1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00

Merge branch 'esp8266' of github.com:esp8266/Arduino into esp8266

This commit is contained in:
Ivan Grokhotkov 2015-04-03 00:03:30 +03:00
commit 3df5388b8f
2 changed files with 655 additions and 401 deletions

View File

@ -17,8 +17,10 @@
You should have received a copy of the GNU Lesser General Public You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
*/
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
@ -37,219 +39,428 @@ extern "C" {
#include "HardwareSerial.h" #include "HardwareSerial.h"
HardwareSerial Serial;
uart_t* uart0_init(int baud_rate);
void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart);
void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo
void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
void uart_set_debug(bool enabled);
bool uart_get_debug();
struct uart_
{
int baud_rate;
};
#define UART_TX_FIFO_SIZE 0x80 #define UART_TX_FIFO_SIZE 0x80
void ICACHE_FLASH_ATTR uart0_interrupt_handler(uart_t* uart) /**
{ * UART GPIOs
uint32_t status = READ_PERI_REG(UART_INT_ST(0)); *
if (status & UART_RXFIFO_FULL_INT_ST) * UART0 TX: 1 or 2
{ * UART0 RX: 3
while(true) *
{ * UART0 SWAP TX: 15
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT; * UART0 SWAP RX: 13
if (!rx_count) *
break; *
* UART1 TX: 7 (NC) or 2
* UART1 RX: 8 (NC)
*
* UART1 SWAP TX: 11 (NC)
* UART1 SWAP RX: 6 (NC)
*
* NC = Not Connected to Module Pads --> No Access
*
*/
while(rx_count--)
{ // ####################################################################################################
// ####################################################################################################
// ####################################################################################################
HardwareSerial Serial(UART0);
HardwareSerial Serial1(UART1);
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void uart_interrupt_handler(uart_t* uart);
void uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed);
size_t uart_get_tx_fifo_room(uart_t* uart);
void uart_wait_for_transmit(uart_t* uart);
void uart_transmit_char(uart_t* uart, char c);
void uart_transmit(uart_t* uart, const char* buf, size_t size);
void uart_flush(uart_t* uart);
void uart_interrupt_enable(uart_t* uart);
void uart_interrupt_disable(uart_t* uart);
void uart_arm_tx_interrupt(uart_t* uart);
void uart_disarm_tx_interrupt(uart_t* uart);
void uart_set_baudrate(uart_t* uart, int baud_rate);
int uart_get_baudrate(uart_t* uart);
uart_t* uart_init(UARTnr_t uart_nr, int baudrate);
void uart_uninit(uart_t* uart);
void uart_swap(uart_t* uart);
void uart_ignore_char(char c);
void uart0_write_char(char c);
void uart1_write_char(char c);
void uart_set_debug(UARTnr_t uart_nr);
UARTnr_t uart_get_debug();
// ####################################################################################################
// ####################################################################################################
// ####################################################################################################
void ICACHE_FLASH_ATTR uart_interrupt_handler(uart_t* uart) {
// -------------- UART 0 --------------
uint32_t status = READ_PERI_REG(UART_INT_ST(0));
if(Serial.isRxEnabled()) {
if(status & UART_RXFIFO_FULL_INT_ST) {
while(true) {
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if(!rx_count) break;
while(rx_count--) {
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF; char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
Serial._rx_complete_irq(c); Serial._rx_complete_irq(c);
} }
} }
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR); WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
} }
if (status & UART_TXFIFO_EMPTY_INT_ST) }
