------+ - - - +-----------------------+
| ... | | ... |
A logical block is divided further into a number of logical pages. A page
defines the smallest data holding element known to spiffs. Hence, if a file
is created being one byte big, it will occupy one page for index and one page
for data - it will occupy 2 x size of a logical page on flash.
So it seems it is good to select a small page size.
Each page has a metadata header being normally 5 to 9 bytes. This said, a very
small page size will make metadata occupy a lot of the memory on the flash. A
page size of 64 bytes will waste 8-14% on metadata, while 256 bytes 2-4%.
So it seems it is good to select a big page size.
Also, spiffs uses a ram buffer being two times the page size. This ram buffer
is used for loading and manipulating pages, but it is also used for algorithms
to find free file ids, scanning the file system, etc. Having too small a page
size means less work buffer for spiffs, ending up in more reads operations and
eventually gives a slower file system.
Choosing the page size for the system involves many factors:
- How big is the logical block size
- What is the normal size of most files
- How much ram can be spent
- How much data (vs metadata) must be crammed into the file system
- How fast must spiffs be
- Other things impossible to find out
So, chosing the Optimal Page Size (tm) seems tricky, to say the least. Don't
fret - there is no optimal page size. This varies from how the target will use
spiffs. Use the golden rule:
~~~ Logical Page Size = Logical Block Size / 256 ~~~
This is a good starting point. The final page size can then be derived through
heuristical experimenting for us non-analytical minds.
** Objects, indices and look-ups
A file, or an object as called in spiffs, is identified by an object id.
Another YAFFS rip-off. This object id is a part of the page header. So, all
pages know to which object/file they belong - not counting the free pages.
An object is made up of two types of pages: object index pages and data pages.
Data pages contain the data written by user. Index pages contain metadata about
the object, more specifically what data pages are part of the object.
The page header also includes something called a span index. Let's say a file
is written covering three data pages. The first data page will then have span
index 0, the second span index 1, and the last data page will have span index
2. Simple as that.
Finally, each page header contain flags, telling if the page is used,
deleted, finalized, holds index or data, and more.
Object indices also have span indices, where an object index with span index 0
is referred to as the object index header. This page does not only contain
references to data pages, but also extra info such as object name, object size
in bytes, flags for file or directory, etc.
If one were to create a file covering three data pages, named e.g.
"spandex-joke.txt", given object id 12, it could look like this:
PAGE 0 <things to be unveiled soon>
PAGE 1 page header: [obj_id:12 span_ix:0 flags:USED|DATA]
<first data page of joke>
PAGE 2 page header: [obj_id:12 span_ix:1 flags:USED|DATA]
<second data page of joke>
PAGE 3 page header: [obj_id:545 span_ix:13 flags:USED|DATA]
<some data belonging to object 545, probably not very amusing>
PAGE 4 page header: [obj_id:12 span_ix:2 flags:USED|DATA]
<third data page of joke>
PAGE 5 page header: [obj_id:12 span_ix:0 flags:USED|INDEX]
obj ix header: [name:spandex-joke.txt size:600 bytes flags:FILE]
obj ix: [1 2 4]
Looking in detail at page 5, the object index header page, the object index
array refers to each data page in order, as mentioned before. The index of the
object index array correlates with the data page span index.
entry ix: 0 1 2
obj ix: [1 2 4]
| | |
PAGE 1, DATA, SPAN_IX 0 --------/ | |
PAGE 2, DATA, SPAN_IX 1 --------/ |
PAGE 4, DATA, SPAN_IX 2 --------/
Things to be unveiled in page 0 - well.. Spiffs is designed for systems low on
ram. We cannot keep a dynamic list on the whereabouts of each object index
header so we can find a file fast. There might not even be a heap! But, we do
not want to scan all page headers on the flash to find the object index header.
The first page(s) of each block contains the so called object look-up. These
are not normal pages, they do not have a header. Instead, they are arrays
pointing out what object-id the rest of all pages in the block belongs to.
By this look-up, only the first page(s) in each block must to scanned to find
the actual page which contains the object index header of the desired object.
The object lookup is redundant metadata. The assumption is that it presents
less overhead reading a full page of data to memory from each block and search
that, instead of reading a small amount of data from each page (i.e. the page
header) in all blocks. Each read operation from SPI flash normally contains
extra data as the read command itself and the flash address. Also, depending on
the underlying implementation, other criterions may need to be passed for each
read transaction, like mutexes and such.
The veiled example unveiled would look like this, with some extra pages:
PAGE 0 [ 12 12 545 12 12 34 34 4 0 0 0 0 ...]
PAGE 1 page header: [obj_id:12 span_ix:0 flags:USED|DATA] ...
PAGE 2 page header: [obj_id:12 span_ix:1 flags:USED|DATA] ...
PAGE 3 page header: [obj_id:545 span_ix:13 flags:USED|DATA] ...
PAGE 4 page header: [obj_id:12 span_ix:2 flags:USED|DATA] ...
PAGE 5 page header: [obj_id:12 span_ix:0 flags:USED|INDEX] ...
PAGE 6 page header: [obj_id:34 span_ix:0 flags:USED|DATA] ...
PAGE 7 page header: [obj_id:34 span_ix:1 flags:USED|DATA] ...
PAGE 8 page header: [obj_id:4 span_ix:1 flags:USED|INDEX] ...
PAGE 9 page header: [obj_id:23 span_ix:0 flags:DELETED|INDEX] ...
PAGE 10 page header: [obj_id:23 span_ix:0 flags:DELETED|DATA] ...
PAGE 11 page header: [obj_id:23 span_ix:1 flags:DELETED|DATA] ...
PAGE 12 page header: [obj_id:23 span_ix:2 flags:DELETED|DATA] ...
...
Ok, so why are page 9 to 12 marked as 0 when they belong to object id 23? These
pages are deleted, so this is marked both in page header flags and in the look
up. This is an example where spiffs uses NOR flashes "nand-way" of writing.
As a matter of fact, there are two object id's which are special:
obj id 0 (all bits zeroes) - indicates a deleted page in object look up
obj id 0xff.. (all bits ones) - indicates a free page in object look up
Actually, the object id's have another quirk: if the most significant bit is
set, this indicates an object index page. If the most significant bit is zero,
this indicates a data page. So to be fully correct, page 0 in above example
would look like this:
PAGE 0 [ 12 12 545 12 *12 34 34 *4 0 0 0 0 ...]
where the asterisk means the msb of the object id is set.
This is another way to speed up the searches when looking for object indices.
By looking on the object id's msb in the object lookup, it is also possible
to find out whether the page is an object index page or a data page.

1
cores/esp8266/spiffs/docs/TODO Executable file
View File

@ -0,0 +1 @@
* When mending lost pages, also see if they fit into length specified in object index header

73
cores/esp8266/spiffs/flashmem.h Executable file
View File

@ -0,0 +1,73 @@
// Based on NodeMCU platform_flash
// https://github.com/nodemcu/nodemcu-firmware
#ifndef SYSTEM_FLASHMEM_H_
#define SYSTEM_FLASHMEM_H_
#ifdef __cplusplus
extern "C" {
#endif
#include "spiffs.h"
#include "spi_flash.h"
#define INTERNAL_FLASH_WRITE_UNIT_SIZE 4
#define INTERNAL_FLASH_READ_UNIT_SIZE 4
#define FLASH_TOTAL_SEC_COUNT (flashmem_get_size_sectors())
#define SYS_PARAM_SEC_COUNT 4
#define FLASH_WORK_SEC_COUNT (FLASH_TOTAL_SEC_COUNT - SYS_PARAM_SEC_COUNT)
#define INTERNAL_FLASH_SECTOR_SIZE SPI_FLASH_SEC_SIZE
#define INTERNAL_FLASH_SIZE ( (FLASH_WORK_SEC_COUNT) * INTERNAL_FLASH_SECTOR_SIZE )
#define INTERNAL_FLASH_START_ADDRESS 0x40200000
typedef struct
{
uint8_t unknown0;
uint8_t unknown1;
enum
{
MODE_QIO = 0,
MODE_QOUT = 1,
MODE_DIO = 2,
MODE_DOUT = 15,
} mode : 8;
enum
{
SPEED_40MHZ = 0,
SPEED_26MHZ = 1,
SPEED_20MHZ = 2,
SPEED_80MHZ = 15,
} speed : 4;
enum
{
SIZE_4MBIT = 0,
SIZE_2MBIT = 1,
SIZE_8MBIT = 2,
SIZE_16MBIT = 3,
SIZE_32MBIT = 4,
} size : 4;
} STORE_TYPEDEF_ATTR SPIFlashInfo;
extern uint32_t flashmem_write( const void *from, uint32_t toaddr, uint32_t size );
extern uint32_t flashmem_read( void *to, uint32_t fromaddr, uint32_t size );
extern bool flashmem_erase_sector( uint32_t sector_id );
extern SPIFlashInfo flashmem_get_info();
extern uint8_t flashmem_get_size_type();
extern uint32_t flashmem_get_size_bytes();
extern uint16_t flashmem_get_size_sectors();
uint32_t flashmem_find_sector( uint32_t address, uint32_t *pstart, uint32_t *pend );
uint32_t flashmem_get_sector_of_address( uint32_t addr );
extern uint32_t flashmem_write_internal( const void *from, uint32_t toaddr, uint32_t size );
extern uint32_t flashmem_read_internal( void *to, uint32_t fromaddr, uint32_t size );
extern uint32_t flashmem_get_first_free_block_address();
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_FLASHMEM_H_ */

181
cores/esp8266/spiffs/spiffs.c Executable file
View File

@ -0,0 +1,181 @@
#include "spiffs.h"
#define LOG_PAGE_SIZE 256
spiffs _filesystemStorageHandle;
static u8_t spiffs_work_buf[LOG_PAGE_SIZE*2];
static u8_t spiffs_fds[32*4];
static u8_t spiffs_cache[(LOG_PAGE_SIZE+32)*4];
static s32_t api_spiffs_read(u32_t addr, u32_t size, u8_t *dst)
{
flashmem_read(dst, addr, size);
return SPIFFS_OK;
}
static s32_t api_spiffs_write(u32_t addr, u32_t size, u8_t *src)
{
//debugf("api_spiffs_write");
flashmem_write(src, addr, size);
return SPIFFS_OK;
}
static s32_t api_spiffs_erase(u32_t addr, u32_t size)
{
debugf("api_spiffs_erase");
u32_t sect_first = flashmem_get_sector_of_address(addr);
u32_t sect_last = sect_first;
while( sect_first <= sect_last )
if( !flashmem_erase_sector( sect_first ++ ) )
return SPIFFS_ERR_INTERNAL;
return SPIFFS_OK;
}
/*******************
The W25Q32BV array is organized into 16,384 programmable pages of 256-bytes each. Up to 256 bytes can be programmed at a time.
Pages can be erased in groups of 16 (4KB sector erase), groups of 128 (32KB block erase), groups of 256 (64KB block erase) or
the entire chip (chip erase). The W25Q32BV has 1,024 erasable sectors and 64 erasable blocks respectively.
The small 4KB sectors allow for greater flexibility in applications that require data and parameter storage.
********************/
extern uint32_t _SPIFFS_start;
extern uint32_t _SPIFFS_end;
spiffs_config spiffs_get_storage_config()
{
spiffs_config cfg = {0};
cfg.phys_addr = (u32_t)&_SPIFFS_start;
if (cfg.phys_addr == 0)
return cfg;
cfg.phys_addr += 0x3000;
cfg.phys_addr &= 0xFFFFC000; // align to 4 sector.
cfg.phys_size = (u32_t)((u32_t)&_SPIFFS_end - (u32_t)&_SPIFFS_start);
/*cfg.phys_addr = INTERNAL_FLASH_SIZE - SPIFFS_WORK_SIZE + INTERNAL_FLASH_START_ADDRESS;
cfg.phys_addr += 0x3000;
cfg.phys_addr &= 0xFFFFC000; // align to 4 sector.
cfg.phys_size = SPIFFS_WORK_SIZE;*/
cfg.phys_erase_block = INTERNAL_FLASH_SECTOR_SIZE; // according to datasheet
cfg.log_block_size = INTERNAL_FLASH_SECTOR_SIZE * 2; // Important to make large
cfg.log_page_size = LOG_PAGE_SIZE; // as we said
return cfg;
}
bool spiffs_format_internal()
{
spiffs_config cfg = spiffs_get_storage_config();
if (cfg.phys_addr == 0)
{
SYSTEM_ERROR("Can't format file system, wrong address");
return false;
}
u32_t sect_first, sect_last;
sect_first = cfg.phys_addr;
sect_first = flashmem_get_sector_of_address((u32_t)&_SPIFFS_start);
sect_last = flashmem_get_sector_of_address((u32_t)&_SPIFFS_end);
debugf("sect_first: %x, sect_last: %x\n", sect_first, sect_last);
while( sect_first <= sect_last )
if(!flashmem_erase_sector( sect_first ++ ))
return false;
}
void spiffs_mount()
{
spiffs_config cfg = spiffs_get_storage_config();
if (cfg.phys_addr == 0)
{
SYSTEM_ERROR("Can't start file system, wrong address");
return;
}
debugf("fs.start:%x, size:%d Kb\n", cfg.phys_addr, cfg.phys_size / 1024);
cfg.hal_read_f = api_spiffs_read;
cfg.hal_write_f = api_spiffs_write;
cfg.hal_erase_f = api_spiffs_erase;
uint32_t dat;
bool writeFirst = false;
flashmem_read(&dat, cfg.phys_addr, 4);
//debugf("%X", dat);
if (dat == UINT32_MAX)
{
debugf("First init file system");
spiffs_format_internal();
writeFirst = true;
}
int res = SPIFFS_mount(&_filesystemStorageHandle,
&cfg,
spiffs_work_buf,
spiffs_fds,
sizeof(spiffs_fds),
spiffs_cache,
sizeof(spiffs_cache),
NULL);
debugf("mount res: %d\n", res);
if (writeFirst)
{
file_t fd = SPIFFS_open(&_filesystemStorageHandle, "initialize_fs_header.dat", SPIFFS_CREAT | SPIFFS_TRUNC | SPIFFS_RDWR, 0);
SPIFFS_write(&_filesystemStorageHandle, fd, (u8_t *)"1", 1);
SPIFFS_fremove(&_filesystemStorageHandle, fd);
SPIFFS_close(&_filesystemStorageHandle, fd);
}
//dat=0;
//flashmem_read(&dat, cfg.phys_addr, 4);
//debugf("%X", dat);
}
void spiffs_unmount()
{
SPIFFS_unmount(&_filesystemStorageHandle);
}
// FS formatting function
bool spiffs_format()
{
spiffs_unmount();
spiffs_format_internal();
spiffs_mount();
return true;
}
//int spiffs_check( void )
//{
// ets_wdt_disable();
// int res = (int)SPIFFS_check(&_filesystemStorageHandle);
// ets_wdt_enable();
// return res;
//}
void test_spiffs()
{
char buf[12] = {0};
// Surely, I've mounted spiffs before entering here
spiffs_file fd;
spiffs_stat st = {0};
SPIFFS_stat(&_filesystemStorageHandle, "my_file.txt", &st);
if (st.size <= 0)
{
fd = SPIFFS_open(&_filesystemStorageHandle, "my_file.txt", SPIFFS_CREAT | SPIFFS_TRUNC | SPIFFS_RDWR, 0);
if (SPIFFS_write(&_filesystemStorageHandle, fd, (u8_t *)"Hello world", 11) < 0)
debugf("errno %d\n", SPIFFS_errno(&_filesystemStorageHandle));
SPIFFS_close(&_filesystemStorageHandle, fd);
debugf("file created");
}
else
debugf("file %s exist :)", st.name);
fd = SPIFFS_open(&_filesystemStorageHandle, "my_file.txt", SPIFFS_RDWR, 0);
if (SPIFFS_read(&_filesystemStorageHandle, fd, (u8_t *)buf, 11) < 0) debugf("errno %d\n", SPIFFS_errno(&_filesystemStorageHandle));
SPIFFS_close(&_filesystemStorageHandle, fd);
debugf("--> %s <--\n", buf);
}

470
cores/esp8266/spiffs/spiffs.h Executable file
View File

@ -0,0 +1,470 @@
/*
* spiffs.h
*
* Created on: May 26, 2013
* Author: petera
*/
#ifndef SPIFFS_H_
#define SPIFFS_H_
#ifdef __cplusplus
extern "C" {
#endif
//#include "c_stdio.h"
#include <user_config.h>
#include "spiffs_config.h"
#include "flashmem.h"
#define SPIFFS_OK 0
#define SPIFFS_ERR_NOT_MOUNTED -10000
#define SPIFFS_ERR_FULL -10001
#define SPIFFS_ERR_NOT_FOUND -10002
#define SPIFFS_ERR_END_OF_OBJECT -10003
#define SPIFFS_ERR_DELETED -10004
#define SPIFFS_ERR_NOT_FINALIZED -10005
#define SPIFFS_ERR_NOT_INDEX -10006
#define SPIFFS_ERR_OUT_OF_FILE_DESCS -10007
#define SPIFFS_ERR_FILE_CLOSED -10008
#define SPIFFS_ERR_FILE_DELETED -10009
#define SPIFFS_ERR_BAD_DESCRIPTOR -10010
#define SPIFFS_ERR_IS_INDEX -10011
#define SPIFFS_ERR_IS_FREE -10012
#define SPIFFS_ERR_INDEX_SPAN_MISMATCH -10013
#define SPIFFS_ERR_DATA_SPAN_MISMATCH -10014
#define SPIFFS_ERR_INDEX_REF_FREE -10015
#define SPIFFS_ERR_INDEX_REF_LU -10016
#define SPIFFS_ERR_INDEX_REF_INVALID -10017
#define SPIFFS_ERR_INDEX_FREE -10018
#define SPIFFS_ERR_INDEX_LU -10019
#define SPIFFS_ERR_INDEX_INVALID -10020
#define SPIFFS_ERR_NOT_WRITABLE -10021
#define SPIFFS_ERR_NOT_READABLE -10022
#define SPIFFS_ERR_CONFLICTING_NAME -10023
#define SPIFFS_ERR_INTERNAL -10050
#define SPIFFS_ERR_TEST -10100
// spiffs file descriptor index type. must be signed
typedef s16_t spiffs_file;
// spiffs file descriptor flags
typedef u16_t spiffs_flags;
// spiffs file mode
typedef u16_t spiffs_mode;
// object type
typedef u8_t spiffs_obj_type;
/* spi read call function type */
typedef s32_t (*spiffs_read)(u32_t addr, u32_t size, u8_t *dst);
/* spi write call function type */
typedef s32_t (*spiffs_write)(u32_t addr, u32_t size, u8_t *src);
/* spi erase call function type */
typedef s32_t (*spiffs_erase)(u32_t addr, u32_t size);
/* file system check callback report operation */
typedef enum {
SPIFFS_CHECK_LOOKUP = 0,
SPIFFS_CHECK_INDEX,
SPIFFS_CHECK_PAGE
} spiffs_check_type;
/* file system check callback report type */
typedef enum {
SPIFFS_CHECK_PROGRESS = 0,
SPIFFS_CHECK_ERROR,
SPIFFS_CHECK_FIX_INDEX,
SPIFFS_CHECK_FIX_LOOKUP,
SPIFFS_CHECK_DELETE_ORPHANED_INDEX,
SPIFFS_CHECK_DELETE_PAGE,
SPIFFS_CHECK_DELETE_BAD_FILE,
} spiffs_check_report;
/* file system check callback function */
typedef void (*spiffs_check_callback)(spiffs_check_type type, spiffs_check_report report,
u32_t arg1, u32_t arg2);
#ifndef SPIFFS_DBG
#define SPIFFS_DBG(...) \
print(__VA_ARGS__)
#endif
#ifndef SPIFFS_GC_DBG
#define SPIFFS_GC_DBG(...) printf(__VA_ARGS__)
#endif
#ifndef SPIFFS_CACHE_DBG
#define SPIFFS_CACHE_DBG(...) printf(__VA_ARGS__)
#endif
#ifndef SPIFFS_CHECK_DBG
#define SPIFFS_CHECK_DBG(...) printf(__VA_ARGS__)
#endif
/* Any write to the filehandle is appended to end of the file */
#define SPIFFS_APPEND (1<<0)
/* If the opened file exists, it will be truncated to zero length before opened */
#define SPIFFS_TRUNC (1<<1)
/* If the opened file does not exist, it will be created before opened */
#define SPIFFS_CREAT (1<<2)
/* The opened file may only be read */
#define SPIFFS_RDONLY (1<<3)
/* The opened file may only be writted */
#define SPIFFS_WRONLY (1<<4)
/* The opened file may be both read and writted */
#define SPIFFS_RDWR (SPIFFS_RDONLY | SPIFFS_WRONLY)
/* Any writes to the filehandle will never be cached */
#define SPIFFS_DIRECT (1<<5)
#define SPIFFS_SEEK_SET (0)
#define SPIFFS_SEEK_CUR (1)
#define SPIFFS_SEEK_END (2)
#define SPIFFS_TYPE_FILE (1)
#define SPIFFS_TYPE_DIR (2)
#define SPIFFS_TYPE_HARD_LINK (3)
#define SPIFFS_TYPE_SOFT_LINK (4)
#ifndef SPIFFS_LOCK
#define SPIFFS_LOCK(fs)
#endif
#ifndef SPIFFS_UNLOCK
#define SPIFFS_UNLOCK(fs)
#endif
// phys structs
// spiffs spi configuration struct
typedef struct {
// physical read function
spiffs_read hal_read_f;
// physical write function
spiffs_write hal_write_f;
// physical erase function
spiffs_erase hal_erase_f;
#if SPIFFS_SINGLETON == 0
// physical size of the spi flash
u32_t phys_size;
// physical offset in spi flash used for spiffs,
// must be on block boundary
u32_t phys_addr;
// physical size when erasing a block
u32_t phys_erase_block;
// logical size of a block, must be on physical
// block size boundary and must never be less than
// a physical block
u32_t log_block_size;
// logical size of a page, must be at least
// log_block_size / 8
u32_t log_page_size;
#endif
} spiffs_config;
typedef struct {
// file system configuration
spiffs_config cfg;
// number of logical blocks
u32_t block_count;
// cursor for free blocks, block index
spiffs_block_ix free_cursor_block_ix;
// cursor for free blocks, entry index
int free_cursor_obj_lu_entry;
// cursor when searching, block index
spiffs_block_ix cursor_block_ix;
// cursor when searching, entry index
int cursor_obj_lu_entry;
// primary work buffer, size of a logical page
u8_t *lu_work;
// secondary work buffer, size of a logical page
u8_t *work;
// file descriptor memory area
u8_t *fd_space;
// available file descriptors
u32_t fd_count;
// last error
s32_t errno;
// current number of free blocks
u32_t free_blocks;
// current number of busy pages
u32_t stats_p_allocated;
// current number of deleted pages
u32_t stats_p_deleted;
// flag indicating that garbage collector is cleaning
u8_t cleaning;
// max erase count amongst all blocks
spiffs_obj_id max_erase_count;
#if SPIFFS_GC_STATS
u32_t stats_gc_runs;
#endif
#if SPIFFS_CACHE
// cache memory
void *cache;
// cache size
u32_t cache_size;
#if SPIFFS_CACHE_STATS
u32_t cache_hits;
u32_t cache_misses;
#endif
#endif
// check callback function
spiffs_check_callback check_cb_f;
} spiffs;
/* spiffs file status struct */
typedef struct {
spiffs_obj_id obj_id;
u32_t size;
spiffs_obj_type type;
u8_t name[SPIFFS_OBJ_NAME_LEN];
} spiffs_stat;
struct spiffs_dirent {
spiffs_obj_id obj_id;
u8_t name[SPIFFS_OBJ_NAME_LEN];
spiffs_obj_type type;
u32_t size;
spiffs_page_ix pix;
};
typedef struct {
spiffs *fs;
spiffs_block_ix block;
int entry;
} spiffs_DIR;
// functions
/**
* Initializes the file system dynamic parameters and mounts the filesystem
* @param fs the file system struct
* @param config the physical and logical configuration of the file system
* @param work a memory work buffer comprising 2*config->log_page_size
* bytes used throughout all file system operations
* @param fd_space memory for file descriptors
* @param fd_space_size memory size of file descriptors
* @param cache memory for cache, may be null
* @param cache_size memory size of cache
* @param check_cb_f callback function for reporting during consistency checks
*/
s32_t SPIFFS_mount(spiffs *fs, spiffs_config *config, u8_t *work,
u8_t *fd_space, u32_t fd_space_size,
void *cache, u32_t cache_size,
spiffs_check_callback check_cb_f);
/**
* Unmounts the file system. All file handles will be flushed of any
* cached writes and closed.
* @param fs the file system struct
*/
void SPIFFS_unmount(spiffs *fs);
/**
* Creates a new file.
* @param fs the file system struct
* @param path the path of the new file
* @param mode ignored, for posix compliance
*/
s32_t SPIFFS_creat(spiffs *fs, const char *path, spiffs_mode mode);
/**
* Opens/creates a file.
* @param fs the file system struct
* @param path the path of the new file
* @param flags the flags for the open command, can be combinations of
* SPIFFS_APPEND, SPIFFS_TRUNC, SPIFFS_CREAT, SPIFFS_RD_ONLY,
* SPIFFS_WR_ONLY, SPIFFS_RDWR, SPIFFS_DIRECT
* @param mode ignored, for posix compliance
*/
spiffs_file SPIFFS_open(spiffs *fs, const char *path, spiffs_flags flags, spiffs_mode mode);
/**
* Opens a file by given dir entry.
* Optimization purposes, when traversing a file system with SPIFFS_readdir
* a normal SPIFFS_open would need to traverse the filesystem again to find
* the file, whilst SPIFFS_open_by_dirent already knows where the file resides.
* @param fs the file system struct
* @param path the dir entry to the file
* @param flags the flags for the open command, can be combinations of
* SPIFFS_APPEND, SPIFFS_TRUNC, SPIFFS_CREAT, SPIFFS_RD_ONLY,
* SPIFFS_WR_ONLY, SPIFFS_RDWR, SPIFFS_DIRECT.
* SPIFFS_CREAT will have no effect in this case.
* @param mode ignored, for posix compliance
*/
spiffs_file SPIFFS_open_by_dirent(spiffs *fs, struct spiffs_dirent *e, spiffs_flags flags, spiffs_mode mode);
/**
* Reads from given filehandle.
* @param fs the file system struct
* @param fh the filehandle
* @param buf where to put read data
* @param len how much to read
* @returns number of bytes read, or -1 if error
*/
s32_t SPIFFS_read(spiffs *fs, spiffs_file fh, void *buf, u32_t len);
/**
* Writes to given filehandle.
* @param fs the file system struct
* @param fh the filehandle
* @param buf the data to write
* @param len how much to write
* @returns number of bytes written, or -1 if error
*/
s32_t SPIFFS_write(spiffs *fs, spiffs_file fh, void *buf, u32_t len);
/**
* Moves the read/write file offset
* @param fs the file system struct
* @param fh the filehandle
* @param offs how much/where to move the offset
* @param whence if SPIFFS_SEEK_SET, the file offset shall be set to offset bytes
* if SPIFFS_SEEK_CUR, the file offset shall be set to its current location plus offset
* if SPIFFS_SEEK_END, the file offset shall be set to the size of the file plus offset
*/
s32_t SPIFFS_lseek(spiffs *fs, spiffs_file fh, s32_t offs, int whence);
/**
* Removes a file by path
* @param fs the file system struct
* @param path the path of the file to remove
*/
s32_t SPIFFS_remove(spiffs *fs, const char *path);
/**
* Removes a file by filehandle
* @param fs the file system struct
* @param fh the filehandle of the file to remove
*/
s32_t SPIFFS_fremove(spiffs *fs, spiffs_file fh);
/**
* Gets file status by path
* @param fs the file system struct
* @param path the path of the file to stat
* @param s the stat struct to populate
*/
s32_t SPIFFS_stat(spiffs *fs, const char *path, spiffs_stat *s);
/**
* Gets file status by filehandle
* @param fs the file system struct
* @param fh the filehandle of the file to stat
* @param s the stat struct to populate
*/
s32_t SPIFFS_fstat(spiffs *fs, spiffs_file fh, spiffs_stat *s);
/**
* Flushes all pending write operations from cache for given file
* @param fs the file system struct
* @param fh the filehandle of the file to flush
*/
s32_t SPIFFS_fflush(spiffs *fs, spiffs_file fh);
/**
* Closes a filehandle. If there are pending write operations, these are finalized before closing.
* @param fs the file system struct
* @param fh the filehandle of the file to close
*/
void SPIFFS_close(spiffs *fs, spiffs_file fh);
/**
* Renames a file
* @param fs the file system struct
* @param old path of file to rename
* @param new new path of file
*/
s32_t SPIFFS_rename(spiffs *fs, const char *old, const char *newname);
/**
* Returns last error of last file operation.
* @param fs the file system struct
*/
s32_t SPIFFS_errno(spiffs *fs);
/**
* Opens a directory stream corresponding to the given name.
* The stream is positioned at the first entry in the directory.
* On hydrogen builds the name argument is ignored as hydrogen builds always correspond
* to a flat file structure - no directories.
* @param fs the file system struct
* @param name the name of the directory
* @param d pointer the directory stream to be populated
*/
spiffs_DIR *SPIFFS_opendir(spiffs *fs, const char *name, spiffs_DIR *d);
/**
* Closes a directory stream
* @param d the directory stream to close
*/
s32_t SPIFFS_closedir(spiffs_DIR *d);
/**
* Reads a directory into given spifs_dirent struct.
* @param d pointer to the directory stream
* @param e the dirent struct to be populated
* @returns null if error or end of stream, else given dirent is returned
*/
struct spiffs_dirent *SPIFFS_readdir(spiffs_DIR *d, struct spiffs_dirent *e);
/**
* Runs a consistency check on given filesystem.
* @param fs the file system struct
*/
s32_t SPIFFS_check(spiffs *fs);
/**
* Check if EOF reached.
* @param fs the file system struct
* @param fh the filehandle of the file to check
*/
s32_t SPIFFS_eof(spiffs *fs, spiffs_file fh);
s32_t SPIFFS_tell(spiffs *fs, spiffs_file fh);
#if SPIFFS_TEST_VISUALISATION
/**
* Prints out a visualization of the filesystem.
* @param fs the file system struct
*/
s32_t SPIFFS_vis(spiffs *fs);
#endif
#if SPIFFS_BUFFER_HELP
/**
* Returns number of bytes needed for the filedescriptor buffer given
* amount of file descriptors.
*/
u32_t SPIFFS_buffer_bytes_for_filedescs(spiffs *fs, u32_t num_descs);
#if SPIFFS_CACHE
/**
* Returns number of bytes needed for the cache buffer given
* amount of cache pages.
*/
u32_t SPIFFS_buffer_bytes_for_cache(spiffs *fs, u32_t num_pages);
#endif
#endif
#if SPIFFS_CACHE
#endif
void spiffs_mount();
void spiffs_unmount();
bool spiffs_format();
spiffs_config spiffs_get_storage_config();
extern void test_spiffs();
extern spiffs _filesystemStorageHandle;
#ifdef __cplusplus
}
#endif
#endif /* SPIFFS_H_ */

View File

@ -0,0 +1,303 @@
/*
* spiffs_cache.c
*
* Created on: Jun 23, 2013
* Author: petera
*/
#include "spiffs.h"
#include "spiffs_nucleus.h"
#if SPIFFS_CACHE
// returns cached page for give page index, or null if no such cached page
static spiffs_cache_page *spiffs_cache_page_get(spiffs *fs, spiffs_page_ix pix) {
spiffs_cache *cache = spiffs_get_cache(fs);
if ((cache->cpage_use_map & cache->cpage_use_mask) == 0) return 0;
int i;
for (i = 0; i < cache->cpage_count; i++) {
spiffs_cache_page *cp = spiffs_get_cache_page_hdr(fs, cache, i);
if ((cache->cpage_use_map & (1<<i)) &&
(cp->flags & SPIFFS_CACHE_FLAG_TYPE_WR) == 0 &&
cp->pix == pix ) {
SPIFFS_CACHE_DBG("CACHE_GET: have cache page %u for %04x\n", i, pix);
cp->last_access = cache->last_access;
return cp;
}
}
//SPIFFS_CACHE_DBG("CACHE_GET: no cache for %04x\n", pix);
return 0;
}
// frees cached page
static s32_t spiffs_cache_page_free(spiffs *fs, int ix, u8_t write_back) {
s32_t res = SPIFFS_OK;
spiffs_cache *cache = spiffs_get_cache(fs);
spiffs_cache_page *cp = spiffs_get_cache_page_hdr(fs, cache, ix);
if (cache->cpage_use_map & (1<<ix)) {
if (write_back &&
(cp->flags & SPIFFS_CACHE_FLAG_TYPE_WR) == 0 &&
(cp->flags & SPIFFS_CACHE_FLAG_DIRTY)) {
u8_t *mem = spiffs_get_cache_page(fs, cache, ix);
res = fs->cfg.hal_write_f(SPIFFS_PAGE_TO_PADDR(fs, cp->pix), SPIFFS_CFG_LOG_PAGE_SZ(fs), mem);
}
cp->flags = 0;
cache->cpage_use_map &= ~(1 << ix);
if (cp->flags & SPIFFS_CACHE_FLAG_TYPE_WR) {
SPIFFS_CACHE_DBG("CACHE_FREE: free cache page %u objid %04x\n", ix, cp->obj_id);
} else {
SPIFFS_CACHE_DBG("CACHE_FREE: free cache page %u pix %04x\n", ix, cp->pix);
}
}
return res;
}
// removes the oldest accessed cached page
static s32_t spiffs_cache_page_remove_oldest(spiffs *fs, u8_t flag_mask, u8_t flags) {
s32_t res = SPIFFS_OK;
spiffs_cache *cache = spiffs_get_cache(fs);
if ((cache->cpage_use_map & cache->cpage_use_mask) != cache->cpage_use_mask) {
// at least one free cpage
return SPIFFS_OK;
}
// all busy, scan thru all to find the cpage which has oldest access
int i;
int cand_ix = -1;
u32_t oldest_val = 0;
for (i = 0; i < cache->cpage_count; i++) {
spiffs_cache_page *cp = spiffs_get_cache_page_hdr(fs, cache, i);
if ((cache->last_access - cp->last_access) > oldest_val &&
(cp->flags & flag_mask) == flags) {
oldest_val = cache->last_access - cp->last_access;
cand_ix = i;
}
}
if (cand_ix >= 0) {
res = spiffs_cache_page_free(fs, cand_ix, 1);
}
return res;
}
// allocates a new cached page and returns it, or null if all cache pages are busy
static spiffs_cache_page *spiffs_cache_page_allocate(spiffs *fs) {
spiffs_cache *cache = spiffs_get_cache(fs);
if (cache->cpage_use_map == 0xffffffff) {
// out of cache memory
return 0;
}
int i;
for (i = 0; i < cache->cpage_count; i++) {
if ((cache->cpage_use_map & (1<<i)) == 0) {
spiffs_cache_page *cp = spiffs_get_cache_page_hdr(fs, cache, i);
cache->cpage_use_map |= (1<<i);
cp->last_access = cache->last_access;
SPIFFS_CACHE_DBG("CACHE_ALLO: allocated cache page %u\n", i);
return cp;
}
}
// out of cache entries
return 0;
}
// drops the cache page for give page index
void spiffs_cache_drop_page(spiffs *fs, spiffs_page_ix pix) {
spiffs_cache_page *cp = spiffs_cache_page_get(fs, pix);
if (cp) {
spiffs_cache_page_free(fs, cp->ix, 0);
}
}
// ------------------------------
// reads from spi flash or the cache
s32_t spiffs_phys_rd(
spiffs *fs,
u8_t op,
spiffs_file fh,
u32_t addr,
u32_t len,
u8_t *dst) {
(void)fh;
s32_t res = SPIFFS_OK;
spiffs_cache *cache = spiffs_get_cache(fs);
spiffs_cache_page *cp = spiffs_cache_page_get(fs, SPIFFS_PADDR_TO_PAGE(fs, addr));
cache->last_access++;
if (cp) {
#if SPIFFS_CACHE_STATS
fs->cache_hits++;
#endif
cp->last_access = cache->last_access;
} else {
if ((op & SPIFFS_OP_TYPE_MASK) == SPIFFS_OP_T_OBJ_LU2) {
// for second layer lookup functions, we do not cache in order to prevent shredding
return fs->cfg.hal_read_f(
addr ,
len,
dst);
}
#if SPIFFS_CACHE_STATS
fs->cache_misses++;
#endif
res = spiffs_cache_page_remove_oldest(fs, SPIFFS_CACHE_FLAG_TYPE_WR, 0);
cp = spiffs_cache_page_allocate(fs);
if (cp) {
cp->flags = SPIFFS_CACHE_FLAG_WRTHRU;
cp->pix = SPIFFS_PADDR_TO_PAGE(fs, addr);
}
s32_t res2 = fs->cfg.hal_read_f(
addr - SPIFFS_PADDR_TO_PAGE_OFFSET(fs, addr),
SPIFFS_CFG_LOG_PAGE_SZ(fs),
spiffs_get_cache_page(fs, cache, cp->ix));
if (res2 != SPIFFS_OK) {
res = res2;
}
}
u8_t *mem = spiffs_get_cache_page(fs, cache, cp->ix);
c_memcpy(dst, &mem[SPIFFS_PADDR_TO_PAGE_OFFSET(fs, addr)], len);
return res;
}
// writes to spi flash and/or the cache
s32_t spiffs_phys_wr(
spiffs *fs,
u8_t op,
spiffs_file fh,
u32_t addr,
u32_t len,
u8_t *src) {
(void)fh;
spiffs_page_ix pix = SPIFFS_PADDR_TO_PAGE(fs, addr);
spiffs_cache *cache = spiffs_get_cache(fs);
spiffs_cache_page *cp = spiffs_cache_page_get(fs, pix);
if (cp && (op & SPIFFS_OP_COM_MASK) != SPIFFS_OP_C_WRTHRU) {
// have a cache page
// copy in data to cache page
if ((op & SPIFFS_OP_COM_MASK) == SPIFFS_OP_C_DELE &&
(op & SPIFFS_OP_TYPE_MASK) != SPIFFS_OP_T_OBJ_LU) {
// page is being deleted, wipe from cache - unless it is a lookup page
spiffs_cache_page_free(fs, cp->ix, 0);
return fs->cfg.hal_write_f(addr, len, src);
}
u8_t *mem = spiffs_get_cache_page(fs, cache, cp->ix);
c_memcpy(&mem[SPIFFS_PADDR_TO_PAGE_OFFSET(fs, addr)], src, len);
cache->last_access++;
cp->last_access = cache->last_access;
if (cp->flags && SPIFFS_CACHE_FLAG_WRTHRU) {
// page is being updated, no write-cache, just pass thru
return fs->cfg.hal_write_f(addr, len, src);
} else {
return SPIFFS_OK;
}
} else {
// no cache page, no write cache - just write thru
return fs->cfg.hal_write_f(addr, len, src);
}
}
#if SPIFFS_CACHE_WR
// returns the cache page that this fd refers, or null if no cache page
spiffs_cache_page *spiffs_cache_page_get_by_fd(spiffs *fs, spiffs_fd *fd) {
spiffs_cache *cache = spiffs_get_cache(fs);
if ((cache->cpage_use_map & cache->cpage_use_mask) == 0) {
// all cpages free, no cpage cannot be assigned to obj_id
return 0;
}
int i;
for (i = 0; i < cache->cpage_count; i++) {
spiffs_cache_page *cp = spiffs_get_cache_page_hdr(fs, cache, i);
if ((cache->cpage_use_map & (1<<i)) &&
(cp->flags & SPIFFS_CACHE_FLAG_TYPE_WR) &&
cp->obj_id == fd->obj_id) {
return cp;
}
}
return 0;
}
// allocates a new cache page and refers this to given fd - flushes an old cache
// page if all cache is busy
spiffs_cache_page *spiffs_cache_page_allocate_by_fd(spiffs *fs, spiffs_fd *fd) {
// before this function is called, it is ensured that there is no already existing
// cache page with same object id
spiffs_cache_page_remove_oldest(fs, SPIFFS_CACHE_FLAG_TYPE_WR, 0);
spiffs_cache_page *cp = spiffs_cache_page_allocate(fs);
if (cp == 0) {
// could not get cache page
return 0;
}
cp->flags = SPIFFS_CACHE_FLAG_TYPE_WR;
cp->obj_id = fd->obj_id;
fd->cache_page = cp;
return cp;
}
// unrefers all fds that this cache page refers to and releases the cache page
void spiffs_cache_fd_release(spiffs *fs, spiffs_cache_page *cp) {
if (cp == 0) return;
u32_t i;
spiffs_fd *fds = (spiffs_fd *)fs->fd_space;
for (i = 0; i < fs->fd_count; i++) {
spiffs_fd *cur_fd = &fds[i];
if (cur_fd->file_nbr != 0 && cur_fd->cache_page == cp) {
cur_fd->cache_page = 0;
}
}
spiffs_cache_page_free(fs, cp->ix, 0);
cp->obj_id = 0;
}
#endif
// initializes the cache
void spiffs_cache_init(spiffs *fs) {
if (fs->cache == 0) return;
u32_t sz = fs->cache_size;
u32_t cache_mask = 0;
int i;
int cache_entries =
(sz - sizeof(spiffs_cache)) / (SPIFFS_CACHE_PAGE_SIZE(fs));
if (cache_entries <= 0) return;
for (i = 0; i < cache_entries; i++) {
cache_mask <<= 1;
cache_mask |= 1;
}
spiffs_cache cache;
c_memset(&cache, 0, sizeof(spiffs_cache));
cache.cpage_count = cache_entries;
cache.cpages = (u8_t *)((u8_t *)fs->cache + sizeof(spiffs_cache));
cache.cpage_use_map = 0xffffffff;
cache.cpage_use_mask = cache_mask;
c_memcpy(fs->cache, &cache, sizeof(spiffs_cache));
spiffs_cache *c = spiffs_get_cache(fs);
c_memset(c->cpages, 0, c->cpage_count * SPIFFS_CACHE_PAGE_SIZE(fs));
c->cpage_use_map &= ~(c->cpage_use_mask);
for (i = 0; i < cache.cpage_count; i++) {
spiffs_get_cache_page_hdr(fs, c, i)->ix = i;
}
}
#endif // SPIFFS_CACHE

View File

@ -0,0 +1,973 @@
/*
* spiffs_check.c
*
* Contains functionality for checking file system consistency
* and mending problems.
* Three levels of consistency checks are implemented:
*
* Look up consistency
* Checks if indices in lookup pages are coherent with page headers
* Object index consistency
* Checks if there are any orphaned object indices (missing object index headers).
* If an object index is found but not its header, the object index is deleted.
* This is critical for the following page consistency check.