{ if(Serial.isTxEnabled()) {
if(status & UART_TXFIFO_EMPTY_INT_ST) {
WRITE_PERI_REG(UART_INT_CLR(0), UART_TXFIFO_EMPTY_INT_CLR); WRITE_PERI_REG(UART_INT_CLR(0), UART_TXFIFO_EMPTY_INT_CLR);
Serial._tx_empty_irq(); Serial._tx_empty_irq();
} }
} }
void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed) // -------------- UART 1 --------------
{
while (true) status = READ_PERI_REG(UART_INT_ST(1));
{ if(Serial1.isRxEnabled()) {
size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT; if(status & UART_RXFIFO_FULL_INT_ST) {
if (tx_count <= (UART_TX_FIFO_SIZE - size_needed)) while(true) {
break; int rx_count = (READ_PERI_REG(UART_STATUS(1)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if(!rx_count) break;
while(rx_count--) {
char c = READ_PERI_REG(UART_FIFO(1)) & 0xFF;
Serial1._rx_complete_irq(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(1), UART_RXFIFO_FULL_INT_CLR);
}
}
if(Serial1.isTxEnabled()) {
status = READ_PERI_REG(UART_INT_ST(1));
if(status & UART_TXFIFO_EMPTY_INT_ST) {
WRITE_PERI_REG(UART_INT_CLR(1), UART_TXFIFO_EMPTY_INT_CLR);
Serial1._tx_empty_irq();
}
} }
} }
size_t ICACHE_FLASH_ATTR uart0_get_tx_fifo_room() // ####################################################################################################
{
return UART_TX_FIFO_SIZE - ((READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT); void ICACHE_FLASH_ATTR uart_wait_for_tx_fifo(uart_t* uart, size_t size_needed) {
if(uart->txEnabled) {
while(true) {
size_t tx_count = (READ_PERI_REG(UART_STATUS(uart->uart_nr)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if(tx_count <= (UART_TX_FIFO_SIZE - size_needed)) break;
}
}
} }
void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart) size_t ICACHE_FLASH_ATTR uart_get_tx_fifo_room(uart_t* uart) {
{ if(uart->txEnabled) {
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE); return UART_TX_FIFO_SIZE - ((READ_PERI_REG(UART_STATUS(uart->uart_nr)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT);
}
return 0;
} }
void ICACHE_FLASH_ATTR uart0_transmit_char(uart_t* uart, char c) void ICACHE_FLASH_ATTR uart_wait_for_transmit(uart_t* uart) {
{ if(uart->txEnabled) {
WRITE_PERI_REG(UART_FIFO(0), c); uart_wait_for_tx_fifo(uart, UART_TX_FIFO_SIZE);
}
} }
void ICACHE_FLASH_ATTR uart0_transmit(uart_t* uart, const char* buf, size_t size) void ICACHE_FLASH_ATTR uart_transmit_char(uart_t* uart, char c) {
{ if(uart->txEnabled) {
while (size) WRITE_PERI_REG(UART_FIFO(uart->uart_nr), c);
{ }
}
void ICACHE_FLASH_ATTR uart_transmit(uart_t* uart, const char* buf, size_t size) {
if(uart->txEnabled) {
while(size) {
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size; size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size; size -= part_size;
uart0_wait_for_tx_fifo(part_size); uart_wait_for_tx_fifo(uart, part_size);
for(;part_size;--part_size, ++buf) for(; part_size; --part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(0), *buf); WRITE_PERI_REG(UART_FIFO(uart->uart_nr), *buf);
}
} }
} }
void ICACHE_FLASH_ATTR uart0_flush(uart_t* uart) void ICACHE_FLASH_ATTR uart_flush(uart_t* uart) {
{ uint32_t tmp = 0x00000000;
SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST); if(uart->rxEnabled) {
tmp |= UART_RXFIFO_RST;
}
if(uart->txEnabled) {
tmp |= UART_TXFIFO_RST;
}
SET_PERI_REG_MASK(UART_CONF0(uart->uart_nr), tmp);
CLEAR_PERI_REG_MASK(UART_CONF0(uart->uart_nr), tmp);
} }
void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart) void ICACHE_FLASH_ATTR uart_interrupt_enable(uart_t* uart) {
{ WRITE_PERI_REG(UART_INT_CLR(uart->uart_nr), 0x1ff);
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff); ETS_UART_INTR_ATTACH(&uart_interrupt_handler, uart); // uart parameter is not osed in irq function!