* Page consistency
* Checks for pages that ought to be indexed, ought not to be indexed, are multiple indexed
*
*
* Created on: Jul 7, 2013
* Author: petera
*/
#include "spiffs.h"
#include "spiffs_nucleus.h"
//---------------------------------------
// Look up consistency
// searches in the object indices and returns the referenced page index given
// the object id and the data span index
// destroys fs->lu_work
static s32_t spiffs_object_get_data_page_index_reference(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_span_ix data_spix,
spiffs_page_ix *pix,
spiffs_page_ix *objix_pix) {
s32_t res;
// calculate object index span index for given data page span index
spiffs_span_ix objix_spix = SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, data_spix);
// find obj index for obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, obj_id | SPIFFS_OBJ_ID_IX_FLAG, objix_spix, 0, objix_pix);
SPIFFS_CHECK_RES(res);
// load obj index entry
u32_t addr = SPIFFS_PAGE_TO_PADDR(fs, *objix_pix);
if (objix_spix == 0) {
// get referenced page from object index header
addr += sizeof(spiffs_page_object_ix_header) + data_spix * sizeof(spiffs_page_ix);
} else {
// get referenced page from object index
addr += sizeof(spiffs_page_object_ix) + SPIFFS_OBJ_IX_ENTRY(fs, data_spix) * sizeof(spiffs_page_ix);
}
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ, 0, addr, sizeof(spiffs_page_ix), (u8_t *)pix);
return res;
}
// copies page contents to a new page
static s32_t spiffs_rewrite_page(spiffs *fs, spiffs_page_ix cur_pix, spiffs_page_header *p_hdr, spiffs_page_ix *new_pix) {
s32_t res;
res = spiffs_page_allocate_data(fs, p_hdr->obj_id, p_hdr, 0,0,0,0, new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_phys_cpy(fs, 0,
SPIFFS_PAGE_TO_PADDR(fs, *new_pix) + sizeof(spiffs_page_header),
SPIFFS_PAGE_TO_PADDR(fs, cur_pix) + sizeof(spiffs_page_header),
SPIFFS_DATA_PAGE_SIZE(fs));
SPIFFS_CHECK_RES(res);
return res;
}
// rewrites the object index for given object id and replaces the
// data page index to a new page index
static s32_t spiffs_rewrite_index(spiffs *fs, spiffs_obj_id obj_id, spiffs_span_ix data_spix, spiffs_page_ix new_data_pix, spiffs_page_ix objix_pix) {
s32_t res;
spiffs_block_ix bix;
int entry;
spiffs_page_ix free_pix;
obj_id |= SPIFFS_OBJ_ID_IX_FLAG;
// find free entry
res = spiffs_obj_lu_find_free(fs, fs->free_cursor_block_ix, fs->free_cursor_obj_lu_entry, &bix, &entry);
SPIFFS_CHECK_RES(res);
free_pix = SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, bix, entry);
// calculate object index span index for given data page span index
spiffs_span_ix objix_spix = SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, data_spix);
if (objix_spix == 0) {
// calc index in index header
entry = data_spix;
} else {
// calc entry in index
entry = SPIFFS_OBJ_IX_ENTRY(fs, data_spix);
}
// load index
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, objix_pix), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
SPIFFS_CHECK_RES(res);
spiffs_page_header *objix_p_hdr = (spiffs_page_header *)fs->lu_work;
// be ultra safe, double check header against provided data
if (objix_p_hdr->obj_id != obj_id) {
spiffs_page_delete(fs, free_pix);
return SPIFFS_ERR_CHECK_OBJ_ID_MISM;
}
if (objix_p_hdr->span_ix != objix_spix) {
spiffs_page_delete(fs, free_pix);
return SPIFFS_ERR_CHECK_SPIX_MISM;
}
if ((objix_p_hdr->flags & (SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_IXDELE | SPIFFS_PH_FLAG_INDEX |
SPIFFS_PH_FLAG_FINAL | SPIFFS_PH_FLAG_DELET)) !=
(SPIFFS_PH_FLAG_IXDELE | SPIFFS_PH_FLAG_DELET)) {
spiffs_page_delete(fs, free_pix);
return SPIFFS_ERR_CHECK_FLAGS_BAD;
}
// rewrite in mem
if (objix_spix == 0) {
((spiffs_page_ix*)((u8_t *)fs->lu_work + sizeof(spiffs_page_object_ix_header)))[data_spix] = new_data_pix;
} else {
((spiffs_page_ix*)((u8_t *)fs->lu_work + sizeof(spiffs_page_object_ix)))[SPIFFS_OBJ_IX_ENTRY(fs, data_spix)] = new_data_pix;
}
res = _spiffs_wr(fs, SPIFFS_OP_T_OBJ_DA | SPIFFS_OP_C_UPDT,
0, SPIFFS_PAGE_TO_PADDR(fs, free_pix), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
SPIFFS_CHECK_RES(res);
res = _spiffs_wr(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_UPDT,
0, SPIFFS_BLOCK_TO_PADDR(fs, SPIFFS_BLOCK_FOR_PAGE(fs, free_pix)) + SPIFFS_OBJ_LOOKUP_ENTRY_FOR_PAGE(fs, free_pix) * sizeof(spiffs_page_ix),
sizeof(spiffs_obj_id),
(u8_t *)&obj_id);
SPIFFS_CHECK_RES(res);
res = spiffs_page_delete(fs, objix_pix);
return res;
}
// deletes an object just by marking object index header as deleted
static s32_t spiffs_delete_obj_lazy(spiffs *fs, spiffs_obj_id obj_id) {
spiffs_page_ix objix_hdr_pix;
s32_t res;
res = spiffs_obj_lu_find_id_and_span(fs, obj_id, 0, 0, &objix_hdr_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
return SPIFFS_OK;
}
SPIFFS_CHECK_RES(res);
u8_t flags = 0xff & ~SPIFFS_PH_FLAG_IXDELE;
res = _spiffs_wr(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_UPDT,
0, SPIFFS_PAGE_TO_PADDR(fs, objix_hdr_pix) + offsetof(spiffs_page_header, flags),
sizeof(u8_t),
(u8_t *)&flags);
return res;
}
// validates the given look up entry
static s32_t spiffs_lookup_check_validate(spiffs *fs, spiffs_obj_id lu_obj_id, spiffs_page_header *p_hdr,
spiffs_page_ix cur_pix, spiffs_block_ix cur_block, int cur_entry, int *reload_lu) {
(void)cur_block;
(void)cur_entry;
u8_t delete_page = 0;
s32_t res = SPIFFS_OK;
spiffs_page_ix objix_pix;
spiffs_page_ix ref_pix;
// check validity, take actions
if (((lu_obj_id == SPIFFS_OBJ_ID_DELETED) && (p_hdr->flags & SPIFFS_PH_FLAG_DELET)) ||
((lu_obj_id == SPIFFS_OBJ_ID_FREE) && (p_hdr->flags & SPIFFS_PH_FLAG_USED) == 0)) {
// look up entry deleted / free but used in page header
SPIFFS_CHECK_DBG("LU: pix %04x deleted/free in lu but not on page\n", cur_pix);
*reload_lu = 1;
delete_page = 1;
if (p_hdr->flags & SPIFFS_PH_FLAG_INDEX) {
// header says data page
// data page can be removed if not referenced by some object index
res = spiffs_object_get_data_page_index_reference(fs, p_hdr->obj_id, p_hdr->span_ix, &ref_pix, &objix_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
// no object with this id, so remove page safely
res = SPIFFS_OK;
} else {
SPIFFS_CHECK_RES(res);
if (ref_pix == cur_pix) {
// data page referenced by object index but deleted in lu
// copy page to new place and re-write the object index to new place
spiffs_page_ix new_pix;
res = spiffs_rewrite_page(fs, cur_pix, p_hdr, &new_pix);
SPIFFS_CHECK_DBG("LU: FIXUP: data page not found elsewhere, rewriting %04x to new page %04x\n", cur_pix, new_pix);
SPIFFS_CHECK_RES(res);
*reload_lu = 1;
SPIFFS_CHECK_DBG("LU: FIXUP: %04x rewritten to %04x, affected objix_pix %04x\n", cur_pix, new_pix, objix_pix);
res = spiffs_rewrite_index(fs, p_hdr->obj_id, p_hdr->span_ix, new_pix, objix_pix);
if (res <= _SPIFFS_ERR_CHECK_FIRST && res > _SPIFFS_ERR_CHECK_LAST) {
// index bad also, cannot mend this file
SPIFFS_CHECK_DBG("LU: FIXUP: index bad %d, cannot mend!\n", res);
res = spiffs_page_delete(fs, new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_delete_obj_lazy(fs, p_hdr->obj_id);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr->obj_id, 0);
} else {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_INDEX, p_hdr->obj_id, p_hdr->span_ix);
}
SPIFFS_CHECK_RES(res);
}
}
} else {
// header says index page
// index page can be removed if other index with same obj_id and spanix is found
res = spiffs_obj_lu_find_id_and_span(fs, p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG, p_hdr->span_ix, cur_pix, 0);
if (res == SPIFFS_ERR_NOT_FOUND) {
// no such index page found, check for a data page amongst page headers
// lu cannot be trusted
res = spiffs_obj_lu_find_id_and_span_by_phdr(fs, p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG, 0, 0, 0);
if (res == SPIFFS_OK) { // ignore other errors
// got a data page also, assume lu corruption only, rewrite to new page
spiffs_page_ix new_pix;
res = spiffs_rewrite_page(fs, cur_pix, p_hdr, &new_pix);
SPIFFS_CHECK_DBG("LU: FIXUP: ix page with data not found elsewhere, rewriting %04x to new page %04x\n", cur_pix, new_pix);
SPIFFS_CHECK_RES(res);
*reload_lu = 1;
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_LOOKUP, p_hdr->obj_id, p_hdr->span_ix);
}
} else {
SPIFFS_CHECK_RES(res);
}
}
}
if (lu_obj_id != SPIFFS_OBJ_ID_FREE && lu_obj_id != SPIFFS_OBJ_ID_DELETED) {
// look up entry used
if ((p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG) != (lu_obj_id | SPIFFS_OBJ_ID_IX_FLAG)) {
SPIFFS_CHECK_DBG("LU: pix %04x differ in obj_id lu:%04x ph:%04x\n", cur_pix, lu_obj_id, p_hdr->obj_id);
delete_page = 1;
if ((p_hdr->flags & SPIFFS_PH_FLAG_DELET) == 0 ||
(p_hdr->flags & SPIFFS_PH_FLAG_FINAL) ||
(p_hdr->flags & (SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_IXDELE)) == 0) {
// page deleted or not finalized, just remove it
} else {
if (p_hdr->flags & SPIFFS_PH_FLAG_INDEX) {
// if data page, check for reference to this page
res = spiffs_object_get_data_page_index_reference(fs, p_hdr->obj_id, p_hdr->span_ix, &ref_pix, &objix_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
// no object with this id, so remove page safely
res = SPIFFS_OK;
} else {
SPIFFS_CHECK_RES(res);
// if found, rewrite page with object id, update index, and delete current
if (ref_pix == cur_pix) {
spiffs_page_ix new_pix;
res = spiffs_rewrite_page(fs, cur_pix, p_hdr, &new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_rewrite_index(fs, p_hdr->obj_id, p_hdr->span_ix, new_pix, objix_pix);
if (res <= _SPIFFS_ERR_CHECK_FIRST && res > _SPIFFS_ERR_CHECK_LAST) {
// index bad also, cannot mend this file
SPIFFS_CHECK_DBG("LU: FIXUP: index bad %d, cannot mend!\n", res);
res = spiffs_page_delete(fs, new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_delete_obj_lazy(fs, p_hdr->obj_id);
*reload_lu = 1;
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr->obj_id, 0);
}
SPIFFS_CHECK_RES(res);
}
}
} else {
// else if index, check for other pages with both obj_id's and spanix
spiffs_page_ix objix_pix_lu, objix_pix_ph;
// see if other object index page exists for lookup obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, lu_obj_id | SPIFFS_OBJ_ID_IX_FLAG, p_hdr->span_ix, 0, &objix_pix_lu);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
objix_pix_lu = 0;
}
SPIFFS_CHECK_RES(res);
// see if other object index exists for page header obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG, p_hdr->span_ix, 0, &objix_pix_ph);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
objix_pix_ph = 0;
}
SPIFFS_CHECK_RES(res);
// if both obj_id's found, just delete current
if (objix_pix_ph == 0 || objix_pix_lu == 0) {
// otherwise try finding first corresponding data pages
spiffs_page_ix data_pix_lu, data_pix_ph;
// see if other data page exists for look up obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, lu_obj_id & ~SPIFFS_OBJ_ID_IX_FLAG, 0, 0, &data_pix_lu);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
objix_pix_lu = 0;
}
SPIFFS_CHECK_RES(res);
// see if other data page exists for page header obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, p_hdr->obj_id & ~SPIFFS_OBJ_ID_IX_FLAG, 0, 0, &data_pix_ph);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
objix_pix_ph = 0;
}
SPIFFS_CHECK_RES(res);
spiffs_page_header new_ph;
new_ph.flags = 0xff & ~(SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_FINAL);
new_ph.span_ix = p_hdr->span_ix;
spiffs_page_ix new_pix;
if ((objix_pix_lu && data_pix_lu && data_pix_ph && objix_pix_ph == 0) ||
(objix_pix_lu == 0 && data_pix_ph && objix_pix_ph == 0)) {
// got a data page for page header obj id
// rewrite as obj_id_ph
new_ph.obj_id = p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG;
res = spiffs_rewrite_page(fs, cur_pix, &new_ph, &new_pix);
SPIFFS_CHECK_DBG("LU: FIXUP: rewrite page %04x as %04x to pix %04x\n", cur_pix, new_ph.obj_id, new_pix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_LOOKUP, p_hdr->obj_id, p_hdr->span_ix);
SPIFFS_CHECK_RES(res);
*reload_lu = 1;
} else if ((objix_pix_ph && data_pix_ph && data_pix_lu && objix_pix_lu == 0) ||
(objix_pix_ph == 0 && data_pix_lu && objix_pix_lu == 0)) {
// got a data page for look up obj id
// rewrite as obj_id_lu
new_ph.obj_id = lu_obj_id | SPIFFS_OBJ_ID_IX_FLAG;
SPIFFS_CHECK_DBG("LU: FIXUP: rewrite page %04x as %04x\n", cur_pix, new_ph.obj_id);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_LOOKUP, p_hdr->obj_id, p_hdr->span_ix);
res = spiffs_rewrite_page(fs, cur_pix, &new_ph, &new_pix);
SPIFFS_CHECK_RES(res);
*reload_lu = 1;
} else {
// cannot safely do anything
SPIFFS_CHECK_DBG("LU: FIXUP: nothing to do, just delete\n");
}
}
}
}
} else if (((lu_obj_id & SPIFFS_OBJ_ID_IX_FLAG) && (p_hdr->flags & SPIFFS_PH_FLAG_INDEX)) ||
((lu_obj_id & SPIFFS_OBJ_ID_IX_FLAG) == 0 && (p_hdr->flags & SPIFFS_PH_FLAG_INDEX) == 0)) {
SPIFFS_CHECK_DBG("LU: %04x lu/page index marking differ\n", cur_pix);
spiffs_page_ix data_pix, objix_pix_d;
// see if other data page exists for given obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, lu_obj_id & ~SPIFFS_OBJ_ID_IX_FLAG, p_hdr->span_ix, cur_pix, &data_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
data_pix = 0;
}
SPIFFS_CHECK_RES(res);
// see if other object index exists for given obj id and span index
res = spiffs_obj_lu_find_id_and_span(fs, lu_obj_id | SPIFFS_OBJ_ID_IX_FLAG, p_hdr->span_ix, cur_pix, &objix_pix_d);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
objix_pix_d = 0;
}
SPIFFS_CHECK_RES(res);
delete_page = 1;
// if other data page exists and object index exists, just delete page
if (data_pix && objix_pix_d) {
SPIFFS_CHECK_DBG("LU: FIXUP: other index and data page exists, simply remove\n");
} else
// if only data page exists, make this page index
if (data_pix && objix_pix_d == 0) {
SPIFFS_CHECK_DBG("LU: FIXUP: other data page exists, make this index\n");
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_INDEX, lu_obj_id, p_hdr->span_ix);
spiffs_page_header new_ph;
spiffs_page_ix new_pix;
new_ph.flags = 0xff & ~(SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_FINAL | SPIFFS_PH_FLAG_INDEX);
new_ph.obj_id = lu_obj_id | SPIFFS_OBJ_ID_IX_FLAG;
new_ph.span_ix = p_hdr->span_ix;
res = spiffs_page_allocate_data(fs, new_ph.obj_id, &new_ph, 0, 0, 0, 1, &new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_phys_cpy(fs, 0, SPIFFS_PAGE_TO_PADDR(fs, new_pix) + sizeof(spiffs_page_header),
SPIFFS_PAGE_TO_PADDR(fs, cur_pix) + sizeof(spiffs_page_header),
SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_header));
SPIFFS_CHECK_RES(res);
} else
// if only index exists, make data page
if (data_pix == 0 && objix_pix_d) {
SPIFFS_CHECK_DBG("LU: FIXUP: other index page exists, make this data\n");
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_LOOKUP, lu_obj_id, p_hdr->span_ix);
spiffs_page_header new_ph;
spiffs_page_ix new_pix;
new_ph.flags = 0xff & ~(SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_FINAL);
new_ph.obj_id = lu_obj_id & ~SPIFFS_OBJ_ID_IX_FLAG;
new_ph.span_ix = p_hdr->span_ix;
res = spiffs_page_allocate_data(fs, new_ph.obj_id, &new_ph, 0, 0, 0, 1, &new_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_phys_cpy(fs, 0, SPIFFS_PAGE_TO_PADDR(fs, new_pix) + sizeof(spiffs_page_header),
SPIFFS_PAGE_TO_PADDR(fs, cur_pix) + sizeof(spiffs_page_header),
SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_header));
SPIFFS_CHECK_RES(res);
} else {
// if nothing exists, we cannot safely make a decision - delete
}
}
else if ((p_hdr->flags & SPIFFS_PH_FLAG_DELET) == 0) {
SPIFFS_CHECK_DBG("LU: pix %04x busy in lu but deleted on page\n", cur_pix);
delete_page = 1;
} else if ((p_hdr->flags & SPIFFS_PH_FLAG_FINAL)) {
SPIFFS_CHECK_DBG("LU: pix %04x busy but not final\n", cur_pix);
// page can be removed if not referenced by object index
*reload_lu = 1;
res = spiffs_object_get_data_page_index_reference(fs, lu_obj_id, p_hdr->span_ix, &ref_pix, &objix_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
// no object with this id, so remove page safely
res = SPIFFS_OK;
delete_page = 1;
} else {
SPIFFS_CHECK_RES(res);
if (ref_pix != cur_pix) {
SPIFFS_CHECK_DBG("LU: FIXUP: other finalized page is referred, just delete\n");
delete_page = 1;
} else {
// page referenced by object index but not final
// just finalize
SPIFFS_CHECK_DBG("LU: FIXUP: unfinalized page is referred, finalizing\n");
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_FIX_LOOKUP, p_hdr->obj_id, p_hdr->span_ix);
u8_t flags = 0xff & ~SPIFFS_PH_FLAG_FINAL;
res = _spiffs_wr(fs, SPIFFS_OP_T_OBJ_DA | SPIFFS_OP_C_UPDT,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix) + offsetof(spiffs_page_header, flags),
sizeof(u8_t), (u8_t*)&flags);
}
}
}
}
if (delete_page) {
SPIFFS_CHECK_DBG("LU: FIXUP: deleting page %04x\n", cur_pix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_DELETE_PAGE, cur_pix, 0);
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
}
return res;
}
static s32_t spiffs_lookup_check_v(spiffs *fs, spiffs_obj_id obj_id, spiffs_block_ix cur_block, int cur_entry,
u32_t user_data, void *user_p) {
(void)user_data;
(void)user_p;
s32_t res = SPIFFS_OK;
spiffs_page_header p_hdr;
spiffs_page_ix cur_pix = SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, cur_block, cur_entry);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_PROGRESS,
(cur_block * 256)/fs->block_count, 0);
// load header
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
int reload_lu = 0;
res = spiffs_lookup_check_validate(fs, obj_id, &p_hdr, cur_pix, cur_block, cur_entry, &reload_lu);
SPIFFS_CHECK_RES(res);
if (res == SPIFFS_OK) {
return reload_lu ? SPIFFS_VIS_COUNTINUE_RELOAD : SPIFFS_VIS_COUNTINUE;
}
return res;
}
// Scans all object look up. For each entry, corresponding page header is checked for validity.
// If an object index header page is found, this is also checked
s32_t spiffs_lookup_consistency_check(spiffs *fs, u8_t check_all_objects) {
(void)check_all_objects;
s32_t res = SPIFFS_OK;
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_PROGRESS, 0, 0);
res = spiffs_obj_lu_find_entry_visitor(fs, 0, 0, 0, 0, spiffs_lookup_check_v, 0, 0, 0, 0);
if (res == SPIFFS_VIS_END) {
res = SPIFFS_OK;
}
if (res != SPIFFS_OK) {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_ERROR, res, 0);
}
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_LOOKUP, SPIFFS_CHECK_PROGRESS, 256, 0);
return res;
}
//---------------------------------------
// Page consistency
// Scans all pages (except lu pages), reserves 4 bits in working memory for each page
// bit 0: 0 == FREE|DELETED, 1 == USED
// bit 1: 0 == UNREFERENCED, 1 == REFERENCED
// bit 2: 0 == NOT_INDEX, 1 == INDEX
// bit 3: unused
// A consistent file system will have only pages being
// * x000 free, unreferenced, not index
// * x011 used, referenced only once, not index
// * x101 used, unreferenced, index
// The working memory might not fit all pages so several scans might be needed
static s32_t spiffs_page_consistency_check_i(spiffs *fs) {
const u32_t bits = 4;
const spiffs_page_ix pages_per_scan = SPIFFS_CFG_LOG_PAGE_SZ(fs) * 8 / bits;
s32_t res = SPIFFS_OK;
spiffs_page_ix pix_offset = 0;
// for each range of pages fitting into work memory
while (pix_offset < SPIFFS_PAGES_PER_BLOCK(fs) * fs->block_count) {
// set this flag to abort all checks and rescan the page range
u8_t restart = 0;
c_memset(fs->work, 0, SPIFFS_CFG_LOG_PAGE_SZ(fs));
spiffs_block_ix cur_block = 0;
// build consistency bitmap for id range traversing all blocks
while (!restart && cur_block < fs->block_count) {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_PROGRESS,
(pix_offset*256)/(SPIFFS_PAGES_PER_BLOCK(fs) * fs->block_count) +
((((cur_block * pages_per_scan * 256)/ (SPIFFS_PAGES_PER_BLOCK(fs) * fs->block_count))) / fs->block_count),
0);
// traverse each page except for lookup pages
spiffs_page_ix cur_pix = SPIFFS_OBJ_LOOKUP_PAGES(fs) + SPIFFS_PAGES_PER_BLOCK(fs) * cur_block;
while (!restart && cur_pix < SPIFFS_PAGES_PER_BLOCK(fs) * (cur_block+1)) {
// read header
spiffs_page_header p_hdr;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
u8_t within_range = (cur_pix >= pix_offset && cur_pix < pix_offset + pages_per_scan);
const u32_t pix_byte_ix = (cur_pix - pix_offset) / (8/bits);
const u8_t pix_bit_ix = (cur_pix & ((8/bits)-1)) * bits;
if (within_range &&
(p_hdr.flags & SPIFFS_PH_FLAG_DELET) && (p_hdr.flags & SPIFFS_PH_FLAG_USED) == 0) {
// used
fs->work[pix_byte_ix] |= (1<<(pix_bit_ix + 0));
}
if ((p_hdr.flags & SPIFFS_PH_FLAG_DELET) &&
(p_hdr.flags & SPIFFS_PH_FLAG_IXDELE) &&
(p_hdr.flags & (SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_USED)) == 0) {
// found non-deleted index
if (within_range) {
fs->work[pix_byte_ix] |= (1<<(pix_bit_ix + 2));
}
// load non-deleted index
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
SPIFFS_CHECK_RES(res);
// traverse index for referenced pages
spiffs_page_ix *object_page_index;
spiffs_page_header *objix_p_hdr = (spiffs_page_header *)fs->lu_work;
int entries;
int i;
spiffs_span_ix data_spix_offset;
if (p_hdr.span_ix == 0) {
// object header page index
entries = SPIFFS_OBJ_HDR_IX_LEN(fs);
data_spix_offset = 0;
object_page_index = (spiffs_page_ix *)((u8_t *)fs->lu_work + sizeof(spiffs_page_object_ix_header));
} else {
// object page index
entries = SPIFFS_OBJ_IX_LEN(fs);
data_spix_offset = SPIFFS_OBJ_HDR_IX_LEN(fs) + SPIFFS_OBJ_IX_LEN(fs) * (p_hdr.span_ix - 1);
object_page_index = (spiffs_page_ix *)((u8_t *)fs->lu_work + sizeof(spiffs_page_object_ix));
}
// for all entries in index
for (i = 0; !restart && i < entries; i++) {
spiffs_page_ix rpix = object_page_index[i];
u8_t rpix_within_range = rpix >= pix_offset && rpix < pix_offset + pages_per_scan;
if ((rpix != (spiffs_page_ix)-1 && rpix > SPIFFS_MAX_PAGES(fs))
|| (rpix_within_range && SPIFFS_IS_LOOKUP_PAGE(fs, rpix))) {
// bad reference
SPIFFS_CHECK_DBG("PA: pix %04x bad pix / LU referenced from page %04x\n",
rpix, cur_pix);
// check for data page elsewhere
spiffs_page_ix data_pix;
res = spiffs_obj_lu_find_id_and_span(fs, objix_p_hdr->obj_id & ~SPIFFS_OBJ_ID_IX_FLAG,
data_spix_offset + i, 0, &data_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
data_pix = 0;
}
SPIFFS_CHECK_RES(res);
if (data_pix == 0) {
// if not, allocate free page
spiffs_page_header new_ph;
new_ph.flags = 0xff & ~(SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_FINAL);
new_ph.obj_id = objix_p_hdr->obj_id & ~SPIFFS_OBJ_ID_IX_FLAG;
new_ph.span_ix = data_spix_offset + i;
res = spiffs_page_allocate_data(fs, new_ph.obj_id, &new_ph, 0, 0, 0, 1, &data_pix);
SPIFFS_CHECK_RES(res);
SPIFFS_CHECK_DBG("PA: FIXUP: found no existing data page, created new @ %04x\n", data_pix);
}
// remap index
SPIFFS_CHECK_DBG("PA: FIXUP: rewriting index pix %04x\n", cur_pix);
res = spiffs_rewrite_index(fs, objix_p_hdr->obj_id | SPIFFS_OBJ_ID_IX_FLAG,
data_spix_offset + i, data_pix, cur_pix);
if (res <= _SPIFFS_ERR_CHECK_FIRST && res > _SPIFFS_ERR_CHECK_LAST) {
// index bad also, cannot mend this file
SPIFFS_CHECK_DBG("PA: FIXUP: index bad %u, cannot mend - delete object\n", res);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_BAD_FILE, objix_p_hdr->obj_id, 0);
// delete file
res = spiffs_page_delete(fs, cur_pix);
} else {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_FIX_INDEX, objix_p_hdr->obj_id, objix_p_hdr->span_ix);
}
SPIFFS_CHECK_RES(res);
restart = 1;
} else if (rpix_within_range) {
// valid reference
// read referenced page header
spiffs_page_header rp_hdr;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, rpix), sizeof(spiffs_page_header), (u8_t*)&rp_hdr);
SPIFFS_CHECK_RES(res);
// cross reference page header check
if (rp_hdr.obj_id != (p_hdr.obj_id & ~SPIFFS_OBJ_ID_IX_FLAG) ||
rp_hdr.span_ix != data_spix_offset + i ||
(rp_hdr.flags & (SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_USED)) !=
(SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_INDEX)) {
SPIFFS_CHECK_DBG("PA: pix %04x has inconsistent page header ix id/span:%04x/%04x, ref id/span:%04x/%04x flags:%02x\n",
rpix, p_hdr.obj_id & ~SPIFFS_OBJ_ID_IX_FLAG, data_spix_offset + i,
rp_hdr.obj_id, rp_hdr.span_ix, rp_hdr.flags);
// try finding correct page
spiffs_page_ix data_pix;
res = spiffs_obj_lu_find_id_and_span(fs, p_hdr.obj_id & ~SPIFFS_OBJ_ID_IX_FLAG,
data_spix_offset + i, rpix, &data_pix);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
data_pix = 0;
}
SPIFFS_CHECK_RES(res);
if (data_pix == 0) {
// not found, this index is badly borked
SPIFFS_CHECK_DBG("PA: FIXUP: index bad, delete object id %04x\n", p_hdr.obj_id);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr.obj_id, 0);
res = spiffs_delete_obj_lazy(fs, p_hdr.obj_id);
SPIFFS_CHECK_RES(res);
break;
} else {
// found it, so rewrite index
SPIFFS_CHECK_DBG("PA: FIXUP: found correct data pix %04x, rewrite ix pix %04x id %04x\n",
data_pix, cur_pix, p_hdr.obj_id);
res = spiffs_rewrite_index(fs, p_hdr.obj_id, data_spix_offset + i, data_pix, cur_pix);
if (res <= _SPIFFS_ERR_CHECK_FIRST && res > _SPIFFS_ERR_CHECK_LAST) {
// index bad also, cannot mend this file
SPIFFS_CHECK_DBG("PA: FIXUP: index bad %d, cannot mend!\n", res);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr.obj_id, 0);
res = spiffs_delete_obj_lazy(fs, p_hdr.obj_id);
} else {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_FIX_INDEX, p_hdr.obj_id, p_hdr.span_ix);
}
SPIFFS_CHECK_RES(res);
restart = 1;
}
}
else {
// mark rpix as referenced
const u32_t rpix_byte_ix = (rpix - pix_offset) / (8/bits);
const u8_t rpix_bit_ix = (rpix & ((8/bits)-1)) * bits;
if (fs->work[rpix_byte_ix] & (1<<(rpix_bit_ix + 1))) {
SPIFFS_CHECK_DBG("PA: pix %04x multiple referenced from page %04x\n",
rpix, cur_pix);
// Here, we should have fixed all broken references - getting this means there
// must be multiple files with same object id. Only solution is to delete
// the object which is referring to this page
SPIFFS_CHECK_DBG("PA: FIXUP: removing object %04x and page %04x\n",
p_hdr.obj_id, cur_pix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr.obj_id, 0);
res = spiffs_delete_obj_lazy(fs, p_hdr.obj_id);
SPIFFS_CHECK_RES(res);
// extra precaution, delete this page also
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
restart = 1;
}
fs->work[rpix_byte_ix] |= (1<<(rpix_bit_ix + 1));
}
}
} // for all index entries
} // found index
// next page
cur_pix++;
}
// next block
cur_block++;
}
// check consistency bitmap
if (!restart) {
spiffs_page_ix objix_pix;
spiffs_page_ix rpix;
u32_t byte_ix;
u8_t bit_ix;
for (byte_ix = 0; !restart && byte_ix < SPIFFS_CFG_LOG_PAGE_SZ(fs); byte_ix++) {
for (bit_ix = 0; !restart && bit_ix < 8/bits; bit_ix ++) {
u8_t bitmask = (fs->work[byte_ix] >> (bit_ix * bits)) & 0x7;
spiffs_page_ix cur_pix = pix_offset + byte_ix * (8/bits) + bit_ix;
// 000 ok - free, unreferenced, not index
if (bitmask == 0x1) {
// 001
SPIFFS_CHECK_DBG("PA: pix %04x USED, UNREFERENCED, not index\n", cur_pix);
u8_t rewrite_ix_to_this = 0;
u8_t delete_page = 0;
// check corresponding object index entry
spiffs_page_header p_hdr;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
res = spiffs_object_get_data_page_index_reference(fs, p_hdr.obj_id, p_hdr.span_ix,
&rpix, &objix_pix);
if (res == SPIFFS_OK) {
if (((rpix == (spiffs_page_ix)-1 || rpix > SPIFFS_MAX_PAGES(fs)) || (SPIFFS_IS_LOOKUP_PAGE(fs, rpix)))) {
// pointing to a bad page altogether, rewrite index to this
rewrite_ix_to_this = 1;
SPIFFS_CHECK_DBG("PA: corresponding ref is bad: %04x, rewrite to this %04x\n", rpix, cur_pix);
} else {
// pointing to something else, check what
spiffs_page_header rp_hdr;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, rpix), sizeof(spiffs_page_header), (u8_t*)&rp_hdr);
SPIFFS_CHECK_RES(res);
if (((p_hdr.obj_id & ~SPIFFS_OBJ_ID_IX_FLAG) == rp_hdr.obj_id) &&
((rp_hdr.flags & (SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_USED | SPIFFS_PH_FLAG_FINAL)) ==
(SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_DELET))) {
// pointing to something else valid, just delete this page then
SPIFFS_CHECK_DBG("PA: corresponding ref is good but different: %04x, delete this %04x\n", rpix, cur_pix);
delete_page = 1;
} else {
// pointing to something weird, update index to point to this page instead
if (rpix != cur_pix) {
SPIFFS_CHECK_DBG("PA: corresponding ref is weird: %04x %s%s%s%s, rewrite this %04x\n", rpix,
(rp_hdr.flags & SPIFFS_PH_FLAG_INDEX) ? "" : "INDEX ",
(rp_hdr.flags & SPIFFS_PH_FLAG_DELET) ? "" : "DELETED ",
(rp_hdr.flags & SPIFFS_PH_FLAG_USED) ? "NOTUSED " : "",
(rp_hdr.flags & SPIFFS_PH_FLAG_FINAL) ? "NOTFINAL " : "",
cur_pix);
rewrite_ix_to_this = 1;
} else {
// should not happen, destined for fubar
}
}
}
} else if (res == SPIFFS_ERR_NOT_FOUND) {
SPIFFS_CHECK_DBG("PA: corresponding ref not found, delete %04x\n", cur_pix);
delete_page = 1;
res = SPIFFS_OK;
}
if (rewrite_ix_to_this) {
// if pointing to invalid page, redirect index to this page
SPIFFS_CHECK_DBG("PA: FIXUP: rewrite index id %04x data spix %04x to point to this pix: %04x\n",
p_hdr.obj_id, p_hdr.span_ix, cur_pix);
res = spiffs_rewrite_index(fs, p_hdr.obj_id, p_hdr.span_ix, cur_pix, objix_pix);
if (res <= _SPIFFS_ERR_CHECK_FIRST && res > _SPIFFS_ERR_CHECK_LAST) {
// index bad also, cannot mend this file
SPIFFS_CHECK_DBG("PA: FIXUP: index bad %u, cannot mend!\n", res);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_BAD_FILE, p_hdr.obj_id, 0);
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
res = spiffs_delete_obj_lazy(fs, p_hdr.obj_id);
} else {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_FIX_INDEX, p_hdr.obj_id, p_hdr.span_ix);
}
SPIFFS_CHECK_RES(res);
restart = 1;
continue;
} else if (delete_page) {
SPIFFS_CHECK_DBG("PA: FIXUP: deleting page %04x\n", cur_pix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_DELETE_PAGE, cur_pix, 0);
res = spiffs_page_delete(fs, cur_pix);
}
SPIFFS_CHECK_RES(res);
}
if (bitmask == 0x2) {
// 010
SPIFFS_CHECK_DBG("PA: pix %04x FREE, REFERENCED, not index\n", cur_pix);
// no op, this should be taken care of when checking valid references
}
// 011 ok - busy, referenced, not index
if (bitmask == 0x4) {
// 100
SPIFFS_CHECK_DBG("PA: pix %04x FREE, unreferenced, INDEX\n", cur_pix);
// this should never happen, major fubar
}
// 101 ok - busy, unreferenced, index
if (bitmask == 0x6) {
// 110
SPIFFS_CHECK_DBG("PA: pix %04x FREE, REFERENCED, INDEX\n", cur_pix);
// no op, this should be taken care of when checking valid references
}
if (bitmask == 0x7) {
// 111
SPIFFS_CHECK_DBG("PA: pix %04x USED, REFERENCED, INDEX\n", cur_pix);
// no op, this should be taken care of when checking valid references
}
}
}
}
// next page range
if (!restart) {
pix_offset += pages_per_scan;
}
} // while page range not reached end
return res;
}
// Checks consistency amongst all pages and fixes irregularities
s32_t spiffs_page_consistency_check(spiffs *fs) {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_PROGRESS, 0, 0);
s32_t res = spiffs_page_consistency_check_i(fs);
if (res != SPIFFS_OK) {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_ERROR, res, 0);
}
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_PAGE, SPIFFS_CHECK_PROGRESS, 256, 0);
return res;
}
//---------------------------------------
// Object index consistency
// searches for given object id in temporary object id index,
// returns the index or -1
static int spiffs_object_index_search(spiffs *fs, spiffs_obj_id obj_id) {
u32_t i;
spiffs_obj_id *obj_table = (spiffs_obj_id *)fs->work;
obj_id &= ~SPIFFS_OBJ_ID_IX_FLAG;
for (i = 0; i < SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id); i++) {
if ((obj_table[i] & ~SPIFFS_OBJ_ID_IX_FLAG) == obj_id) {
return i;
}
}
return -1;
}
static s32_t spiffs_object_index_consistency_check_v(spiffs *fs, spiffs_obj_id obj_id, spiffs_block_ix cur_block,
int cur_entry, u32_t user_data, void *user_p) {
(void)user_data;
s32_t res_c = SPIFFS_VIS_COUNTINUE;
s32_t res = SPIFFS_OK;
u32_t *log_ix = (u32_t *)user_p;
spiffs_obj_id *obj_table = (spiffs_obj_id *)fs->work;
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_PROGRESS,
(cur_block * 256)/fs->block_count, 0);
if (obj_id != SPIFFS_OBJ_ID_FREE && obj_id != SPIFFS_OBJ_ID_DELETED && (obj_id & SPIFFS_OBJ_ID_IX_FLAG)) {
spiffs_page_header p_hdr;
spiffs_page_ix cur_pix = SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, cur_block, cur_entry);
// load header
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
if (p_hdr.span_ix == 0 &&
(p_hdr.flags & (SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_FINAL | SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_IXDELE)) ==
(SPIFFS_PH_FLAG_DELET)) {
SPIFFS_CHECK_DBG("IX: pix %04x, obj id:%04x spix:%04x header not fully deleted - deleting\n",
cur_pix, obj_id, p_hdr.span_ix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_DELETE_PAGE, cur_pix, obj_id);
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
return res_c;
}
if ((p_hdr.flags & (SPIFFS_PH_FLAG_INDEX | SPIFFS_PH_FLAG_FINAL | SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_IXDELE)) ==
(SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_IXDELE)) {
return res_c;
}
if (p_hdr.span_ix == 0) {
// objix header page, register objid as reachable
int r = spiffs_object_index_search(fs, obj_id);
if (r == -1) {
// not registered, do it
obj_table[*log_ix] = obj_id & ~SPIFFS_OBJ_ID_IX_FLAG;
(*log_ix)++;
if (*log_ix >= SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id)) {
*log_ix = 0;
}
}
} else { // span index
// objix page, see if header can be found
int r = spiffs_object_index_search(fs, obj_id);
u8_t delete = 0;
if (r == -1) {
// not in temporary index, try finding it
spiffs_page_ix objix_hdr_pix;
res = spiffs_obj_lu_find_id_and_span(fs, obj_id | SPIFFS_OBJ_ID_IX_FLAG, 0, 0, &objix_hdr_pix);
res_c = SPIFFS_VIS_COUNTINUE_RELOAD;
if (res == SPIFFS_OK) {
// found, register as reachable
obj_table[*log_ix] = obj_id & ~SPIFFS_OBJ_ID_IX_FLAG;
} else if (res == SPIFFS_ERR_NOT_FOUND) {
// not found, register as unreachable
delete = 1;
obj_table[*log_ix] = obj_id | SPIFFS_OBJ_ID_IX_FLAG;
} else {
SPIFFS_CHECK_RES(res);
}
(*log_ix)++;
if (*log_ix >= SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id)) {
*log_ix = 0;
}
} else {
// in temporary index, check reachable flag
if ((obj_table[r] & SPIFFS_OBJ_ID_IX_FLAG)) {
// registered as unreachable
delete = 1;
}
}
if (delete) {
SPIFFS_CHECK_DBG("IX: FIXUP: pix %04x, obj id:%04x spix:%04x is orphan index - deleting\n",
cur_pix, obj_id, p_hdr.span_ix);
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_DELETE_ORPHANED_INDEX, cur_pix, obj_id);
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
}
} // span index
} // valid object index id
return res_c;
}
// Removes orphaned and partially deleted index pages.
// Scans for index pages. When an index page is found, corresponding index header is searched for.
// If no such page exists, the index page cannot be reached as no index header exists and must be
// deleted.
s32_t spiffs_object_index_consistency_check(spiffs *fs) {
s32_t res = SPIFFS_OK;
// impl note:
// fs->work is used for a temporary object index memory, listing found object ids and
// indicating whether they can be reached or not. Acting as a fifo if object ids cannot fit.
// In the temporary object index memory, SPIFFS_OBJ_ID_IX_FLAG bit is used to indicate
// a reachable/unreachable object id.
c_memset(fs->work, 0, SPIFFS_CFG_LOG_PAGE_SZ(fs));
u32_t obj_id_log_ix = 0;
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_PROGRESS, 0, 0);
res = spiffs_obj_lu_find_entry_visitor(fs, 0, 0, 0, 0, spiffs_object_index_consistency_check_v, 0, &obj_id_log_ix,
0, 0);
if (res == SPIFFS_VIS_END) {
res = SPIFFS_OK;
}
if (res != SPIFFS_OK) {
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_ERROR, res, 0);
}
if (fs->check_cb_f) fs->check_cb_f(SPIFFS_CHECK_INDEX, SPIFFS_CHECK_PROGRESS, 256, 0);
return res;
}

View File

@ -0,0 +1,242 @@
/*
* spiffs_config.h
*
* Created on: Jul 3, 2013
* Author: petera
*/
#ifndef SPIFFS_CONFIG_H_
#define SPIFFS_CONFIG_H_
// ----------- 8< ------------
// Following includes are for the linux test build of spiffs
// These may/should/must be removed/altered/replaced in your target
// #include "params_test.h"
//#include "c_stdio.h"
//#include "c_stdlib.h"
//#include "c_string.h"
#include "mem.h"
#include "c_types.h"
#include "stddef.h"
#include "osapi.h"
#include "ets_sys.h"
#include <user_config.h>
// ----------- >8 ------------
#define IRAM_ATTR __attribute__((section(".iram.text")))
#define STORE_TYPEDEF_ATTR __attribute__((aligned(4),packed))
#define STORE_ATTR __attribute__((aligned(4)))
#define SPIFFS_CHACHE 0
#define c_memcpy os_memcpy
#define c_printf os_printf
#define c_memset os_memset
typedef signed short file_t;
typedef long int s32_t;
typedef long unsigned int u32_t;
typedef int16_t s16_t;
typedef uint16_t u16_t;
typedef int8_t s8_t;
typedef uint8_t u8_t;
#ifndef SEEK_SET
#define SEEK_SET 0 /* set file offset to offset */
#endif
#ifndef SEEK_CUR
#define SEEK_CUR 1 /* set file offset to current plus offset */
#endif
#ifndef SEEK_END
#define SEEK_END 2 /* set file offset to EOF plus offset */
#endif
#ifndef EOF
#define EOF (-1)
#endif
// compile time switches
#define debugf(fmt, ...) //os_printf(fmt"\r\n", ##__VA_ARGS__)
#define SYSTEM_ERROR(fmt, ...) //os_printf("ERROR: " fmt "\r\n", ##__VA_ARGS__)
// Set generic spiffs debug output call.
#ifndef SPIFFS_DGB
#define SPIFFS_DBG(...) //os_printf(__VA_ARGS__)
#endif
// Set spiffs debug output call for garbage collecting.
#ifndef SPIFFS_GC_DGB
#define SPIFFS_GC_DBG(...) //os_printf(__VA_ARGS__)
#endif
// Set spiffs debug output call for caching.
#ifndef SPIFFS_CACHE_DGB
#define SPIFFS_CACHE_DBG(...) //os_printf(__VA_ARGS__)
#endif
// Set spiffs debug output call for system consistency checks.
#ifndef SPIFFS_CHECK_DGB
#define SPIFFS_CHECK_DBG(...) //os_printf(__VA_ARGS__)
#endif
// Enable/disable API functions to determine exact number of bytes
// for filedescriptor and cache buffers. Once decided for a configuration,
// this can be disabled to reduce flash.
#ifndef SPIFFS_BUFFER_HELP
#define SPIFFS_BUFFER_HELP 0
#endif
// Enables/disable memory read caching of nucleus file system operations.
// If enabled, memory area must be provided for cache in SPIFFS_mount.
#ifndef SPIFFS_CACHE
#define SPIFFS_CACHE 1
#endif
#if SPIFFS_CACHE
// Enables memory write caching for file descriptors in hydrogen
#ifndef SPIFFS_CACHE_WR
#define SPIFFS_CACHE_WR 1
#endif
// Enable/disable statistics on caching. Debug/test purpose only.
#ifndef SPIFFS_CACHE_STATS
#define SPIFFS_CACHE_STATS 0
#endif
#endif
// Always check header of each accessed page to ensure consistent state.
// If enabled it will increase number of reads, will increase flash.
#ifndef SPIFFS_PAGE_CHECK
#define SPIFFS_PAGE_CHECK 1
#endif
// Define maximum number of gc runs to perform to reach desired free pages.
#ifndef SPIFFS_GC_MAX_RUNS
#define SPIFFS_GC_MAX_RUNS 3
#endif
// Enable/disable statistics on gc. Debug/test purpose only.
#ifndef SPIFFS_GC_STATS
#define SPIFFS_GC_STATS 0
#endif
// Garbage collecting examines all pages in a block which and sums up
// to a block score. Deleted pages normally gives positive score and
// used pages normally gives a negative score (as these must be moved).
// To have a fair wear-leveling, the erase age is also included in score,
// whose factor normally is the most positive.
// The larger the score, the more likely it is that the block will
// picked for garbage collection.
// Garbage collecting heuristics - weight used for deleted pages.
#ifndef SPIFFS_GC_HEUR_W_DELET
#define SPIFFS_GC_HEUR_W_DELET (5)
#endif
// Garbage collecting heuristics - weight used for used pages.
#ifndef SPIFFS_GC_HEUR_W_USED
#define SPIFFS_GC_HEUR_W_USED (-1)
#endif
// Garbage collecting heuristics - weight used for time between
// last erased and erase of this block.
#ifndef SPIFFS_GC_HEUR_W_ERASE_AGE
#define SPIFFS_GC_HEUR_W_ERASE_AGE (50)
#endif
// Object name maximum length.
#ifndef SPIFFS_OBJ_NAME_LEN
#define SPIFFS_OBJ_NAME_LEN (32)
#endif
// Size of buffer allocated on stack used when copying data.
// Lower value generates more read/writes. No meaning having it bigger
// than logical page size.
#ifndef SPIFFS_COPY_BUFFER_STACK
#define SPIFFS_COPY_BUFFER_STACK (64)
#endif
// SPIFFS_LOCK and SPIFFS_UNLOCK protects spiffs from reentrancy on api level
// These should be defined on a multithreaded system
// define this to entering a mutex if you're running on a multithreaded system
#ifndef SPIFFS_LOCK
#define SPIFFS_LOCK(fs)
#endif
// define this to exiting a mutex if you're running on a multithreaded system
#ifndef SPIFFS_UNLOCK
#define SPIFFS_UNLOCK(fs)
#endif
// Enable if only one spiffs instance with constant configuration will exist
// on the target. This will reduce calculations, flash and memory accesses.
// Parts of configuration must be defined below instead of at time of mount.
#ifndef SPIFFS_SINGLETON
#define SPIFFS_SINGLETON 0
#endif
#if SPIFFS_SINGLETON
// Instead of giving parameters in config struct, singleton build must
// give parameters in defines below.
#ifndef SPIFFS_CFG_PHYS_SZ
#define SPIFFS_CFG_PHYS_SZ(ignore) (1024*1024*2)
#endif
#ifndef SPIFFS_CFG_PHYS_ERASE_SZ
#define SPIFFS_CFG_PHYS_ERASE_SZ(ignore) (65536)
#endif
#ifndef SPIFFS_CFG_PHYS_ADDR
#define SPIFFS_CFG_PHYS_ADDR(ignore) (0)
#endif
#ifndef SPIFFS_CFG_LOG_PAGE_SZ
#define SPIFFS_CFG_LOG_PAGE_SZ(ignore) (256)
#endif
#ifndef SPIFFS_CFG_LOG_BLOCK_SZ
#define SPIFFS_CFG_LOG_BLOCK_SZ(ignore) (65536)
#endif
#endif
// Set SPFIFS_TEST_VISUALISATION to non-zero to enable SPIFFS_vis function
// in the api. This function will visualize all filesystem using given printf
// function.