ETS_UART_INTR_ATTACH(&uart0_interrupt_handler, uart); if(uart->rxEnabled) {
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA); SET_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_RXFIFO_FULL_INT_ENA);
}
ETS_UART_INTR_ENABLE(); ETS_UART_INTR_ENABLE();
} }
void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart) void ICACHE_FLASH_ATTR uart_interrupt_disable(uart_t* uart) {
{ if(uart->rxEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA); CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_DISABLE(); }
if(uart->txEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
//ETS_UART_INTR_DISABLE(); // never disable irq complete may its needed by the other Serial Interface!
} }
void ICACHE_FLASH_ATTR uart0_arm_tx_interrupt() void ICACHE_FLASH_ATTR uart_arm_tx_interrupt(uart_t* uart) {
{ if(uart->txEnabled) {
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA); SET_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
} }
void ICACHE_FLASH_ATTR uart0_disarm_tx_interrupt() void ICACHE_FLASH_ATTR uart_disarm_tx_interrupt(uart_t* uart) {
{ if(uart->txEnabled) {
CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA); CLEAR_PERI_REG_MASK(UART_INT_ENA(uart->uart_nr), UART_TXFIFO_EMPTY_INT_ENA);
}
} }
void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate) void ICACHE_FLASH_ATTR uart_set_baudrate(uart_t* uart, int baud_rate) {
{
uart->baud_rate = baud_rate; uart->baud_rate = baud_rate;
uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate)); uart_div_modify(uart->uart_nr, UART_CLK_FREQ / (uart->baud_rate));
} }
int ICACHE_FLASH_ATTR uart0_get_baudrate(uart_t* uart) int ICACHE_FLASH_ATTR uart_get_baudrate(uart_t* uart) {
{
return uart->baud_rate; return uart->baud_rate;
} }
uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate) uart_t* ICACHE_FLASH_ATTR uart_init(UARTnr_t uart_nr, int baudrate) {
{
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uint32_t conf1 = 0x00000000;
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->uart_nr = uart_nr;
switch(uart->uart_nr) {
case UART0:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U); PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U); PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
uart->rxEnabled = true;
uart->txEnabled = true;
uart->rxPin = 3;
uart->txPin = 1;
break;
case UART1:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_GPIO2_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_U1TXD_BK);
uart->rxEnabled = false;
uart->txEnabled = true;
uart->rxPin = 255;
uart->txPin = 2;
break;
case UART_NO:
default:
// big fail!
break;
}
uart_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(uart->uart_nr), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_set_baudrate(uart, baudrate); uart_flush(uart);
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1 uart_interrupt_enable(uart);
uart0_flush(uart); if(uart->rxEnabled) {
uart0_interrupt_enable(uart); conf1 |= ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S);
}
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S) | if(uart->txEnabled) {
((0x20 & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S)); conf1 |= ((0x20 & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S);
}
WRITE_PERI_REG(UART_CONF1(uart->uart_nr), conf1);
return uart; return uart;
} }
void ICACHE_FLASH_ATTR uart0_uninit(uart_t* uart) void ICACHE_FLASH_ATTR uart_uninit(uart_t* uart) {
{ uart_interrupt_disable(uart);
uart0_interrupt_disable(uart);
// TODO: revert pin functions switch(uart->rxPin) {
case 3:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3);
break;
case 13:
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13);
break;
}
switch(uart->rxPin) {
case 1:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
break;