#ifndef SPIFFS_TEST_VISUALISATION
#define SPIFFS_TEST_VISUALISATION 1
#endif
#if SPIFFS_TEST_VISUALISATION
#ifndef spiffs_printf
#define spiffs_printf(...) c_printf(__VA_ARGS__)
#endif
// spiffs_printf argument for a free page
#ifndef SPIFFS_TEST_VIS_FREE_STR
#define SPIFFS_TEST_VIS_FREE_STR "_"
#endif
// spiffs_printf argument for a deleted page
#ifndef SPIFFS_TEST_VIS_DELE_STR
#define SPIFFS_TEST_VIS_DELE_STR "/"
#endif
// spiffs_printf argument for an index page for given object id
#ifndef SPIFFS_TEST_VIS_INDX_STR
#define SPIFFS_TEST_VIS_INDX_STR(id) "i"
#endif
// spiffs_printf argument for a data page for given object id
#ifndef SPIFFS_TEST_VIS_DATA_STR
#define SPIFFS_TEST_VIS_DATA_STR(id) "d"
#endif
#endif
// Types depending on configuration such as the amount of flash bytes
// given to spiffs file system in total (spiffs_file_system_size),
// the logical block size (log_block_size), and the logical page size
// (log_page_size)
// Block index type. Make sure the size of this type can hold
// the highest number of all blocks - i.e. spiffs_file_system_size / log_block_size
typedef u16_t spiffs_block_ix;
// Page index type. Make sure the size of this type can hold
// the highest page number of all pages - i.e. spiffs_file_system_size / log_page_size
typedef u16_t spiffs_page_ix;
// Object id type - most significant bit is reserved for index flag. Make sure the
// size of this type can hold the highest object id on a full system,
// i.e. 2 + (spiffs_file_system_size / (2*log_page_size))*2
typedef u16_t spiffs_obj_id;
// Object span index type. Make sure the size of this type can
// hold the largest possible span index on the system -
// i.e. (spiffs_file_system_size / log_page_size) - 1
typedef u16_t spiffs_span_ix;
#endif /* SPIFFS_CONFIG_H_ */

View File

@ -0,0 +1,223 @@
#include "flashmem.h"
// Based on NodeMCU platform_flash
// https://github.com/nodemcu/nodemcu-firmware
extern uint32_t _SPIFFS_start;
uint32_t flashmem_write( const void *from, uint32_t toaddr, uint32_t size )
{
uint32_t temp, rest, ssize = size;
unsigned i;
char tmpdata[ INTERNAL_FLASH_WRITE_UNIT_SIZE ];
const uint8_t *pfrom = ( const uint8_t* )from;
const uint32_t blksize = INTERNAL_FLASH_WRITE_UNIT_SIZE;
const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1;
// Align the start
if( toaddr & blkmask )
{
rest = toaddr & blkmask;
temp = toaddr & ~blkmask; // this is the actual aligned address
// c_memcpy( tmpdata, ( const void* )temp, blksize );
flashmem_read_internal( tmpdata, temp, blksize );
for( i = rest; size && ( i < blksize ); i ++, size --, pfrom ++ )
tmpdata[ i ] = *pfrom;
flashmem_write_internal( tmpdata, temp, blksize );
if( size == 0 )
return ssize;
toaddr = temp + blksize;
}
// The start address is now a multiple of blksize
// Compute how many bytes we can write as multiples of blksize
rest = size & blkmask;
temp = size & ~blkmask;
// Program the blocks now
if( temp )
{
flashmem_write_internal( pfrom, toaddr, temp );
toaddr += temp;
pfrom += temp;
}
// And the final part of a block if needed
if( rest )
{
// c_memcpy( tmpdata, ( const void* )toaddr, blksize );
flashmem_read_internal( tmpdata, toaddr, blksize );
for( i = 0; size && ( i < rest ); i ++, size --, pfrom ++ )
tmpdata[ i ] = *pfrom;
flashmem_write_internal( tmpdata, toaddr, blksize );
}
return ssize;
}
uint32_t flashmem_read( void *to, uint32_t fromaddr, uint32_t size )
{
uint32_t temp, rest, ssize = size;
unsigned i;
char tmpdata[ INTERNAL_FLASH_READ_UNIT_SIZE ];
uint8_t *pto = ( uint8_t* )to;
const uint32_t blksize = INTERNAL_FLASH_READ_UNIT_SIZE;
const uint32_t blkmask = INTERNAL_FLASH_READ_UNIT_SIZE - 1;
// Align the start
if( fromaddr & blkmask )
{
rest = fromaddr & blkmask;
temp = fromaddr & ~blkmask; // this is the actual aligned address
flashmem_read_internal( tmpdata, temp, blksize );
for( i = rest; size && ( i < blksize ); i ++, size --, pto ++ )
*pto = tmpdata[ i ];
if( size == 0 )
return ssize;
fromaddr = temp + blksize;
}
// The start address is now a multiple of blksize
// Compute how many bytes we can read as multiples of blksize
rest = size & blkmask;
temp = size & ~blkmask;
// Program the blocks now
if( temp )
{
flashmem_read_internal( pto, fromaddr, temp );
fromaddr += temp;
pto += temp;
}
// And the final part of a block if needed
if( rest )
{
flashmem_read_internal( tmpdata, fromaddr, blksize );
for( i = 0; size && ( i < rest ); i ++, size --, pto ++ )
*pto = tmpdata[ i ];
}
return ssize;
}
bool flashmem_erase_sector( uint32_t sector_id )
{
WRITE_PERI_REG(0x60000914, 0x73);
return spi_flash_erase_sector( sector_id ) == SPI_FLASH_RESULT_OK;
}
SPIFlashInfo flashmem_get_info()
{
volatile SPIFlashInfo spi_flash_info STORE_ATTR;
spi_flash_info = *((SPIFlashInfo *)(INTERNAL_FLASH_START_ADDRESS));
return spi_flash_info;
}
uint8_t flashmem_get_size_type()
{
return flashmem_get_info().size;
}
uint32_t flashmem_get_size_bytes()
{
uint32_t flash_size = 0;
switch (flashmem_get_info().size)
{
case SIZE_2MBIT:
// 2Mbit, 256kByte
flash_size = 256 * 1024;
break;
case SIZE_4MBIT:
// 4Mbit, 512kByte
flash_size = 512 * 1024;
break;
case SIZE_8MBIT:
// 8Mbit, 1MByte
flash_size = 1 * 1024 * 1024;
break;
case SIZE_16MBIT:
// 16Mbit, 2MByte
flash_size = 2 * 1024 * 1024;
break;
case SIZE_32MBIT:
// 32Mbit, 4MByte
flash_size = 4 * 1024 * 1024;
break;
default:
// Unknown flash size, fall back mode.
flash_size = 512 * 1024;
break;
}
return flash_size;
}
uint16_t flashmem_get_size_sectors()
{
return flashmem_get_size_bytes() / SPI_FLASH_SEC_SIZE;
}
// Helper function: find the flash sector in which an address resides
// Return the sector number, as well as the start and end address of the sector
uint32_t flashmem_find_sector( uint32_t address, uint32_t *pstart, uint32_t *pend )
{
address -= INTERNAL_FLASH_START_ADDRESS;
// All the sectors in the flash have the same size, so just align the address
uint32_t sect_id = address / INTERNAL_FLASH_SECTOR_SIZE;
if( pstart )
*pstart = sect_id * INTERNAL_FLASH_SECTOR_SIZE + INTERNAL_FLASH_START_ADDRESS;
if( pend )
*pend = ( sect_id + 1 ) * INTERNAL_FLASH_SECTOR_SIZE + INTERNAL_FLASH_START_ADDRESS - 1;
return sect_id;
}
uint32_t flashmem_get_sector_of_address( uint32_t addr )
{
return flashmem_find_sector( addr, NULL, NULL );
}
/////////////////////////////////////////////////////
uint32_t flashmem_write_internal( const void *from, uint32_t toaddr, uint32_t size )
{
toaddr -= INTERNAL_FLASH_START_ADDRESS;
SpiFlashOpResult r;
const uint32_t blkmask = INTERNAL_FLASH_WRITE_UNIT_SIZE - 1;
uint32_t *apbuf = NULL;
if( ((uint32_t)from) & blkmask ){
apbuf = (uint32_t *)os_malloc(size);
if(!apbuf)
return 0;
os_memcpy(apbuf, from, size);
}
WRITE_PERI_REG(0x60000914, 0x73);
r = spi_flash_write(toaddr, apbuf?(uint32 *)apbuf:(uint32 *)from, size);
if(apbuf)
os_free(apbuf);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
SYSTEM_ERROR( "ERROR in flash_write: r=%d at %08X\n", ( int )r, ( unsigned )toaddr+INTERNAL_FLASH_START_ADDRESS );
return 0;
}
}
uint32_t flashmem_read_internal( void *to, uint32_t fromaddr, uint32_t size )
{
fromaddr -= INTERNAL_FLASH_START_ADDRESS;
SpiFlashOpResult r;
WRITE_PERI_REG(0x60000914, 0x73);
r = spi_flash_read(fromaddr, (uint32 *)to, size);
if(SPI_FLASH_RESULT_OK == r)
return size;
else{
SYSTEM_ERROR( "ERROR in flash_read: r=%d at %08X\n", ( int )r, ( unsigned )fromaddr+INTERNAL_FLASH_START_ADDRESS );
return 0;
}
}
uint32_t flashmem_get_first_free_block_address(){
if ((uint32_t)&_SPIFFS_start == 0){
return 0;
}
debugf("_SPIFFS_start:%08x\n", (uint32_t)&_SPIFFS_start);
// Round the total used flash size to the closest flash block address
uint32_t end;
flashmem_find_sector( (uint32_t)&_SPIFFS_start - 1, NULL, &end);
return end + 1;
}

555
cores/esp8266/spiffs/spiffs_gc.c Executable file
View File

@ -0,0 +1,555 @@
#include "spiffs.h"
#include "spiffs_nucleus.h"
// Erases a logical block and updates the erase counter.
// If cache is enabled, all pages that might be cached in this block
// is dropped.
static s32_t spiffs_gc_erase_block(
spiffs *fs,
spiffs_block_ix bix) {
s32_t res;
u32_t addr = SPIFFS_BLOCK_TO_PADDR(fs, bix);
s32_t size = SPIFFS_CFG_LOG_BLOCK_SZ(fs);
SPIFFS_GC_DBG("gc: erase block %d\n", bix);
// here we ignore res, just try erasing the block
while (size > 0) {
SPIFFS_GC_DBG("gc: erase %08x:%08x\n", addr, SPIFFS_CFG_PHYS_ERASE_SZ(fs));
(void)fs->cfg.hal_erase_f(addr, SPIFFS_CFG_PHYS_ERASE_SZ(fs));
addr += SPIFFS_CFG_PHYS_ERASE_SZ(fs);
size -= SPIFFS_CFG_PHYS_ERASE_SZ(fs);
}
fs->free_blocks++;
// register erase count for this block
res = _spiffs_wr(fs, SPIFFS_OP_C_WRTHRU | SPIFFS_OP_T_OBJ_LU2, 0,
SPIFFS_ERASE_COUNT_PADDR(fs, bix),
sizeof(spiffs_obj_id), (u8_t *)&fs->max_erase_count);
SPIFFS_CHECK_RES(res);
fs->max_erase_count++;
if (fs->max_erase_count == SPIFFS_OBJ_ID_IX_FLAG) {
fs->max_erase_count = 0;
}
#if SPIFFS_CACHE
{
u32_t i;
for (i = 0; i < SPIFFS_PAGES_PER_BLOCK(fs); i++) {
spiffs_cache_drop_page(fs, SPIFFS_PAGE_FOR_BLOCK(fs, bix) + i);
}
}
#endif
return res;
}
// Searches for blocks where all entries are deleted - if one is found,
// the block is erased. Compared to the non-quick gc, the quick one ensures
// that no updates are needed on existing objects on pages that are erased.
s32_t spiffs_gc_quick(
spiffs *fs) {
s32_t res = SPIFFS_OK;
u32_t blocks = fs->block_count;
spiffs_block_ix cur_block = 0;
u32_t cur_block_addr = 0;
int cur_entry = 0;
spiffs_obj_id *obj_lu_buf = (spiffs_obj_id *)fs->lu_work;
SPIFFS_GC_DBG("gc_quick: running\n", cur_block);
#if SPIFFS_GC_STATS
fs->stats_gc_runs++;
#endif
int entries_per_page = (SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id));
// find fully deleted blocks
// check each block
while (res == SPIFFS_OK && blocks--) {
u16_t deleted_pages_in_block = 0;
int obj_lookup_page = 0;
// check each object lookup page
while (res == SPIFFS_OK && obj_lookup_page < (int)SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
int entry_offset = obj_lookup_page * entries_per_page;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, cur_block_addr + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
// check each entry
while (res == SPIFFS_OK &&
cur_entry - entry_offset < entries_per_page &&
cur_entry < (int)(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))) {
spiffs_obj_id obj_id = obj_lu_buf[cur_entry-entry_offset];
if (obj_id == SPIFFS_OBJ_ID_DELETED) {
deleted_pages_in_block++;
} else if (obj_id == SPIFFS_OBJ_ID_FREE) {
// kill scan, go for next block
obj_lookup_page = SPIFFS_OBJ_LOOKUP_PAGES(fs);
res = 1; // kill object lu loop
break;
} else {
// kill scan, go for next block
obj_lookup_page = SPIFFS_OBJ_LOOKUP_PAGES(fs);
res = 1; // kill object lu loop
break;
}
cur_entry++;
} // per entry
obj_lookup_page++;
} // per object lookup page
if (res == 1) res = SPIFFS_OK;
if (res == SPIFFS_OK && deleted_pages_in_block == SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
// found a fully deleted block
fs->stats_p_deleted -= deleted_pages_in_block;
res = spiffs_gc_erase_block(fs, cur_block);
return res;
}
cur_entry = 0;
cur_block++;
cur_block_addr += SPIFFS_CFG_LOG_BLOCK_SZ(fs);
} // per block
return res;
}
// Checks if garbaga collecting is necessary. If so a candidate block is found,
// cleansed and erased
s32_t spiffs_gc_check(
spiffs *fs,
u32_t len) {
s32_t res;
u32_t free_pages =
(SPIFFS_PAGES_PER_BLOCK(fs) - SPIFFS_OBJ_LOOKUP_PAGES(fs)) * fs->block_count
- fs->stats_p_allocated - fs->stats_p_deleted;
int tries = 0;
if (fs->free_blocks > 3 &&
len < free_pages * SPIFFS_DATA_PAGE_SIZE(fs)) {
return SPIFFS_OK;
}
//printf("gcing started %d dirty, blocks %d free, want %d bytes\n", fs->stats_p_allocated + fs->stats_p_deleted, fs->free_blocks, len);
do {
SPIFFS_GC_DBG("\ngc_check #%d: run gc free_blocks:%d pfree:%d pallo:%d pdele:%d [%d] len:%d of %d\n",
tries,
fs->free_blocks, free_pages, fs->stats_p_allocated, fs->stats_p_deleted, (free_pages+fs->stats_p_allocated+fs->stats_p_deleted),
len, free_pages*SPIFFS_DATA_PAGE_SIZE(fs));
spiffs_block_ix *cands;
int count;
spiffs_block_ix cand;
res = spiffs_gc_find_candidate(fs, &cands, &count);
SPIFFS_CHECK_RES(res);
if (count == 0) {
SPIFFS_GC_DBG("gc_check: no candidates, return\n");
return res;
}
#if SPIFFS_GC_STATS
fs->stats_gc_runs++;
#endif
cand = cands[0];
fs->cleaning = 1;
//printf("gcing: cleaning block %d\n", cand);
res = spiffs_gc_clean(fs, cand);
fs->cleaning = 0;
if (res < 0) {
SPIFFS_GC_DBG("gc_check: cleaning block %d, result %d\n", cand, res);
} else {
SPIFFS_GC_DBG("gc_check: cleaning block %d, result %d\n", cand, res);
}
SPIFFS_CHECK_RES(res);
res = spiffs_gc_erase_page_stats(fs, cand);
SPIFFS_CHECK_RES(res);
res = spiffs_gc_erase_block(fs, cand);
SPIFFS_CHECK_RES(res);
free_pages =
(SPIFFS_PAGES_PER_BLOCK(fs) - SPIFFS_OBJ_LOOKUP_PAGES(fs)) * fs->block_count
- fs->stats_p_allocated - fs->stats_p_deleted;
} while (++tries < SPIFFS_GC_MAX_RUNS && (fs->free_blocks <= 2 ||
len > free_pages*SPIFFS_DATA_PAGE_SIZE(fs)));
SPIFFS_GC_DBG("gc_check: finished\n");
//printf("gcing finished %d dirty, blocks %d free, %d pages free, %d tries, res %d\n",
// fs->stats_p_allocated + fs->stats_p_deleted,
// fs->free_blocks, free_pages, tries, res);
return res;
}
// Updates page statistics for a block that is about to be erased
s32_t spiffs_gc_erase_page_stats(
spiffs *fs,
spiffs_block_ix bix) {
s32_t res = SPIFFS_OK;
int obj_lookup_page = 0;
int entries_per_page = (SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id));
spiffs_obj_id *obj_lu_buf = (spiffs_obj_id *)fs->lu_work;
int cur_entry = 0;
u32_t dele = 0;
u32_t allo = 0;
// check each object lookup page
while (res == SPIFFS_OK && obj_lookup_page < (int)SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
int entry_offset = obj_lookup_page * entries_per_page;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, bix * SPIFFS_CFG_LOG_BLOCK_SZ(fs) + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
// check each entry
while (res == SPIFFS_OK &&
cur_entry - entry_offset < entries_per_page && cur_entry < (int)(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))) {
spiffs_obj_id obj_id = obj_lu_buf[cur_entry-entry_offset];
if (obj_id == SPIFFS_OBJ_ID_FREE) {
} else if (obj_id == SPIFFS_OBJ_ID_DELETED) {
dele++;
} else {
allo++;
}
cur_entry++;
} // per entry
obj_lookup_page++;
} // per object lookup page
SPIFFS_GC_DBG("gc_check: wipe pallo:%d pdele:%d\n", allo, dele);
fs->stats_p_allocated -= allo;
fs->stats_p_deleted -= dele;
return res;
}
// Finds block candidates to erase
s32_t spiffs_gc_find_candidate(
spiffs *fs,
spiffs_block_ix **block_candidates,
int *candidate_count) {
s32_t res = SPIFFS_OK;
u32_t blocks = fs->block_count;
spiffs_block_ix cur_block = 0;
u32_t cur_block_addr = 0;
spiffs_obj_id *obj_lu_buf = (spiffs_obj_id *)fs->lu_work;
int cur_entry = 0;
// using fs->work area as sorted candidate memory, (spiffs_block_ix)cand_bix/(s32_t)score
int max_candidates = MIN(fs->block_count, (SPIFFS_CFG_LOG_PAGE_SZ(fs)-8)/(sizeof(spiffs_block_ix) + sizeof(s32_t)));
*candidate_count = 0;
c_memset(fs->work, 0xff, SPIFFS_CFG_LOG_PAGE_SZ(fs));
// divide up work area into block indices and scores
// todo alignment?
spiffs_block_ix *cand_blocks = (spiffs_block_ix *)fs->work;
s32_t *cand_scores = (s32_t *)(fs->work + max_candidates * sizeof(spiffs_block_ix));
*block_candidates = cand_blocks;
int entries_per_page = (SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id));
// check each block
while (res == SPIFFS_OK && blocks--) {
u16_t deleted_pages_in_block = 0;
u16_t used_pages_in_block = 0;
int obj_lookup_page = 0;
// check each object lookup page
while (res == SPIFFS_OK && obj_lookup_page < (int)SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
int entry_offset = obj_lookup_page * entries_per_page;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, cur_block_addr + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
// check each entry
while (res == SPIFFS_OK &&
cur_entry - entry_offset < entries_per_page &&
cur_entry < (int)(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))) {
spiffs_obj_id obj_id = obj_lu_buf[cur_entry-entry_offset];
if (obj_id == SPIFFS_OBJ_ID_FREE) {
// when a free entry is encountered, scan logic ensures that all following entries are free also
res = 1; // kill object lu loop
break;
} else if (obj_id == SPIFFS_OBJ_ID_DELETED) {
deleted_pages_in_block++;
} else {
used_pages_in_block++;
}
cur_entry++;
} // per entry
obj_lookup_page++;
} // per object lookup page
if (res == 1) res = SPIFFS_OK;
// calculate score and insert into candidate table
// stoneage sort, but probably not so many blocks
if (res == SPIFFS_OK && deleted_pages_in_block > 0) {
// read erase count
spiffs_obj_id erase_count;
res = _spiffs_rd(fs, SPIFFS_OP_C_READ | SPIFFS_OP_T_OBJ_LU2, 0,
SPIFFS_ERASE_COUNT_PADDR(fs, cur_block),
sizeof(spiffs_obj_id), (u8_t *)&erase_count);
SPIFFS_CHECK_RES(res);
spiffs_obj_id erase_age;
if (fs->max_erase_count > erase_count) {
erase_age = fs->max_erase_count - erase_count;
} else {
erase_age = SPIFFS_OBJ_ID_FREE - (erase_count - fs->max_erase_count);
}
s32_t score =
deleted_pages_in_block * SPIFFS_GC_HEUR_W_DELET +
used_pages_in_block * SPIFFS_GC_HEUR_W_USED +
erase_age * SPIFFS_GC_HEUR_W_ERASE_AGE;
int cand_ix = 0;
SPIFFS_GC_DBG("\ngc_check: bix:%d del:%d use:%d score:%d\n", cur_block, deleted_pages_in_block, used_pages_in_block, score);
while (cand_ix < max_candidates) {
if (cand_blocks[cand_ix] == (spiffs_block_ix)-1) {
cand_blocks[cand_ix] = cur_block;
cand_scores[cand_ix] = score;
break;
} else if (cand_scores[cand_ix] < score) {
int reorder_cand_ix = max_candidates - 2;
while (reorder_cand_ix >= cand_ix) {
cand_blocks[reorder_cand_ix + 1] = cand_blocks[reorder_cand_ix];
cand_scores[reorder_cand_ix + 1] = cand_scores[reorder_cand_ix];
reorder_cand_ix--;
}
cand_blocks[cand_ix] = cur_block;
cand_scores[cand_ix] = score;
break;
}
cand_ix++;
}
(*candidate_count)++;
}
cur_entry = 0;
cur_block++;
cur_block_addr += SPIFFS_CFG_LOG_BLOCK_SZ(fs);
} // per block
return res;
}
typedef enum {
FIND_OBJ_DATA,
MOVE_OBJ_DATA,
MOVE_OBJ_IX,
FINISHED
} spiffs_gc_clean_state;
typedef struct {
spiffs_gc_clean_state state;
spiffs_obj_id cur_obj_id;
spiffs_span_ix cur_objix_spix;
spiffs_page_ix cur_objix_pix;
int stored_scan_entry_index;
u8_t obj_id_found;
} spiffs_gc;
// Empties given block by moving all data into free pages of another block
// Strategy:
// loop:
// scan object lookup for object data pages
// for first found id, check spix and load corresponding object index page to memory
// push object scan lookup entry index
// rescan object lookup, find data pages with same id and referenced by same object index
// move data page, update object index in memory
// when reached end of lookup, store updated object index
// pop object scan lookup entry index
// repeat loop until end of object lookup
// scan object lookup again for remaining object index pages, move to new page in other block
//
s32_t spiffs_gc_clean(spiffs *fs, spiffs_block_ix bix) {
s32_t res = SPIFFS_OK;
int entries_per_page = (SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id));
int cur_entry = 0;
spiffs_obj_id *obj_lu_buf = (spiffs_obj_id *)fs->lu_work;
spiffs_gc gc;
spiffs_page_ix cur_pix = 0;
spiffs_page_object_ix_header *objix_hdr = (spiffs_page_object_ix_header *)fs->work;
spiffs_page_object_ix *objix = (spiffs_page_object_ix *)fs->work;
SPIFFS_GC_DBG("gc_clean: cleaning block %d\n", bix);
c_memset(&gc, 0, sizeof(spiffs_gc));
gc.state = FIND_OBJ_DATA;
if (fs->free_cursor_block_ix == bix) {
// move free cursor to next block, cannot use free pages from the block we want to clean
fs->free_cursor_block_ix = (bix+1)%fs->block_count;
fs->free_cursor_obj_lu_entry = 0;
SPIFFS_GC_DBG("gc_clean: move free cursor to block %d\n", fs->free_cursor_block_ix);
}
while (res == SPIFFS_OK && gc.state != FINISHED) {
SPIFFS_GC_DBG("gc_clean: state = %d entry:%d\n", gc.state, cur_entry);
gc.obj_id_found = 0;
// scan through lookup pages
int obj_lookup_page = cur_entry / entries_per_page;
u8_t scan = 1;
// check each object lookup page
while (scan && res == SPIFFS_OK && obj_lookup_page < (int)SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
int entry_offset = obj_lookup_page * entries_per_page;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, bix * SPIFFS_CFG_LOG_BLOCK_SZ(fs) + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page),
SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
// check each entry
while (scan && res == SPIFFS_OK &&
cur_entry - entry_offset < entries_per_page && cur_entry < (int)(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))) {
spiffs_obj_id obj_id = obj_lu_buf[cur_entry-entry_offset];
cur_pix = SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, bix, cur_entry);
// act upon object id depending on gc state
switch (gc.state) {
case FIND_OBJ_DATA:
if (obj_id != SPIFFS_OBJ_ID_DELETED && obj_id != SPIFFS_OBJ_ID_FREE &&
((obj_id & SPIFFS_OBJ_ID_IX_FLAG) == 0)) {
SPIFFS_GC_DBG("gc_clean: FIND_DATA state:%d - found obj id %04x\n", gc.state, obj_id);
gc.obj_id_found = 1;
gc.cur_obj_id = obj_id;
scan = 0;
}
break;
case MOVE_OBJ_DATA:
if (obj_id == gc.cur_obj_id) {
spiffs_page_header p_hdr;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
SPIFFS_GC_DBG("gc_clean: MOVE_DATA found data page %04x:%04x @ %04x\n", gc.cur_obj_id, p_hdr.span_ix, cur_pix);
if (SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, p_hdr.span_ix) != gc.cur_objix_spix) {
SPIFFS_GC_DBG("gc_clean: MOVE_DATA no objix spix match, take in another run\n");
} else {
spiffs_page_ix new_data_pix;
if (p_hdr.flags & SPIFFS_PH_FLAG_DELET) {
// move page
res = spiffs_page_move(fs, 0, 0, obj_id, &p_hdr, cur_pix, &new_data_pix);
SPIFFS_GC_DBG("gc_clean: MOVE_DATA move objix %04x:%04x page %04x to %04x\n", gc.cur_obj_id, p_hdr.span_ix, cur_pix, new_data_pix);
SPIFFS_CHECK_RES(res);
// move wipes obj_lu, reload it
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, bix * SPIFFS_CFG_LOG_BLOCK_SZ(fs) + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page),
SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
SPIFFS_CHECK_RES(res);
} else {
// page is deleted but not deleted in lookup, scrap it
SPIFFS_GC_DBG("gc_clean: MOVE_DATA wipe objix %04x:%04x page %04x\n", obj_id, p_hdr.span_ix, cur_pix);
res = spiffs_page_delete(fs, cur_pix);
SPIFFS_CHECK_RES(res);
new_data_pix = SPIFFS_OBJ_ID_FREE;
}
// update memory representation of object index page with new data page
if (gc.cur_objix_spix == 0) {
// update object index header page
((spiffs_page_ix*)((u8_t *)objix_hdr + sizeof(spiffs_page_object_ix_header)))[p_hdr.span_ix] = new_data_pix;
SPIFFS_GC_DBG("gc_clean: MOVE_DATA wrote page %04x to objix_hdr entry %02x in mem\n", new_data_pix, SPIFFS_OBJ_IX_ENTRY(fs, p_hdr.span_ix));
} else {
// update object index page
((spiffs_page_ix*)((u8_t *)objix + sizeof(spiffs_page_object_ix)))[SPIFFS_OBJ_IX_ENTRY(fs, p_hdr.span_ix)] = new_data_pix;
SPIFFS_GC_DBG("gc_clean: MOVE_DATA wrote page %04x to objix entry %02x in mem\n", new_data_pix, SPIFFS_OBJ_IX_ENTRY(fs, p_hdr.span_ix));
}
}
}
break;
case MOVE_OBJ_IX:
if (obj_id != SPIFFS_OBJ_ID_DELETED && obj_id != SPIFFS_OBJ_ID_FREE &&
(obj_id & SPIFFS_OBJ_ID_IX_FLAG)) {
// found an index object id
spiffs_page_header p_hdr;
spiffs_page_ix new_pix;
// load header
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
if (p_hdr.flags & SPIFFS_PH_FLAG_DELET) {
// move page
res = spiffs_page_move(fs, 0, 0, obj_id, &p_hdr, cur_pix, &new_pix);
SPIFFS_GC_DBG("gc_clean: MOVE_OBJIX move objix %04x:%04x page %04x to %04x\n", obj_id, p_hdr.span_ix, cur_pix, new_pix);
SPIFFS_CHECK_RES(res);
spiffs_cb_object_event(fs, 0, SPIFFS_EV_IX_UPD, obj_id, p_hdr.span_ix, new_pix, 0);
// move wipes obj_lu, reload it
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, bix * SPIFFS_CFG_LOG_BLOCK_SZ(fs) + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page),
SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
SPIFFS_CHECK_RES(res);
} else {
// page is deleted but not deleted in lookup, scrap it
SPIFFS_GC_DBG("gc_clean: MOVE_OBJIX wipe objix %04x:%04x page %04x\n", obj_id, p_hdr.span_ix, cur_pix);
res = spiffs_page_delete(fs, cur_pix);
if (res == SPIFFS_OK) {
spiffs_cb_object_event(fs, 0, SPIFFS_EV_IX_DEL, obj_id, p_hdr.span_ix, cur_pix, 0);
}
}
SPIFFS_CHECK_RES(res);
}
break;
default:
scan = 0;
break;
}
cur_entry++;
} // per entry
obj_lookup_page++;
} // per object lookup page
if (res != SPIFFS_OK) break;
// state finalization and switch
switch (gc.state) {
case FIND_OBJ_DATA:
if (gc.obj_id_found) {
// find out corresponding obj ix page and load it to memory
spiffs_page_header p_hdr;
spiffs_page_ix objix_pix;
gc.stored_scan_entry_index = cur_entry;
cur_entry = 0;
gc.state = MOVE_OBJ_DATA;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, cur_pix), sizeof(spiffs_page_header), (u8_t*)&p_hdr);
SPIFFS_CHECK_RES(res);
gc.cur_objix_spix = SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, p_hdr.span_ix);
SPIFFS_GC_DBG("gc_clean: FIND_DATA find objix span_ix:%04x\n", gc.cur_objix_spix);
res = spiffs_obj_lu_find_id_and_span(fs, gc.cur_obj_id | SPIFFS_OBJ_ID_IX_FLAG, gc.cur_objix_spix, 0, &objix_pix);
SPIFFS_CHECK_RES(res);
SPIFFS_GC_DBG("gc_clean: FIND_DATA found object index at page %04x\n", objix_pix);
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, objix_pix), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->work);
SPIFFS_CHECK_RES(res);
SPIFFS_VALIDATE_OBJIX(objix->p_hdr, gc.cur_obj_id | SPIFFS_OBJ_ID_IX_FLAG, gc.cur_objix_spix);
gc.cur_objix_pix = objix_pix;
} else {
gc.state = MOVE_OBJ_IX;
cur_entry = 0; // restart entry scan index
}
break;
case MOVE_OBJ_DATA: {
// store modified objix (hdr) page
spiffs_page_ix new_objix_pix;
gc.state = FIND_OBJ_DATA;
cur_entry = gc.stored_scan_entry_index;
if (gc.cur_objix_spix == 0) {
// store object index header page
res = spiffs_object_update_index_hdr(fs, 0, gc.cur_obj_id | SPIFFS_OBJ_ID_IX_FLAG, gc.cur_objix_pix, fs->work, 0, 0, &new_objix_pix);
SPIFFS_GC_DBG("gc_clean: MOVE_DATA store modified objix_hdr page, %04x:%04x\n", new_objix_pix, 0);
SPIFFS_CHECK_RES(res);
} else {
// store object index page
res = spiffs_page_move(fs, 0, fs->work, gc.cur_obj_id | SPIFFS_OBJ_ID_IX_FLAG, 0, gc.cur_objix_pix, &new_objix_pix);
SPIFFS_GC_DBG("gc_clean: MOVE_DATA store modified objix page, %04x:%04x\n", new_objix_pix, objix->p_hdr.span_ix);
SPIFFS_CHECK_RES(res);
spiffs_cb_object_event(fs, 0, SPIFFS_EV_IX_UPD, gc.cur_obj_id, objix->p_hdr.span_ix, new_objix_pix, 0);
}
}
break;
case MOVE_OBJ_IX:
gc.state = FINISHED;
break;
default:
cur_entry = 0;
break;
}
SPIFFS_GC_DBG("gc_clean: state-> %d\n", gc.state);
} // while state != FINISHED
return res;
}

View File

@ -0,0 +1,871 @@
/*
* spiffs_hydrogen.c
*
* Created on: Jun 16, 2013
* Author: petera
*/
#include "spiffs.h"
#include "spiffs_nucleus.h"
static s32_t spiffs_fflush_cache(spiffs *fs, spiffs_file fh);
#if SPIFFS_BUFFER_HELP
u32_t SPIFFS_buffer_bytes_for_filedescs(spiffs *fs, u32_t num_descs) {
return num_descs * sizeof(spiffs_fd);
}
#if SPIFFS_CACHE
u32_t SPIFFS_buffer_bytes_for_cache(spiffs *fs, u32_t num_pages) {
return sizeof(spiffs_cache) + num_pages * (sizeof(spiffs_cache_page) + SPIFFS_CFG_LOG_PAGE_SZ(fs));
}
#endif
#endif
s32_t SPIFFS_mount(spiffs *fs, spiffs_config *config, u8_t *work,
u8_t *fd_space, u32_t fd_space_size,
void *cache, u32_t cache_size,
spiffs_check_callback check_cb_f) {
SPIFFS_LOCK(fs);
c_memset(fs, 0, sizeof(spiffs));
c_memcpy(&fs->cfg, config, sizeof(spiffs_config));
fs->block_count = SPIFFS_CFG_PHYS_SZ(fs) / SPIFFS_CFG_LOG_BLOCK_SZ(fs);
fs->work = &work[0];
fs->lu_work = &work[SPIFFS_CFG_LOG_PAGE_SZ(fs)];
c_memset(fd_space, 0, fd_space_size);
// align fd_space pointer to pointer size byte boundary, below is safe
u8_t ptr_size = sizeof(void*);
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Wpointer-to-int-cast"
u8_t addr_lsb = (u8_t)(((u32_t)fd_space) & (ptr_size-1));
// #pragma GCC diagnostic pop
if (addr_lsb) {
fd_space += (ptr_size-addr_lsb);
fd_space_size -= (ptr_size-addr_lsb);
}
fs->fd_space = fd_space;
fs->fd_count = (fd_space_size/sizeof(spiffs_fd));
// align cache pointer to 4 byte boundary, below is safe
// #pragma GCC diagnostic push
// #pragma GCC diagnostic ignored "-Wpointer-to-int-cast"
addr_lsb = (u8_t)(((u32_t)cache) & (ptr_size-1));
// #pragma GCC diagnostic pop
if (addr_lsb) {
u8_t *cache_8 = (u8_t *)cache;
cache_8 += (ptr_size-addr_lsb);
cache = cache_8;
cache_size -= (ptr_size-addr_lsb);
}
if (cache_size & (ptr_size-1)) {
cache_size -= (cache_size & (ptr_size-1));
}
#if SPIFFS_CACHE
fs->cache = cache;
fs->cache_size = cache_size;
spiffs_cache_init(fs);
#endif
s32_t res = spiffs_obj_lu_scan(fs);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
SPIFFS_DBG("page index byte len: %d\n", SPIFFS_CFG_LOG_PAGE_SZ(fs));
SPIFFS_DBG("object lookup pages: %d\n", SPIFFS_OBJ_LOOKUP_PAGES(fs));
SPIFFS_DBG("page pages per block: %d\n", SPIFFS_PAGES_PER_BLOCK(fs));
SPIFFS_DBG("page header length: %d\n", sizeof(spiffs_page_header));
SPIFFS_DBG("object header index entries: %d\n", SPIFFS_OBJ_HDR_IX_LEN(fs));
SPIFFS_DBG("object index entries: %d\n", SPIFFS_OBJ_IX_LEN(fs));
SPIFFS_DBG("available file descriptors: %d\n", fs->fd_count);
SPIFFS_DBG("free blocks: %d\n", fs->free_blocks);
fs->check_cb_f = check_cb_f;
SPIFFS_UNLOCK(fs);
return 0;
}
void SPIFFS_unmount(spiffs *fs) {
if (!SPIFFS_CHECK_MOUNT(fs)) return;
SPIFFS_LOCK(fs);
u32_t i;
spiffs_fd *fds = (spiffs_fd *)fs->fd_space;
for (i = 0; i < fs->fd_count; i++) {
spiffs_fd *cur_fd = &fds[i];
if (cur_fd->file_nbr != 0) {
#if SPIFFS_CACHE
(void)spiffs_fflush_cache(fs, cur_fd->file_nbr);
#endif
spiffs_fd_return(fs, cur_fd->file_nbr);
}
}
fs->block_count = 0;
SPIFFS_UNLOCK(fs);
}
s32_t SPIFFS_errno(spiffs *fs) {
return fs->errno;
}
s32_t SPIFFS_creat(spiffs *fs, const char *path, spiffs_mode mode) {
(void)mode;
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_obj_id obj_id;
s32_t res;
res = spiffs_obj_lu_find_free_obj_id(fs, &obj_id, (u8_t *)path);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_create(fs, obj_id, (u8_t *)path, SPIFFS_TYPE_FILE, 0);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
SPIFFS_UNLOCK(fs);
return 0;
}
spiffs_file SPIFFS_open(spiffs *fs, const char *path, spiffs_flags flags, spiffs_mode mode) {
(void)mode;
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
spiffs_page_ix pix;
s32_t res = spiffs_fd_find_new(fs, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_find_object_index_header_by_name(fs, (u8_t*)path, &pix);
if ((flags & SPIFFS_CREAT) == 0) {
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
if ((flags & SPIFFS_CREAT) && res == SPIFFS_ERR_NOT_FOUND) {
spiffs_obj_id obj_id;
// no need to enter conflicting name here, already looked for it above
res = spiffs_obj_lu_find_free_obj_id(fs, &obj_id, 0);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_create(fs, obj_id, (u8_t*)path, SPIFFS_TYPE_FILE, &pix);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
flags &= ~SPIFFS_TRUNC;
} else {
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
res = spiffs_object_open_by_page(fs, pix, fd, flags, mode);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
if (flags & SPIFFS_TRUNC) {
res = spiffs_object_truncate(fd, 0, 0);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
fd->fdoffset = 0;
SPIFFS_UNLOCK(fs);
return fd->file_nbr;
}
spiffs_file SPIFFS_open_by_dirent(spiffs *fs, struct spiffs_dirent *e, spiffs_flags flags, spiffs_mode mode) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res = spiffs_fd_find_new(fs, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_open_by_page(fs, e->pix, fd, flags, mode);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
if (flags & SPIFFS_TRUNC) {
res = spiffs_object_truncate(fd, 0, 0);
if (res < SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
fd->fdoffset = 0;
SPIFFS_UNLOCK(fs);
return fd->file_nbr;
}
s32_t SPIFFS_read(spiffs *fs, spiffs_file fh, void *buf, u32_t len) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
if ((fd->flags & SPIFFS_RDONLY) == 0) {
res = SPIFFS_ERR_NOT_READABLE;
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
#if SPIFFS_CACHE_WR
spiffs_fflush_cache(fs, fh);
#endif
if (fd->fdoffset + len >= fd->size) {
// reading beyond file size
s32_t avail = fd->size - fd->fdoffset;
if (avail <= 0) {
SPIFFS_API_CHECK_RES_UNLOCK(fs, SPIFFS_ERR_END_OF_OBJECT);
}
res = spiffs_object_read(fd, fd->fdoffset, avail, (u8_t*)buf);
if (res == SPIFFS_ERR_END_OF_OBJECT) {
fd->fdoffset += avail;
SPIFFS_UNLOCK(fs);
return avail;
} else {
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
len = avail;
}
} else {
// reading within file size
res = spiffs_object_read(fd, fd->fdoffset, len, (u8_t*)buf);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
fd->fdoffset += len;
SPIFFS_UNLOCK(fs);
return len;
}
static s32_t spiffs_hydro_write(spiffs *fs, spiffs_fd *fd, void *buf, u32_t offset, s32_t len) {
(void)fs;
s32_t res = SPIFFS_OK;
s32_t remaining = len;
if (fd->size != SPIFFS_UNDEFINED_LEN && offset < fd->size) {
s32_t m_len = MIN((s32_t)(fd->size - offset), len);
res = spiffs_object_modify(fd, offset, (u8_t *)buf, m_len);
SPIFFS_CHECK_RES(res);
remaining -= m_len;
u8_t *buf_8 = (u8_t *)buf;
buf_8 += m_len;
buf = buf_8;
offset += m_len;
}
if (remaining > 0) {
res = spiffs_object_append(fd, offset, (u8_t *)buf, remaining);
SPIFFS_CHECK_RES(res);
}
return len;
}
s32_t SPIFFS_write(spiffs *fs, spiffs_file fh, void *buf, u32_t len) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
u32_t offset;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
if ((fd->flags & SPIFFS_WRONLY) == 0) {
res = SPIFFS_ERR_NOT_WRITABLE;
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
offset = fd->fdoffset;
#if SPIFFS_CACHE_WR
if (fd->cache_page == 0) {
// see if object id is associated with cache already
fd->cache_page = spiffs_cache_page_get_by_fd(fs, fd);
}
#endif
if (fd->flags & SPIFFS_APPEND) {
if (fd->size == SPIFFS_UNDEFINED_LEN) {
offset = 0;
} else {
offset = fd->size;
}
#if SPIFFS_CACHE_WR
if (fd->cache_page) {
offset = MAX(offset, fd->cache_page->offset + fd->cache_page->size);
}
#endif
}
SPIFFS_DBG("SPIFFS_write %d %04x offs:%d len %d\n", fh, fd->obj_id, offset, len);
#if SPIFFS_CACHE_WR
if ((fd->flags & SPIFFS_DIRECT) == 0) {
if (len < (s32_t)SPIFFS_CFG_LOG_PAGE_SZ(fs)) {
// small write, try to cache it
u8_t alloc_cpage = 1;
if (fd->cache_page) {
// have a cached page for this fd already, check cache page boundaries
if (offset < fd->cache_page->offset || // writing before cache
offset > fd->cache_page->offset + fd->cache_page->size || // writing after cache
offset + len > fd->cache_page->offset + SPIFFS_CFG_LOG_PAGE_SZ(fs)) // writing beyond cache page
{
// boundary violation, write back cache first and allocate new
SPIFFS_CACHE_DBG("CACHE_WR_DUMP: dumping cache page %d for fd %d:&04x, boundary viol, offs:%d size:%d\n",
fd->cache_page->ix, fd->file_nbr, fd->obj_id, fd->cache_page->offset, fd->cache_page->size);
res = spiffs_hydro_write(fs, fd,
spiffs_get_cache_page(fs, spiffs_get_cache(fs), fd->cache_page->ix),
fd->cache_page->offset, fd->cache_page->size);
spiffs_cache_fd_release(fs, fd->cache_page);
} else {
// writing within cache
alloc_cpage = 0;
}
}
if (alloc_cpage) {
fd->cache_page = spiffs_cache_page_allocate_by_fd(fs, fd);
if (fd->cache_page) {
fd->cache_page->offset = offset;
fd->cache_page->size = 0;
SPIFFS_CACHE_DBG("CACHE_WR_ALLO: allocating cache page %d for fd %d:%04x\n",
fd->cache_page->ix, fd->file_nbr, fd->obj_id);
}
}
if (fd->cache_page) {
u32_t offset_in_cpage = offset - fd->cache_page->offset;
SPIFFS_CACHE_DBG("CACHE_WR_WRITE: storing to cache page %d for fd %d:%04x, offs %d:%d len %d\n",
fd->cache_page->ix, fd->file_nbr, fd->obj_id,
offset, offset_in_cpage, len);
spiffs_cache *cache = spiffs_get_cache(fs);
u8_t *cpage_data = spiffs_get_cache_page(fs, cache, fd->cache_page->ix);
c_memcpy(&cpage_data[offset_in_cpage], buf, len);
fd->cache_page->size = MAX(fd->cache_page->size, offset_in_cpage + len);
fd->fdoffset += len;
SPIFFS_UNLOCK(fs);
return len;
} else {
res = spiffs_hydro_write(fs, fd, buf, offset, len);
SPIFFS_API_CHECK_RES(fs, res);
fd->fdoffset += len;
SPIFFS_UNLOCK(fs);
return res;
}
} else {
// big write, no need to cache it - but first check if there is a cached write already
if (fd->cache_page) {
// write back cache first
SPIFFS_CACHE_DBG("CACHE_WR_DUMP: dumping cache page %d for fd %d:%04x, big write, offs:%d size:%d\n",
fd->cache_page->ix, fd->file_nbr, fd->obj_id, fd->cache_page->offset, fd->cache_page->size);
res = spiffs_hydro_write(fs, fd,
spiffs_get_cache_page(fs, spiffs_get_cache(fs), fd->cache_page->ix),
fd->cache_page->offset, fd->cache_page->size);
spiffs_cache_fd_release(fs, fd->cache_page);
res = spiffs_hydro_write(fs, fd, buf, offset, len);
SPIFFS_API_CHECK_RES(fs, res);
}
}
}
#endif
res = spiffs_hydro_write(fs, fd, buf, offset, len);
SPIFFS_API_CHECK_RES(fs, res);
fd->fdoffset += len;
SPIFFS_UNLOCK(fs);
return res;
}
s32_t SPIFFS_lseek(spiffs *fs, spiffs_file fh, s32_t offs, int whence) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES(fs, res);
#if SPIFFS_CACHE_WR
spiffs_fflush_cache(fs, fh);
#endif
switch (whence) {
case SPIFFS_SEEK_CUR:
offs = fd->fdoffset+offs;
break;
case SPIFFS_SEEK_END:
offs = (fd->size == SPIFFS_UNDEFINED_LEN ? 0 : fd->size) + offs;
break;
}
if (offs > (s32_t)fd->size) {
res = SPIFFS_ERR_END_OF_OBJECT;
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
spiffs_span_ix data_spix = offs / SPIFFS_DATA_PAGE_SIZE(fs);
spiffs_span_ix objix_spix = SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, data_spix);
if (fd->cursor_objix_spix != objix_spix) {
spiffs_page_ix pix;
res = spiffs_obj_lu_find_id_and_span(
fs, fd->obj_id | SPIFFS_OBJ_ID_IX_FLAG, objix_spix, 0, &pix);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
fd->cursor_objix_spix = objix_spix;
fd->cursor_objix_pix = pix;
}
fd->fdoffset = offs;
SPIFFS_UNLOCK(fs);
return 0;
}
s32_t SPIFFS_remove(spiffs *fs, const char *path) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
spiffs_page_ix pix;
s32_t res;
res = spiffs_fd_find_new(fs, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_find_object_index_header_by_name(fs, (u8_t *)path, &pix);
if (res != SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_open_by_page(fs, pix, fd, 0,0);
if (res != SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_truncate(fd, 0, 1);
if (res != SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
SPIFFS_UNLOCK(fs);
return 0;
}
s32_t SPIFFS_fremove(spiffs *fs, spiffs_file fh) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
if ((fd->flags & SPIFFS_WRONLY) == 0) {
res = SPIFFS_ERR_NOT_WRITABLE;
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
}
#if SPIFFS_CACHE_WR
spiffs_cache_fd_release(fs, fd->cache_page);
#endif
res = spiffs_object_truncate(fd, 0, 1);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
SPIFFS_UNLOCK(fs);
return 0;
}
static s32_t spiffs_stat_pix(spiffs *fs, spiffs_page_ix pix, spiffs_file fh, spiffs_stat *s) {
spiffs_page_object_ix_header objix_hdr;
spiffs_obj_id obj_id;
s32_t res =_spiffs_rd(fs, SPIFFS_OP_T_OBJ_IX | SPIFFS_OP_C_READ, fh,
SPIFFS_PAGE_TO_PADDR(fs, pix), sizeof(spiffs_page_object_ix_header), (u8_t *)&objix_hdr);
SPIFFS_API_CHECK_RES(fs, res);
u32_t obj_id_addr = SPIFFS_BLOCK_TO_PADDR(fs, SPIFFS_BLOCK_FOR_PAGE(fs , pix)) +
SPIFFS_OBJ_LOOKUP_ENTRY_FOR_PAGE(fs, pix) * sizeof(spiffs_obj_id);
res =_spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ, fh,
obj_id_addr, sizeof(spiffs_obj_id), (u8_t *)&obj_id);
SPIFFS_API_CHECK_RES(fs, res);
s->obj_id = obj_id;
s->type = objix_hdr.type;
s->size = objix_hdr.size == SPIFFS_UNDEFINED_LEN ? 0 : objix_hdr.size;
strncpy((char *)s->name, (char *)objix_hdr.name, SPIFFS_OBJ_NAME_LEN);
return res;
}
s32_t SPIFFS_stat(spiffs *fs, const char *path, spiffs_stat *s) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
s32_t res;
spiffs_page_ix pix;
res = spiffs_object_find_object_index_header_by_name(fs, (u8_t*)path, &pix);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_stat_pix(fs, pix, 0, s);
SPIFFS_UNLOCK(fs);
return res;
}
s32_t SPIFFS_fstat(spiffs *fs, spiffs_file fh, spiffs_stat *s) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
#if SPIFFS_CACHE_WR
spiffs_fflush_cache(fs, fh);
#endif
res = spiffs_stat_pix(fs, fd->objix_hdr_pix, fh, s);
SPIFFS_UNLOCK(fs);
return res;
}
// Checks if there are any cached writes for the object id associated with
// given filehandle. If so, these writes are flushed.