case 2:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO2_U, FUNC_GPIO2);
break;
case 15:
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO15);
break;
}
pinMode(uart->rxPin , INPUT);
pinMode(uart->txPin , INPUT);
os_free(uart); os_free(uart);
} }
void ICACHE_FLASH_ATTR uart0_swap(uart_t* uart) void ICACHE_FLASH_ATTR uart_swap(uart_t* uart) {
{ switch(uart->uart_nr) {
case UART0:
if(uart->txPin == 1 && uart->rxPin == 3) {
PIN_PULLUP_DIS(PERIPHS_IO_MUX_MTCK_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_UART0_CTS);
PIN_PULLUP_EN(PERIPHS_IO_MUX_MTDO_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS); PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_UART0_RTS);
//SWAP PIN : U0TXD<==>U0RTS(MTDO, GPIO15) , U0RXD<==>U0CTS(MTCK, GPIO13) //SWAP PIN : U0TXD<==>U0RTS(MTDO, GPIO15) , U0RXD<==>U0CTS(MTCK, GPIO13)
SET_PERI_REG_MASK(0x3ff00028 , BIT2); SET_PERI_REG_MASK(0x3ff00028, BIT2);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_GPIO3);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_GPIO1);
pinMode(uart->rxPin, INPUT);
pinMode(uart->txPin, INPUT);
uart->rxPin = 13;
uart->txPin = 15;
} else {
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
CLEAR_PERI_REG_MASK(0x3ff00028, BIT2);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, FUNC_GPIO13);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, FUNC_GPIO15);
pinMode(uart->rxPin, INPUT);
pinMode(uart->txPin, INPUT);
uart->rxPin = 3;
uart->txPin = 1;
}
break;
case UART1:
// current no swap possible! see GPIO pins used by UART
break;
default:
break;
}
} }
void ICACHE_FLASH_ATTR // ####################################################################################################
uart_ignore_char(char c) // ####################################################################################################
{ // ####################################################################################################
void ICACHE_FLASH_ATTR uart_ignore_char(char c) {
} }
void ICACHE_FLASH_ATTR void ICACHE_FLASH_ATTR uart0_write_char(char c) {
uart_write_char(char c) if(c == '\n') {
{
if (c == '\n')
WRITE_PERI_REG(UART_FIFO(0), '\r'); WRITE_PERI_REG(UART_FIFO(0), '\r');
}
WRITE_PERI_REG(UART_FIFO(0), c); WRITE_PERI_REG(UART_FIFO(0), c);
} }
bool s_uart_debug_enabled = true; void ICACHE_FLASH_ATTR uart1_write_char(char c) {
void ICACHE_FLASH_ATTR uart_set_debug(bool enabled) if(c == '\n') {
{ WRITE_PERI_REG(UART_FIFO(1), '\r');
s_uart_debug_enabled = enabled;
if (enabled)
{
system_set_os_print(1);
ets_install_putc1((void *)&uart_write_char);
} }
else WRITE_PERI_REG(UART_FIFO(1), c);
ets_install_putc1((void *)&uart_ignore_char);
} }
bool ICACHE_FLASH_ATTR uart_get_debug() static UARTnr_t s_uart_debug_nr = UART_NO;
{ void ICACHE_FLASH_ATTR uart_set_debug(UARTnr_t uart_nr) {
return s_uart_debug_enabled; s_uart_debug_nr = uart_nr;
switch(s_uart_debug_nr) {
case UART0:
system_set_os_print(1);
ets_install_putc1((void *) &uart0_write_char);
break;
case UART1:
system_set_os_print(1);
ets_install_putc1((void *) &uart1_write_char);
break;
case UART_NO:
default:
system_set_os_print(0);
ets_install_putc1((void *) &uart_ignore_char);
break;
}
} }
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() : UARTnr_t ICACHE_FLASH_ATTR uart_get_debug() {
_uart(0), _rx_buffer(0), _tx_buffer(0) return s_uart_debug_nr;
{
} }
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config) // ####################################################################################################
{ // ####################################################################################################
// ####################################################################################################
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial(UARTnr_t uart_nr) :