static s32_t spiffs_fflush_cache(spiffs *fs, spiffs_file fh) {
s32_t res = SPIFFS_OK;
#if SPIFFS_CACHE_WR
spiffs_fd *fd;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES(fs, res);
if ((fd->flags & SPIFFS_DIRECT) == 0) {
if (fd->cache_page == 0) {
// see if object id is associated with cache already
fd->cache_page = spiffs_cache_page_get_by_fd(fs, fd);
}
if (fd->cache_page) {
SPIFFS_CACHE_DBG("CACHE_WR_DUMP: dumping cache page %d for fd %d:%04x, flush, offs:%d size:%d\n",
fd->cache_page->ix, fd->file_nbr, fd->obj_id, fd->cache_page->offset, fd->cache_page->size);
res = spiffs_hydro_write(fs, fd,
spiffs_get_cache_page(fs, spiffs_get_cache(fs), fd->cache_page->ix),
fd->cache_page->offset, fd->cache_page->size);
if (res < SPIFFS_OK) {
fs->errno = res;
}
spiffs_cache_fd_release(fs, fd->cache_page);
}
}
#endif
return res;
}
s32_t SPIFFS_fflush(spiffs *fs, spiffs_file fh) {
SPIFFS_API_CHECK_MOUNT(fs);
s32_t res = SPIFFS_OK;
#if SPIFFS_CACHE_WR
SPIFFS_LOCK(fs);
res = spiffs_fflush_cache(fs, fh);
SPIFFS_API_CHECK_RES_UNLOCK(fs,res);
SPIFFS_UNLOCK(fs);
#endif
return res;
}
void SPIFFS_close(spiffs *fs, spiffs_file fh) {
if (!SPIFFS_CHECK_MOUNT(fs)) {
fs->errno = SPIFFS_ERR_NOT_MOUNTED;
return;
}
SPIFFS_LOCK(fs);
#if SPIFFS_CACHE
spiffs_fflush_cache(fs, fh);
#endif
spiffs_fd_return(fs, fh);
SPIFFS_UNLOCK(fs);
}
s32_t SPIFFS_rename(spiffs *fs, const char *old, const char *newname) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_page_ix pix_old, pix_dummy;
spiffs_fd *fd;
s32_t res = spiffs_object_find_object_index_header_by_name(fs, (u8_t*)old, &pix_old);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_find_object_index_header_by_name(fs, (u8_t*)newname, &pix_dummy);
if (res == SPIFFS_ERR_NOT_FOUND) {
res = SPIFFS_OK;
} else if (res == SPIFFS_OK) {
res = SPIFFS_ERR_CONFLICTING_NAME;
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_fd_find_new(fs, &fd);
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_open_by_page(fs, pix_old, fd, 0, 0);
if (res != SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
res = spiffs_object_update_index_hdr(fs, fd, fd->obj_id, fd->objix_hdr_pix, 0, (u8_t*)newname,
0, &pix_dummy);
if (res != SPIFFS_OK) {
spiffs_fd_return(fs, fd->file_nbr);
}
SPIFFS_API_CHECK_RES_UNLOCK(fs, res);
SPIFFS_UNLOCK(fs);
return res;
}
spiffs_DIR *SPIFFS_opendir(spiffs *fs, const char *name, spiffs_DIR *d) {
(void)name;
if (!SPIFFS_CHECK_MOUNT(fs)) {
fs->errno = SPIFFS_ERR_NOT_MOUNTED;
return 0;
}
d->fs = fs;
d->block = 0;
d->entry = 0;
return d;
}
static s32_t spiffs_read_dir_v(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_block_ix bix,
int ix_entry,
u32_t user_data,
void *user_p) {
(void)user_data;
s32_t res;
spiffs_page_object_ix_header objix_hdr;
if (obj_id == SPIFFS_OBJ_ID_FREE || obj_id == SPIFFS_OBJ_ID_DELETED ||
(obj_id & SPIFFS_OBJ_ID_IX_FLAG) == 0) {
return SPIFFS_VIS_COUNTINUE;
}
spiffs_page_ix pix = SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, bix, ix_entry);
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU2 | SPIFFS_OP_C_READ,
0, SPIFFS_PAGE_TO_PADDR(fs, pix), sizeof(spiffs_page_object_ix_header), (u8_t *)&objix_hdr);
if (res != SPIFFS_OK) return res;
if ((obj_id & SPIFFS_OBJ_ID_IX_FLAG) &&
objix_hdr.p_hdr.span_ix == 0 &&
(objix_hdr.p_hdr.flags& (SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_FINAL | SPIFFS_PH_FLAG_IXDELE)) ==
(SPIFFS_PH_FLAG_DELET | SPIFFS_PH_FLAG_IXDELE)) {
struct spiffs_dirent *e = (struct spiffs_dirent *)user_p;
e->obj_id = obj_id;
strcpy((char *)e->name, (char *)objix_hdr.name);
e->type = objix_hdr.type;
e->size = objix_hdr.size == SPIFFS_UNDEFINED_LEN ? 0 : objix_hdr.size;
e->pix = pix;
return SPIFFS_OK;
}
return SPIFFS_VIS_COUNTINUE;
}
struct spiffs_dirent *SPIFFS_readdir(spiffs_DIR *d, struct spiffs_dirent *e) {
if (!SPIFFS_CHECK_MOUNT(d->fs)) {
d->fs->errno = SPIFFS_ERR_NOT_MOUNTED;
return 0;
}
SPIFFS_LOCK(fs);
spiffs_block_ix bix;
int entry;
s32_t res;
struct spiffs_dirent *ret = 0;
res = spiffs_obj_lu_find_entry_visitor(d->fs,
d->block,
d->entry,
SPIFFS_VIS_NO_WRAP,
0,
spiffs_read_dir_v,
0,
e,
&bix,
&entry);
if (res == SPIFFS_OK) {
d->block = bix;
d->entry = entry + 1;
ret = e;
} else {
d->fs->errno = res;
}
SPIFFS_UNLOCK(fs);
return ret;
}
s32_t SPIFFS_closedir(spiffs_DIR *d) {
SPIFFS_API_CHECK_MOUNT(d->fs);
return 0;
}
s32_t SPIFFS_check(spiffs *fs) {
s32_t res;
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
res = spiffs_lookup_consistency_check(fs, 0);
res = spiffs_object_index_consistency_check(fs);
res = spiffs_page_consistency_check(fs);
res = spiffs_obj_lu_scan(fs);
SPIFFS_UNLOCK(fs);
return res;
}
s32_t SPIFFS_eof(spiffs *fs, spiffs_file fh) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES(fs, res);
#if SPIFFS_CACHE_WR
spiffs_fflush_cache(fs, fh);
#endif
res = (fd->fdoffset == fd->size);
SPIFFS_UNLOCK(fs);
return res;
}
s32_t SPIFFS_tell(spiffs *fs, spiffs_file fh) {
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
spiffs_fd *fd;
s32_t res;
res = spiffs_fd_get(fs, fh, &fd);
SPIFFS_API_CHECK_RES(fs, res);
#if SPIFFS_CACHE_WR
spiffs_fflush_cache(fs, fh);
#endif
res = fd->fdoffset;
SPIFFS_UNLOCK(fs);
return res;
}
#if SPIFFS_TEST_VISUALISATION
s32_t SPIFFS_vis(spiffs *fs) {
s32_t res = SPIFFS_OK;
SPIFFS_API_CHECK_MOUNT(fs);
SPIFFS_LOCK(fs);
int entries_per_page = (SPIFFS_CFG_LOG_PAGE_SZ(fs) / sizeof(spiffs_obj_id));
spiffs_obj_id *obj_lu_buf = (spiffs_obj_id *)fs->lu_work;
spiffs_block_ix bix = 0;
while (bix < fs->block_count) {
// check each object lookup page
int obj_lookup_page = 0;
int cur_entry = 0;
while (res == SPIFFS_OK && obj_lookup_page < (int)SPIFFS_OBJ_LOOKUP_PAGES(fs)) {
int entry_offset = obj_lookup_page * entries_per_page;
res = _spiffs_rd(fs, SPIFFS_OP_T_OBJ_LU | SPIFFS_OP_C_READ,
0, bix * SPIFFS_CFG_LOG_BLOCK_SZ(fs) + SPIFFS_PAGE_TO_PADDR(fs, obj_lookup_page), SPIFFS_CFG_LOG_PAGE_SZ(fs), fs->lu_work);
// check each entry
while (res == SPIFFS_OK &&
cur_entry - entry_offset < entries_per_page && cur_entry < (int)(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))) {
spiffs_obj_id obj_id = obj_lu_buf[cur_entry-entry_offset];
if (cur_entry == 0) {
spiffs_printf("%4i ", bix);
} else if ((cur_entry & 0x3f) == 0) {
spiffs_printf(" ");
}
if (obj_id == SPIFFS_OBJ_ID_FREE) {
spiffs_printf(SPIFFS_TEST_VIS_FREE_STR);
} else if (obj_id == SPIFFS_OBJ_ID_DELETED) {
spiffs_printf(SPIFFS_TEST_VIS_DELE_STR);
} else if (obj_id & SPIFFS_OBJ_ID_IX_FLAG){
spiffs_printf(SPIFFS_TEST_VIS_INDX_STR(obj_id));
} else {
spiffs_printf(SPIFFS_TEST_VIS_DATA_STR(obj_id));
}
cur_entry++;
if ((cur_entry & 0x3f) == 0) {
spiffs_printf("\n");
}
} // per entry
obj_lookup_page++;
} // per object lookup page
spiffs_obj_id erase_count;
res = _spiffs_rd(fs, SPIFFS_OP_C_READ | SPIFFS_OP_T_OBJ_LU2, 0,
SPIFFS_ERASE_COUNT_PADDR(fs, bix),
sizeof(spiffs_obj_id), (u8_t *)&erase_count);
SPIFFS_CHECK_RES(res);
if (erase_count != (spiffs_obj_id)-1) {
spiffs_printf("\tera_cnt: %d\n", erase_count);
} else {
spiffs_printf("\tera_cnt: N/A\n");
}
bix++;
} // per block
spiffs_printf("era_cnt_max: %d\n", fs->max_erase_count);
spiffs_printf("last_errno: %d\n", fs->errno);
spiffs_printf("blocks: %d\n", fs->block_count);
spiffs_printf("free_blocks: %d\n", fs->free_blocks);
spiffs_printf("page_alloc: %d\n", fs->stats_p_allocated);
spiffs_printf("page_delet: %d\n", fs->stats_p_deleted);
SPIFFS_UNLOCK(fs);
return res;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,687 @@
/*
* spiffs_nucleus.h
*
* Created on: Jun 15, 2013
* Author: petera
*/
/* SPIFFS layout
*
* spiffs is designed for following spi flash characteristics:
* - only big areas of data (blocks) can be erased
* - erasing resets all bits in a block to ones
* - writing pulls ones to zeroes
* - zeroes cannot be pulled to ones, without erase
* - wear leveling
*
* spiffs is also meant to be run on embedded, memory constraint devices.
*
* Entire area is divided in blocks. Entire area is also divided in pages.
* Each block contains same number of pages. A page cannot be erased, but a
* block can be erased.
*
* Entire area must be block_size * x
* page_size must be block_size / (2^y) where y > 2
*
* ex: area = 1024*1024 bytes, block size = 65536 bytes, page size = 256 bytes
*
* BLOCK 0 PAGE 0 object lookup 1
* PAGE 1 object lookup 2
* ...
* PAGE n-1 object lookup n
* PAGE n object data 1
* PAGE n+1 object data 2
* ...
* PAGE n+m-1 object data m
*
* BLOCK 1 PAGE n+m object lookup 1
* PAGE n+m+1 object lookup 2
* ...
* PAGE 2n+m-1 object lookup n
* PAGE 2n+m object data 1
* PAGE 2n+m object data 2
* ...
* PAGE 2n+2m-1 object data m
* ...
*
* n is number of object lookup pages, which is number of pages needed to index all pages
* in a block by object id
* : block_size / page_size * sizeof(obj_id) / page_size
* m is number data pages, which is number of pages in block minus number of lookup pages
* : block_size / page_size - block_size / page_size * sizeof(obj_id) / page_size
* thus, n+m is total number of pages in a block
* : block_size / page_size
*
* ex: n = 65536/256*2/256 = 2, m = 65536/256 - 2 = 254 => n+m = 65536/256 = 256
*
* Object lookup pages contain object id entries. Each entry represent the corresponding
* data page.
* Assuming a 16 bit object id, an object id being 0xffff represents a free page.
* An object id being 0x0000 represents a deleted page.
*
* ex: page 0 : lookup : 0008 0001 0aaa ffff ffff ffff ffff ffff ..
* page 1 : lookup : ffff ffff ffff ffff ffff ffff ffff ffff ..
* page 2 : data : data for object id 0008
* page 3 : data : data for object id 0001
* page 4 : data : data for object id 0aaa
* ...
*
*
* Object data pages can be either object index pages or object content.
* All object data pages contains a data page header, containing object id and span index.
* The span index denotes the object page ordering amongst data pages with same object id.
* This applies to both object index pages (when index spans more than one page of entries),
* and object data pages.
* An object index page contains page entries pointing to object content page. The entry index
* in a object index page correlates to the span index in the actual object data page.
* The first object index page (span index 0) is called object index header page, and also
* contains object flags (directory/file), size, object name etc.
*
* ex:
* BLOCK 1
* PAGE 256: objectl lookup page 1
* [*123] [ 123] [ 123] [ 123]
* [ 123] [*123] [ 123] [ 123]
* [free] [free] [free] [free] ...
* PAGE 257: objectl lookup page 2
* [free] [free] [free] [free] ...
* PAGE 258: object index page (header)
* obj.id:0123 span.ix:0000 flags:INDEX
* size:1600 name:ex.txt type:file
* [259] [260] [261] [262]
* PAGE 259: object data page
* obj.id:0123 span.ix:0000 flags:DATA
* PAGE 260: object data page
* obj.id:0123 span.ix:0001 flags:DATA
* PAGE 261: object data page
* obj.id:0123 span.ix:0002 flags:DATA
* PAGE 262: object data page
* obj.id:0123 span.ix:0003 flags:DATA
* PAGE 263: object index page
* obj.id:0123 span.ix:0001 flags:INDEX
* [264] [265] [fre] [fre]
* [fre] [fre] [fre] [fre]
* PAGE 264: object data page
* obj.id:0123 span.ix:0004 flags:DATA
* PAGE 265: object data page
* obj.id:0123 span.ix:0005 flags:DATA
*
*/
#ifndef SPIFFS_NUCLEUS_H_
#define SPIFFS_NUCLEUS_H_
#define _SPIFFS_ERR_CHECK_FIRST (SPIFFS_ERR_INTERNAL - 1)
#define SPIFFS_ERR_CHECK_OBJ_ID_MISM (SPIFFS_ERR_INTERNAL - 1)
#define SPIFFS_ERR_CHECK_SPIX_MISM (SPIFFS_ERR_INTERNAL - 2)
#define SPIFFS_ERR_CHECK_FLAGS_BAD (SPIFFS_ERR_INTERNAL - 3)
#define _SPIFFS_ERR_CHECK_LAST (SPIFFS_ERR_INTERNAL - 4)
#define SPIFFS_VIS_COUNTINUE (SPIFFS_ERR_INTERNAL - 20)
#define SPIFFS_VIS_COUNTINUE_RELOAD (SPIFFS_ERR_INTERNAL - 21)
#define SPIFFS_VIS_END (SPIFFS_ERR_INTERNAL - 22)
#define SPIFFS_EV_IX_UPD 0
#define SPIFFS_EV_IX_NEW 1
#define SPIFFS_EV_IX_DEL 2
#define SPIFFS_OBJ_ID_IX_FLAG (1<<(8*sizeof(spiffs_obj_id)-1))
#define SPIFFS_UNDEFINED_LEN (u32_t)(-1)
#define SPIFFS_OBJ_ID_DELETED ((spiffs_obj_id)0)
#define SPIFFS_OBJ_ID_FREE ((spiffs_obj_id)-1)
#if SPIFFS_SINGLETON == 0
#define SPIFFS_CFG_LOG_PAGE_SZ(fs) \
((fs)->cfg.log_page_size)
#define SPIFFS_CFG_LOG_BLOCK_SZ(fs) \
((fs)->cfg.log_block_size)
#define SPIFFS_CFG_PHYS_SZ(fs) \
((fs)->cfg.phys_size)
#define SPIFFS_CFG_PHYS_ERASE_SZ(fs) \
((fs)->cfg.phys_erase_block)
#define SPIFFS_CFG_PHYS_ADDR(fs) \
((fs)->cfg.phys_addr)
#endif
// total number of pages
#define SPIFFS_MAX_PAGES(fs) \
( SPIFFS_CFG_PHYS_SZ(fs)/SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// total number of pages per block, including object lookup pages
#define SPIFFS_PAGES_PER_BLOCK(fs) \
( SPIFFS_CFG_LOG_BLOCK_SZ(fs)/SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// number of object lookup pages per block
#define SPIFFS_OBJ_LOOKUP_PAGES(fs) \
(MAX(1, (SPIFFS_PAGES_PER_BLOCK(fs) * sizeof(spiffs_obj_id)) / SPIFFS_CFG_LOG_PAGE_SZ(fs)) )
// checks if page index belongs to object lookup
#define SPIFFS_IS_LOOKUP_PAGE(fs,pix) \
(((pix) % SPIFFS_PAGES_PER_BLOCK(fs)) < SPIFFS_OBJ_LOOKUP_PAGES(fs))
// number of object lookup entries in all object lookup pages
#define SPIFFS_OBJ_LOOKUP_MAX_ENTRIES(fs) \
(SPIFFS_PAGES_PER_BLOCK(fs)-SPIFFS_OBJ_LOOKUP_PAGES(fs))
// converts a block to physical address
#define SPIFFS_BLOCK_TO_PADDR(fs, block) \
( SPIFFS_CFG_PHYS_ADDR(fs) + (block)* SPIFFS_CFG_LOG_BLOCK_SZ(fs) )
// converts a object lookup entry to page index
#define SPIFFS_OBJ_LOOKUP_ENTRY_TO_PIX(fs, block, entry) \
((block)*SPIFFS_PAGES_PER_BLOCK(fs) + (SPIFFS_OBJ_LOOKUP_PAGES(fs) + entry))
// converts a object lookup entry to physical address of corresponding page
#define SPIFFS_OBJ_LOOKUP_ENTRY_TO_PADDR(fs, block, entry) \
(SPIFFS_BLOCK_TO_PADDR(fs, block) + (SPIFFS_OBJ_LOOKUP_PAGES(fs) + entry) * SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// converts a page to physical address
#define SPIFFS_PAGE_TO_PADDR(fs, page) \
( SPIFFS_CFG_PHYS_ADDR(fs) + (page) * SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// converts a physical address to page
#define SPIFFS_PADDR_TO_PAGE(fs, addr) \
( ((addr) - SPIFFS_CFG_PHYS_ADDR(fs)) / SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// gives index in page for a physical address
#define SPIFFS_PADDR_TO_PAGE_OFFSET(fs, addr) \
( ((addr) - SPIFFS_CFG_PHYS_ADDR(fs)) % SPIFFS_CFG_LOG_PAGE_SZ(fs) )
// returns containing block for given page
#define SPIFFS_BLOCK_FOR_PAGE(fs, page) \
( (page) / SPIFFS_PAGES_PER_BLOCK(fs) )
// returns starting page for block
#define SPIFFS_PAGE_FOR_BLOCK(fs, block) \
( (block) * SPIFFS_PAGES_PER_BLOCK(fs) )
// converts page to entry in object lookup page
#define SPIFFS_OBJ_LOOKUP_ENTRY_FOR_PAGE(fs, page) \
( (page) % SPIFFS_PAGES_PER_BLOCK(fs) - SPIFFS_OBJ_LOOKUP_PAGES(fs) )
// returns data size in a data page
#define SPIFFS_DATA_PAGE_SIZE(fs) \
( SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_header) )
// returns physical address for block's erase count
#define SPIFFS_ERASE_COUNT_PADDR(fs, bix) \
( SPIFFS_BLOCK_TO_PADDR(fs, bix) + SPIFFS_OBJ_LOOKUP_PAGES(fs) * SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_obj_id) )
// define helpers object
// entries in an object header page index
#define SPIFFS_OBJ_HDR_IX_LEN(fs) \
((SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_object_ix_header))/sizeof(spiffs_page_ix))
// entries in an object page index
#define SPIFFS_OBJ_IX_LEN(fs) \
((SPIFFS_CFG_LOG_PAGE_SZ(fs) - sizeof(spiffs_page_object_ix))/sizeof(spiffs_page_ix))
// object index entry for given data span index
#define SPIFFS_OBJ_IX_ENTRY(fs, spix) \
((spix) < SPIFFS_OBJ_HDR_IX_LEN(fs) ? (spix) : (((spix)-SPIFFS_OBJ_HDR_IX_LEN(fs))%SPIFFS_OBJ_IX_LEN(fs)))
// object index span index number for given data span index or entry
#define SPIFFS_OBJ_IX_ENTRY_SPAN_IX(fs, spix) \
((spix) < SPIFFS_OBJ_HDR_IX_LEN(fs) ? 0 : (1+((spix)-SPIFFS_OBJ_HDR_IX_LEN(fs))/SPIFFS_OBJ_IX_LEN(fs)))
#define SPIFFS_OP_T_OBJ_LU (0<<0)
#define SPIFFS_OP_T_OBJ_LU2 (1<<0)
#define SPIFFS_OP_T_OBJ_IX (2<<0)
#define SPIFFS_OP_T_OBJ_DA (3<<0)
#define SPIFFS_OP_C_DELE (0<<2)
#define SPIFFS_OP_C_UPDT (1<<2)
#define SPIFFS_OP_C_MOVS (2<<2)
#define SPIFFS_OP_C_MOVD (3<<2)
#define SPIFFS_OP_C_FLSH (4<<2)
#define SPIFFS_OP_C_READ (5<<2)
#define SPIFFS_OP_C_WRTHRU (6<<2)
#define SPIFFS_OP_TYPE_MASK (3<<0)
#define SPIFFS_OP_COM_MASK (7<<2)
// if 0, this page is written to, else clean
#define SPIFFS_PH_FLAG_USED (1<<0)
// if 0, writing is finalized, else under modification
#define SPIFFS_PH_FLAG_FINAL (1<<1)
// if 0, this is an index page, else a data page
#define SPIFFS_PH_FLAG_INDEX (1<<2)
// if 0, page is deleted, else valid
#define SPIFFS_PH_FLAG_DELET (1<<7)
// if 0, this index header is being deleted
#define SPIFFS_PH_FLAG_IXDELE (1<<6)
#define SPIFFS_CHECK_MOUNT(fs) \
((fs)->block_count > 0)
#define SPIFFS_CHECK_RES(res) \
do { \
if ((res) < SPIFFS_OK) return (res); \
} while (0);
#define SPIFFS_API_CHECK_MOUNT(fs) \
if (!SPIFFS_CHECK_MOUNT((fs))) { \
(fs)->errno = SPIFFS_ERR_NOT_MOUNTED; \
return -1; \
}
#define SPIFFS_API_CHECK_RES(fs, res) \
if ((res) < SPIFFS_OK) { \
(fs)->errno = (res); \
return -1; \
}
#define SPIFFS_API_CHECK_RES_UNLOCK(fs, res) \
if ((res) < SPIFFS_OK) { \
(fs)->errno = (res); \
SPIFFS_UNLOCK(fs); \
return -1; \
}
#define SPIFFS_VALIDATE_OBJIX(ph, objid, spix) \
if (((ph).flags & SPIFFS_PH_FLAG_USED) != 0) return SPIFFS_ERR_IS_FREE; \
if (((ph).flags & SPIFFS_PH_FLAG_DELET) == 0) return SPIFFS_ERR_DELETED; \
if (((ph).flags & SPIFFS_PH_FLAG_FINAL) != 0) return SPIFFS_ERR_NOT_FINALIZED; \
if (((ph).flags & SPIFFS_PH_FLAG_INDEX) != 0) return SPIFFS_ERR_NOT_INDEX; \
if (((objid) & SPIFFS_OBJ_ID_IX_FLAG) == 0) return SPIFFS_ERR_NOT_INDEX; \
if ((ph).span_ix != (spix)) return SPIFFS_ERR_INDEX_SPAN_MISMATCH;
//if ((spix) == 0 && ((ph).flags & SPIFFS_PH_FLAG_IXDELE) == 0) return SPIFFS_ERR_DELETED;
#define SPIFFS_VALIDATE_DATA(ph, objid, spix) \
if (((ph).flags & SPIFFS_PH_FLAG_USED) != 0) return SPIFFS_ERR_IS_FREE; \
if (((ph).flags & SPIFFS_PH_FLAG_DELET) == 0) return SPIFFS_ERR_DELETED; \
if (((ph).flags & SPIFFS_PH_FLAG_FINAL) != 0) return SPIFFS_ERR_NOT_FINALIZED; \
if (((ph).flags & SPIFFS_PH_FLAG_INDEX) == 0) return SPIFFS_ERR_IS_INDEX; \
if ((objid) & SPIFFS_OBJ_ID_IX_FLAG) return SPIFFS_ERR_IS_INDEX; \
if ((ph).span_ix != (spix)) return SPIFFS_ERR_DATA_SPAN_MISMATCH;
// check id
#define SPIFFS_VIS_CHECK_ID (1<<0)
// report argument object id to visitor - else object lookup id is reported
#define SPIFFS_VIS_CHECK_PH (1<<1)
// stop searching at end of all look up pages
#define SPIFFS_VIS_NO_WRAP (1<<2)
#if SPIFFS_CACHE
#define SPIFFS_CACHE_FLAG_DIRTY (1<<0)
#define SPIFFS_CACHE_FLAG_WRTHRU (1<<1)
#define SPIFFS_CACHE_FLAG_OBJLU (1<<2)
#define SPIFFS_CACHE_FLAG_OBJIX (1<<3)
#define SPIFFS_CACHE_FLAG_DATA (1<<4)
#define SPIFFS_CACHE_FLAG_TYPE_WR (1<<7)
#define SPIFFS_CACHE_PAGE_SIZE(fs) \
(sizeof(spiffs_cache_page) + SPIFFS_CFG_LOG_PAGE_SZ(fs))
#define spiffs_get_cache(fs) \
((spiffs_cache *)((fs)->cache))
#define spiffs_get_cache_page_hdr(fs, c, ix) \
((spiffs_cache_page *)(&((c)->cpages[(ix) * SPIFFS_CACHE_PAGE_SIZE(fs)])))
#define spiffs_get_cache_page(fs, c, ix) \
((u8_t *)(&((c)->cpages[(ix) * SPIFFS_CACHE_PAGE_SIZE(fs)])) + sizeof(spiffs_cache_page))
// cache page struct
typedef struct {
// cache flags
u8_t flags;
// cache page index
u8_t ix;
// last access of this cache page
u32_t last_access;
union {
// type read cache
struct {
// read cache page index
spiffs_page_ix pix;
};
#if SPIFFS_CACHE_WR
// type write cache
struct {
// write cache
spiffs_obj_id obj_id;
// offset in cache page
u32_t offset;
// size of cache page
u16_t size;
};
#endif
};
} spiffs_cache_page;
// cache struct
typedef struct {
u8_t cpage_count;
u32_t last_access;
u32_t cpage_use_map;
u32_t cpage_use_mask;
u8_t *cpages;
} spiffs_cache;
#endif
// spiffs nucleus file descriptor
typedef struct {
// the filesystem of this descriptor
spiffs *fs;
// number of file descriptor - if 0, the file descriptor is closed
spiffs_file file_nbr;
// object id - if SPIFFS_OBJ_ID_ERASED, the file was deleted
spiffs_obj_id obj_id;
// size of the file
u32_t size;
// cached object index header page index
spiffs_page_ix objix_hdr_pix;
// cached offset object index page index
spiffs_page_ix cursor_objix_pix;
// cached offset object index span index
spiffs_span_ix cursor_objix_spix;
// current absolute offset
u32_t offset;
// current file descriptor offset
u32_t fdoffset;
// fd flags
spiffs_flags flags;
#if SPIFFS_CACHE_WR
spiffs_cache_page *cache_page;
#endif
} spiffs_fd;
// object structs
// page header, part of each page except object lookup pages
typedef struct __attribute(( packed )) {
// object id
spiffs_obj_id obj_id;
// object span index
spiffs_span_ix span_ix;
// flags
u8_t flags;
} spiffs_page_header;
// object index header page header
typedef struct __attribute(( packed )) {
// common page header
spiffs_page_header p_hdr;
// alignment
u8_t _align[4 - (sizeof(spiffs_page_header)&3)==0 ? 4 : (sizeof(spiffs_page_header)&3)];
// size of object
u32_t size;
// type of object
spiffs_obj_type type;
// alignment2
u8_t _align2[4 - (sizeof(spiffs_obj_type)&3)==0 ? 4 : (sizeof(spiffs_obj_type)&3)];
// name of object
u8_t name[SPIFFS_OBJ_NAME_LEN];
} spiffs_page_object_ix_header;
// object index page header
typedef struct __attribute(( packed )) {
spiffs_page_header p_hdr;
u8_t _align[4 - (sizeof(spiffs_page_header)&3)==0 ? 4 : (sizeof(spiffs_page_header)&3)];
} spiffs_page_object_ix;
// callback func for object lookup visitor
typedef s32_t (*spiffs_visitor_f)(spiffs *fs, spiffs_obj_id id, spiffs_block_ix bix, int ix_entry,
u32_t user_data, void *user_p);
#if SPIFFS_CACHE
#define _spiffs_rd(fs, op, fh, addr, len, dst) \
spiffs_phys_rd((fs), (op), (fh), (addr), (len), (dst))
#define _spiffs_wr(fs, op, fh, addr, len, src) \
spiffs_phys_wr((fs), (op), (fh), (addr), (len), (src))
#else
#define _spiffs_rd(fs, op, fh, addr, len, dst) \
spiffs_phys_rd((fs), (addr), (len), (dst))
#define _spiffs_wr(fs, op, fh, addr, len, src) \
spiffs_phys_wr((fs), (addr), (len), (src))
#endif
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif
// ---------------
s32_t spiffs_phys_rd(
spiffs *fs,
#if SPIFFS_CACHE
u8_t op,
spiffs_file fh,
#endif
u32_t addr,
u32_t len,
u8_t *dst);
s32_t spiffs_phys_wr(
spiffs *fs,
#if SPIFFS_CACHE
u8_t op,
spiffs_file fh,
#endif
u32_t addr,
u32_t len,
u8_t *src);
s32_t spiffs_phys_cpy(
spiffs *fs,
spiffs_file fh,
u32_t dst,
u32_t src,
u32_t len);
s32_t spiffs_phys_count_free_blocks(
spiffs *fs);
s32_t spiffs_obj_lu_find_entry_visitor(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
u8_t flags,
spiffs_obj_id obj_id,
spiffs_visitor_f v,
u32_t user_data,
void *user_p,
spiffs_block_ix *block_ix,
int *lu_entry);
// ---------------
s32_t spiffs_obj_lu_scan(
spiffs *fs);
s32_t spiffs_obj_lu_find_free_obj_id(
spiffs *fs,
spiffs_obj_id *obj_id,
u8_t *conflicting_name);
s32_t spiffs_obj_lu_find_free(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
spiffs_block_ix *block_ix,
int *lu_entry);
s32_t spiffs_obj_lu_find_id(
spiffs *fs,
spiffs_block_ix starting_block,
int starting_lu_entry,
spiffs_obj_id obj_id,
spiffs_block_ix *block_ix,
int *lu_entry);
s32_t spiffs_obj_lu_find_id_and_span(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_span_ix spix,
spiffs_page_ix exclusion_pix,
spiffs_page_ix *pix);
s32_t spiffs_obj_lu_find_id_and_span_by_phdr(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_span_ix spix,
spiffs_page_ix exclusion_pix,
spiffs_page_ix *pix);
// ---------------
s32_t spiffs_page_allocate_data(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_page_header *ph,
u8_t *data,
u32_t len,
u32_t page_offs,
u8_t finalize,
spiffs_page_ix *pix);
s32_t spiffs_page_move(
spiffs *fs,
spiffs_file fh,
u8_t *page_data,
spiffs_obj_id obj_id,
spiffs_page_header *page_hdr,
spiffs_page_ix src_pix,
spiffs_page_ix *dst_pix);
s32_t spiffs_page_delete(
spiffs *fs,
spiffs_page_ix pix);
// ---------------
s32_t spiffs_object_create(
spiffs *fs,
spiffs_obj_id obj_id,
u8_t name[SPIFFS_OBJ_NAME_LEN],
spiffs_obj_type type,
spiffs_page_ix *objix_hdr_pix);
s32_t spiffs_object_update_index_hdr(
spiffs *fs,
spiffs_fd *fd,
spiffs_obj_id obj_id,
spiffs_page_ix objix_hdr_pix,
u8_t *new_objix_hdr_data,
u8_t name[SPIFFS_OBJ_NAME_LEN],
u32_t size,
spiffs_page_ix *new_pix);
void spiffs_cb_object_event(
spiffs *fs,
spiffs_fd *fd,
int ev,
spiffs_obj_id obj_id,
spiffs_span_ix spix,
spiffs_page_ix new_pix,
u32_t new_size);
s32_t spiffs_object_open_by_id(
spiffs *fs,
spiffs_obj_id obj_id,
spiffs_fd *f,
spiffs_flags flags,
spiffs_mode mode);
s32_t spiffs_object_open_by_page(
spiffs *fs,
spiffs_page_ix pix,
spiffs_fd *f,
spiffs_flags flags,
spiffs_mode mode);
s32_t spiffs_object_append(
spiffs_fd *fd,
u32_t offset,
u8_t *data,
u32_t len);
s32_t spiffs_object_modify(
spiffs_fd *fd,
u32_t offset,
u8_t *data,
u32_t len);
s32_t spiffs_object_read(
spiffs_fd *fd,
u32_t offset,
u32_t len,
u8_t *dst);
s32_t spiffs_object_truncate(
spiffs_fd *fd,
u32_t new_len,
u8_t remove_object);
s32_t spiffs_object_find_object_index_header_by_name(
spiffs *fs,
u8_t name[SPIFFS_OBJ_NAME_LEN],
spiffs_page_ix *pix);
// ---------------
s32_t spiffs_gc_check(
spiffs *fs,
u32_t len);
s32_t spiffs_gc_erase_page_stats(
spiffs *fs,
spiffs_block_ix bix);
s32_t spiffs_gc_find_candidate(
spiffs *fs,
spiffs_block_ix **block_candidate,
int *candidate_count);
s32_t spiffs_gc_clean(
spiffs *fs,
spiffs_block_ix bix);
s32_t spiffs_gc_quick(
spiffs *fs);
// ---------------
s32_t spiffs_fd_find_new(
spiffs *fs,
spiffs_fd **fd);
s32_t spiffs_fd_return(
spiffs *fs,
spiffs_file f);
s32_t spiffs_fd_get(
spiffs *fs,
spiffs_file f,
spiffs_fd **fd);
#if SPIFFS_CACHE
void spiffs_cache_init(
spiffs *fs);
void spiffs_cache_drop_page(
spiffs *fs,
spiffs_page_ix pix);
#if SPIFFS_CACHE_WR
spiffs_cache_page *spiffs_cache_page_allocate_by_fd(
spiffs *fs,
spiffs_fd *fd);
void spiffs_cache_fd_release(
spiffs *fs,
spiffs_cache_page *cp);
spiffs_cache_page *spiffs_cache_page_get_by_fd(
spiffs *fs,
spiffs_fd *fd);
#endif
#endif
s32_t spiffs_lookup_consistency_check(
spiffs *fs,
u8_t check_all_objects);
s32_t spiffs_page_consistency_check(
spiffs *fs);
s32_t spiffs_object_index_consistency_check(
spiffs *fs);
#endif /* SPIFFS_NUCLEUS_H_ */

View File

@ -111,23 +111,10 @@ bool loadFromSdCard(String path){
dataType = 0; dataType = 0;
path = 0; path = 0;
uint8_t obuf[WWW_BUF_SIZE]; if(client.write(dataFile) != dataFile.size()){
while (dataFile.available() > WWW_BUF_SIZE){
dataFile.read(obuf, WWW_BUF_SIZE);
if(client.write(obuf, WWW_BUF_SIZE) != WWW_BUF_SIZE){
DBG_OUTPUT_PORT.println("Sent less data than expected!");
dataFile.close();
return true;
}
}
uint16_t leftLen = dataFile.available();
dataFile.read(obuf, leftLen);
if(client.write(obuf, leftLen) != leftLen){
DBG_OUTPUT_PORT.println("Sent less data than expected!"); DBG_OUTPUT_PORT.println("Sent less data than expected!");
dataFile.close();
return true;
} }
dataFile.close(); dataFile.close();
client.stop(); client.stop();
return true; return true;

View File

@ -327,6 +327,15 @@ void ESP8266WebServer::_parseArguments(String data) {
} }
void ESP8266WebServer::_uploadWriteByte(uint8_t b){
if(_currentUpload.buflen == HTTP_UPLOAD_BUFLEN){
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.buflen = 0;
}
_currentUpload.buf[_currentUpload.buflen++] = b;
}
void ESP8266WebServer::_parseForm(WiFiClient& client, String boundary, uint32_t len){ void ESP8266WebServer::_parseForm(WiFiClient& client, String boundary, uint32_t len){
#ifdef DEBUG #ifdef DEBUG
@ -428,41 +437,25 @@ void ESP8266WebServer::_parseForm(WiFiClient& client, String boundary, uint32_t
uint8_t argByte = client.read(); uint8_t argByte = client.read();
readfile: readfile:
while(argByte != 0x0D){ while(argByte != 0x0D){
_currentUpload.buf[_currentUpload.buflen++] = argByte; _uploadWriteByte(argByte);
if(_currentUpload.buflen == 1460){
#ifdef DEBUG
DEBUG_OUTPUT.println("Write File: 1460");
#endif
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.buflen = 0;
}
argByte = client.read(); argByte = client.read();
} }
argByte = client.read(); argByte = client.read();
if(argByte == 0x0A){ if(argByte == 0x0A){
#ifdef DEBUG
DEBUG_OUTPUT.print("Write File: ");
DEBUG_OUTPUT.println(_currentUpload.buflen);
#endif
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.buflen = 0;
argByte = client.read(); argByte = client.read();
if((char)argByte != '-'){ if((char)argByte != '-'){
//continue reading the file //continue reading the file
_currentUpload.buf[_currentUpload.buflen++] = 0x0D; _uploadWriteByte(0x0D);
_currentUpload.buf[_currentUpload.buflen++] = 0x0A; _uploadWriteByte(0x0A);
goto readfile; goto readfile;
} else { } else {
argByte = client.read(); argByte = client.read();
if((char)argByte != '-'){ if((char)argByte != '-'){
//continue reading the file //continue reading the file
_currentUpload.buf[_currentUpload.buflen++] = 0x0D; _uploadWriteByte(0x0D);
_currentUpload.buf[_currentUpload.buflen++] = 0x0A; _uploadWriteByte(0x0A);
_currentUpload.buf[_currentUpload.buflen++] = (uint8_t)('-'); _uploadWriteByte((uint8_t)('-'));
goto readfile; goto readfile;
} }
} }
@ -471,7 +464,10 @@ readfile:
client.readBytes(endBuf, boundary.length()); client.readBytes(endBuf, boundary.length());
if(strstr((const char*)endBuf, (const char*)(boundary.c_str())) != NULL){ if(strstr((const char*)endBuf, (const char*)(boundary.c_str())) != NULL){
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.status = UPLOAD_FILE_END; _currentUpload.status = UPLOAD_FILE_END;
if(_fileUploadHandler) _fileUploadHandler();
#ifdef DEBUG #ifdef DEBUG
DEBUG_OUTPUT.print("End File: "); DEBUG_OUTPUT.print("End File: ");
DEBUG_OUTPUT.print(_currentUpload.filename); DEBUG_OUTPUT.print(_currentUpload.filename);
@ -480,7 +476,6 @@ readfile:
DEBUG_OUTPUT.print(" Size: "); DEBUG_OUTPUT.print(" Size: ");
DEBUG_OUTPUT.println(_currentUpload.size); DEBUG_OUTPUT.println(_currentUpload.size);
#endif #endif
if(_fileUploadHandler) _fileUploadHandler();
line = client.readStringUntil(0x0D); line = client.readStringUntil(0x0D);
client.readStringUntil(0x0A); client.readStringUntil(0x0A);
if(line == "--"){ if(line == "--"){
@ -491,33 +486,17 @@ readfile:
} }
continue; continue;
} else { } else {
_currentUpload.buf[_currentUpload.buflen++] = 0x0D; _uploadWriteByte(0x0D);
_currentUpload.buf[_currentUpload.buflen++] = 0x0A; _uploadWriteByte(0x0A);
uint32_t i = 0; uint32_t i = 0;
while(i < boundary.length()){ while(i < boundary.length()){
_currentUpload.buf[_currentUpload.buflen++] = endBuf[i++]; _uploadWriteByte(endBuf[i++]);
if(_currentUpload.buflen == 1460){
#ifdef DEBUG
DEBUG_OUTPUT.println("Write File: 1460");
#endif
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.buflen = 0;
}
} }
argByte = client.read(); argByte = client.read();
goto readfile; goto readfile;
} }
} else { } else {
_currentUpload.buf[_currentUpload.buflen++] = 0x0D; _uploadWriteByte(0x0D);
if(_currentUpload.buflen == 1460){
#ifdef DEBUG
DEBUG_OUTPUT.println("Write File: 1460");
#endif
if(_fileUploadHandler) _fileUploadHandler();
_currentUpload.size += _currentUpload.buflen;
_currentUpload.buflen = 0;
}
goto readfile; goto readfile;
} }
break; break;

View File

@ -29,6 +29,8 @@
enum HTTPMethod { HTTP_ANY, HTTP_GET, HTTP_POST, HTTP_PUT, HTTP_PATCH, HTTP_DELETE }; enum HTTPMethod { HTTP_ANY, HTTP_GET, HTTP_POST, HTTP_PUT, HTTP_PATCH, HTTP_DELETE };
enum HTTPUploadStatus { UPLOAD_FILE_START, UPLOAD_FILE_WRITE, UPLOAD_FILE_END }; enum HTTPUploadStatus { UPLOAD_FILE_START, UPLOAD_FILE_WRITE, UPLOAD_FILE_END };
#define HTTP_UPLOAD_BUFLEN 2048
typedef struct { typedef struct {
HTTPUploadStatus status; HTTPUploadStatus status;
String filename; String filename;
@ -36,7 +38,7 @@ typedef struct {
String type; String type;
size_t size; size_t size;
size_t buflen; size_t buflen;
uint8_t buf[1460]; uint8_t buf[HTTP_UPLOAD_BUFLEN];
} HTTPUpload; } HTTPUpload;
class ESP8266WebServer class ESP8266WebServer
@ -78,6 +80,7 @@ protected:
static const char* _responseCodeToString(int code); static const char* _responseCodeToString(int code);
static void _appendHeader(String& response, const char* name, const char* value); static void _appendHeader(String& response, const char* name, const char* value);
void _parseForm(WiFiClient& client, String boundary, uint32_t len); void _parseForm(WiFiClient& client, String boundary, uint32_t len);
void _uploadWriteByte(uint8_t b);
struct RequestHandler; struct RequestHandler;
struct RequestArgument { struct RequestArgument {

View File

@ -123,6 +123,19 @@ void ICACHE_FLASH_ATTR WiFiClient::_err(int8_t err)
esp_schedule(); esp_schedule();
} }
void ICACHE_FLASH_ATTR WiFiClient::setNoDelay(bool nodelay) {
if (!_client)
return;
_client->setNoDelay(nodelay);
}
bool ICACHE_FLASH_ATTR WiFiClient::getNoDelay() {
if (!_client)
return false;
return _client->getNoDelay();
}
size_t ICACHE_FLASH_ATTR WiFiClient::write(uint8_t b) size_t ICACHE_FLASH_ATTR WiFiClient::write(uint8_t b)
{ {
return write(&b, 1); return write(&b, 1);

View File

@ -55,6 +55,30 @@ public:
IPAddress remoteIP(); IPAddress remoteIP();
uint16_t remotePort(); uint16_t remotePort();
bool getNoDelay();
void setNoDelay(bool nodelay);
template<typename T> size_t write(T &src){
uint8_t obuf[1460];
size_t doneLen = 0;
size_t sentLen;
int i;
while (src.available() > 1460){
src.read(obuf, 1460);
sentLen = write(obuf, 1460);
doneLen = doneLen + sentLen;
if(sentLen != 1460){
return doneLen;
}
}
uint16_t leftLen = src.available();
src.read(obuf, leftLen);
sentLen = write(obuf, leftLen);
doneLen = doneLen + sentLen;
return doneLen;
}
friend class WiFiServer; friend class WiFiServer;