_uart(0), _tx_buffer(0), _rx_buffer(0), _written(false) {
_uart_nr = uart_nr;
}
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config) {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
_uart = uart_init(_uart_nr, baud);
if(_uart->rxEnabled) {
_rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE); _rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE);
}
if(_uart->txEnabled) {
_tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE); _tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE);
uart_set_debug(false); }
_uart = uart0_init(baud);
_written = false; _written = false;
delay(1); delay(1);
} }
void ICACHE_FLASH_ATTR HardwareSerial::end() void ICACHE_FLASH_ATTR HardwareSerial::end() {
{ uart_uninit(_uart);
uart0_uninit(_uart);
delete _rx_buffer; delete _rx_buffer;
delete _tx_buffer; delete _tx_buffer;
_uart = 0; _uart = 0;
@ -257,65 +468,86 @@ void ICACHE_FLASH_ATTR HardwareSerial::end()
_tx_buffer = 0; _tx_buffer = 0;
} }
void ICACHE_FLASH_ATTR HardwareSerial::swap() void ICACHE_FLASH_ATTR HardwareSerial::swap() {
{ uart_swap(_uart);
uart0_swap(_uart);
pinMode(1, INPUT);
pinMode(3, INPUT);
} }
void ICACHE_FLASH_ATTR HardwareSerial::setDebugOutput(bool en) void ICACHE_FLASH_ATTR HardwareSerial::setDebugOutput(bool en) {
{ if(en) {
uart_set_debug(en); uart_set_debug(_uart->uart_nr);
} else {
// disable debug for this interface
if(uart_get_debug() == _uart_nr) {
uart_set_debug(UART_NO);
}
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::available(void) bool ICACHE_FLASH_ATTR HardwareSerial::isTxEnabled(void) {
{ if(_uart == 0) return false;
return _uart->txEnabled;
}
bool ICACHE_FLASH_ATTR HardwareSerial::isRxEnabled(void) {
if(_uart == 0) return false;
return _uart->rxEnabled;
}
int ICACHE_FLASH_ATTR HardwareSerial::available(void) {
if(_uart->rxEnabled) {
return static_cast<int>(_rx_buffer->getSize()); return static_cast<int>(_rx_buffer->getSize());
} else {
return 0;
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::peek(void) int ICACHE_FLASH_ATTR HardwareSerial::peek(void) {
{ if(_uart->rxEnabled) {
return _rx_buffer->peek(); return _rx_buffer->peek();
} else {
return -1;
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::read(void) int ICACHE_FLASH_ATTR HardwareSerial::read(void) {
{ if(_uart->rxEnabled) {
return _rx_buffer->read(); return _rx_buffer->read();
} else {
return -1;
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void) int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void) {
{ if(_uart->txEnabled) {
return static_cast<int>(_tx_buffer->room()); return static_cast<int>(_tx_buffer->room());
} else {
return 0;
}
} }
void ICACHE_FLASH_ATTR HardwareSerial::flush() void ICACHE_FLASH_ATTR HardwareSerial::flush() {
{ if(!_uart->txEnabled) return;
if (!_written) if(!_written) return;
return;
while (_tx_buffer->getSize() || uart0_get_tx_fifo_room() < UART_TX_FIFO_SIZE) while(_tx_buffer->getSize() || uart_get_tx_fifo_room(_uart) < UART_TX_FIFO_SIZE)
yield(); yield();
_written = false; _written = false;
} }
size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c) size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c) {
{ if(!_uart->txEnabled) return 0;
_written = true; _written = true;
size_t room = uart0_get_tx_fifo_room(); size_t room = uart_get_tx_fifo_room(_uart);
if (room > 0 && _tx_buffer->empty()) if(room > 0 && _tx_buffer->empty()) {
{ uart_transmit_char(_uart, c);
uart0_transmit_char(_uart, c); if(room < 10) {
if (room < 10) uart_arm_tx_interrupt(_uart);
{
uart0_arm_tx_interrupt();
} }
return 1; return 1;
} }
while (_tx_buffer->room() == 0) while(_tx_buffer->room() == 0) {
{
yield(); yield();
} }
@ -323,30 +555,24 @@ size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c)
return 1; return 1;
} }
ICACHE_FLASH_ATTR HardwareSerial::operator bool() const ICACHE_FLASH_ATTR HardwareSerial::operator bool() const {
{
return _uart != 0; return _uart != 0;
} }
void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c) void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c) {
{
_rx_buffer->write(c); _rx_buffer->write(c);
} }
void ICACHE_FLASH_ATTR HardwareSerial::_tx_empty_irq(void) void ICACHE_FLASH_ATTR HardwareSerial::_tx_empty_irq(void) {
{
size_t queued = _tx_buffer->getSize(); size_t queued = _tx_buffer->getSize();
if (!queued) if(!queued) {
{ uart_disarm_tx_interrupt(_uart);
uart0_disarm_tx_interrupt();
return; return;
} }
size_t room = uart0_get_tx_fifo_room(); size_t room = uart_get_tx_fifo_room(_uart);
int n = static_cast<int>((queued < room) ? queued : room); int n = static_cast<int>((queued < room) ? queued : room);
while (n--) while(n--) {
{ uart_transmit_char(_uart, _tx_buffer->read());
uart0_transmit_char(_uart, _tx_buffer->read());
} }
} }

View File

@ -20,7 +20,8 @@
Modified 14 August 2012 by Alarus Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman Modified 3 December 2013 by Matthijs Kooijman
Modified 18 December 2014 by Ivan Grokhotkov (esp8266 platform support) Modified 18 December 2014 by Ivan Grokhotkov (esp8266 platform support)
*/ Modified 31 March 2015 by Markus Sattler (rewrite the code for UART0 + UART1 support in ESP8266)
*/
#ifndef HardwareSerial_h #ifndef HardwareSerial_h
#define HardwareSerial_h #define HardwareSerial_h
@ -59,14 +60,29 @@
// #define SERIAL_8O2 0x3E // #define SERIAL_8O2 0x3E
class cbuf; class cbuf;
typedef struct uart_ uart_t;
class HardwareSerial : public Stream typedef enum {
{ UART0 = 0,
public: UART1 = 1,
HardwareSerial(); UART_NO = 0xFF
} UARTnr_t;
void begin(unsigned long baud) { begin(baud, 0); } typedef struct {
UARTnr_t uart_nr;
int baud_rate;
bool rxEnabled;
bool txEnabled;
uint8_t rxPin;
uint8_t txPin;
} uart_t;
class HardwareSerial: public Stream {
public:
HardwareSerial(UARTnr_t uart_nr);
void begin(unsigned long baud) {
begin(baud, 0);
}
void begin(unsigned long, uint8_t); void begin(unsigned long, uint8_t);
void end(); void end();
void swap(); //use GPIO13 and GPIO15 as RX and TX void swap(); //use GPIO13 and GPIO15 as RX and TX
@ -76,21 +92,32 @@ public:
int availableForWrite(void); int availableForWrite(void);
void flush(void) override; void flush(void) override;
size_t write(uint8_t) override; size_t write(uint8_t) override;
inline size_t write(unsigned long n) { return write((uint8_t)n); } inline size_t write(unsigned long n) {
inline size_t write(long n) { return write((uint8_t)n); } return write((uint8_t) n);
inline size_t write(unsigned int n) { return write((uint8_t)n); } }
inline size_t write(int n) { return write((uint8_t)n); } inline size_t write(long n) {
return write((uint8_t) n);
}
inline size_t write(unsigned int n) {
return write((uint8_t) n);
}
inline size_t write(int n) {
return write((uint8_t) n);
}
using Print::write; // pull in write(str) and write(buf, size) from Print using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool() const; operator bool() const;
void setDebugOutput(bool); void setDebugOutput(bool);
bool isTxEnabled(void);
bool isRxEnabled(void);
protected: protected:
friend void uart0_interrupt_handler(uart_t* uart); friend void uart_interrupt_handler(uart_t* uart);
void _rx_complete_irq(char c); void _rx_complete_irq(char c);
void _tx_empty_irq(void); void _tx_empty_irq(void);
protected: protected:
UARTnr_t _uart_nr;
uart_t* _uart; uart_t* _uart;
cbuf* _tx_buffer; cbuf* _tx_buffer;
cbuf* _rx_buffer; cbuf* _rx_buffer;
@ -98,5 +125,6 @@ protected:
}; };
extern HardwareSerial Serial; extern HardwareSerial Serial;
extern HardwareSerial Serial1;
#endif #endif