1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-19 23:22:16 +03:00

Implement tx and rx buffers and interrupts for HardwareSerial

This commit is contained in:
Ivan Grokhotkov 2014-12-18 18:49:14 +03:00
parent 4d70000595
commit 2a77249147
3 changed files with 131 additions and 137 deletions

View File

@ -27,6 +27,7 @@
#include <string.h> #include <string.h>
#include <inttypes.h> #include <inttypes.h>
#include "Arduino.h" #include "Arduino.h"
#include "cbuf.h"
extern "C" { extern "C" {
#include "osapi.h" #include "osapi.h"
@ -38,9 +39,9 @@ extern "C" {
#include "HardwareSerial.h" #include "HardwareSerial.h"
typedef void (*uart_rx_handler_t)(char); HardwareSerial Serial;
uart_t* uart0_init(int baud_rate, uart_rx_handler_t rx_handler); uart_t* uart0_init(int baud_rate);
void uart0_set_baudrate(uart_t* uart, int baud_rate); void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart); int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart); void uart0_uninit(uart_t* uart);
@ -48,22 +49,20 @@ void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block
void uart0_wait_for_transmit(uart_t* uart); void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
void uart_set_debug(int enabled); void uart_set_debug(bool enabled);
int uart_get_debug(); bool uart_get_debug();
struct uart_ struct uart_
{ {
int baud_rate; int baud_rate;
uart_rx_handler_t rx_handler;
}; };
#define UART_TX_FIFO_SIZE 0x80
void ICACHE_FLASH_ATTR uart0_interrupt_handler(uart_t* uart)
#define UART_TX_FIFO_SIZE 0x7f
void ICACHE_FLASH_ATTR uart0_rx_handler(uart_t* uart)
{ {
if (READ_PERI_REG(UART_INT_ST(0)) & UART_RXFIFO_FULL_INT_ST) uint32_t status = READ_PERI_REG(UART_INT_ST(0));
if (status & UART_RXFIFO_FULL_INT_ST)
{ {
while(true) while(true)
{ {
@ -71,14 +70,23 @@ void ICACHE_FLASH_ATTR uart0_rx_handler(uart_t* uart)
if (!rx_count) if (!rx_count)
break; break;
for(int cnt = 0; cnt < rx_count; ++cnt) while(rx_count--)
{ {
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF; char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
(*uart->rx_handler)(c); Serial._rx_complete_irq(c);
} }
} }
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR); WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
} }
else if (status & UART_TXFIFO_EMPTY_INT_ST)
{
WRITE_PERI_REG(UART_INT_CLR(0), UART_TXFIFO_EMPTY_INT_CLR);
Serial._tx_empty_irq();
}
else
{
WRITE_PERI_REG(UART_INT_CLR(0), status);
}
} }
void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed) void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed)
@ -91,6 +99,11 @@ void ICACHE_FLASH_ATTR uart0_wait_for_tx_fifo(size_t size_needed)
} }
} }
size_t ICACHE_FLASH_ATTR uart0_get_tx_fifo_room()
{
return UART_TX_FIFO_SIZE - ((READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT);
}
void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart) void ICACHE_FLASH_ATTR uart0_wait_for_transmit(uart_t* uart)
{ {
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE); uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE);
@ -123,17 +136,27 @@ void ICACHE_FLASH_ATTR uart0_flush(uart_t* uart)
void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart) void ICACHE_FLASH_ATTR uart0_interrupt_enable(uart_t* uart)
{ {
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff); WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff);
ETS_UART_INTR_ATTACH(&uart0_rx_handler, uart); ETS_UART_INTR_ATTACH(&uart0_interrupt_handler, uart);
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA); SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_ENABLE(); ETS_UART_INTR_ENABLE();
} }
void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart) void ICACHE_FLASH_ATTR uart0_interrupt_disable(uart_t* uart)
{ {
SET_PERI_REG_MASK(UART_INT_ENA(0), 0); CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_DISABLE(); ETS_UART_INTR_DISABLE();
} }
void ICACHE_FLASH_ATTR uart0_arm_tx_interrupt()
{
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA);
}
void ICACHE_FLASH_ATTR uart0_disarm_tx_interrupt()
{
CLEAR_PERI_REG_MASK(UART_INT_ENA(0), UART_TXFIFO_EMPTY_INT_ENA);
}
void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate) void ICACHE_FLASH_ATTR uart0_set_baudrate(uart_t* uart, int baud_rate)
{ {
uart->baud_rate = baud_rate; uart->baud_rate = baud_rate;
@ -145,12 +168,10 @@ int ICACHE_FLASH_ATTR uart0_get_baudrate(uart_t* uart)
return uart->baud_rate; return uart->baud_rate;
} }
uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate, uart_rx_handler_t rx_handler) uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate)
{ {
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t)); uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->rx_handler = rx_handler;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U); PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
@ -158,9 +179,11 @@ uart_t* ICACHE_FLASH_ATTR uart0_init(int baudrate, uart_rx_handler_t rx_handler)
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1 WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_flush(uart); uart0_flush(uart);
uart0_interrupt_enable(uart);
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S)); WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S) |
((0x20 & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S));
uart0_interrupt_enable(uart);
return uart; return uart;
} }
@ -187,157 +210,131 @@ uart_write_char(char c)
WRITE_PERI_REG(UART_FIFO(0), c); WRITE_PERI_REG(UART_FIFO(0), c);
} }
int s_uart_debug_enabled = 1; bool s_uart_debug_enabled = true;
void ICACHE_FLASH_ATTR uart_set_debug(int enabled) void ICACHE_FLASH_ATTR uart_set_debug(bool enabled)
{ {
s_uart_debug_enabled = enabled; s_uart_debug_enabled = enabled;
if (enabled) if (enabled)
{
system_set_os_print(1);
ets_install_putc1((void *)&uart_write_char); ets_install_putc1((void *)&uart_write_char);
}
else else
ets_install_putc1((void *)&uart_ignore_char); ets_install_putc1((void *)&uart_ignore_char);
} }
int ICACHE_FLASH_ATTR uart_get_debug() bool ICACHE_FLASH_ATTR uart_get_debug()
{ {
return s_uart_debug_enabled; return s_uart_debug_enabled;
} }
HardwareSerial Serial;
void ICACHE_FLASH_ATTR serial_rx_handler(char c)
{
Serial._rx_complete_irq(c);
}
extern "C" size_t ets_printf(const char*, ...);
ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() : ICACHE_FLASH_ATTR HardwareSerial::HardwareSerial() :
_rx_buffer_head(0), _rx_buffer_tail(0), _uart(0), _rx_buffer(0), _tx_buffer(0)
_tx_buffer_head(0), _tx_buffer_tail(0),
_uart(0)
{ {
} }
void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config) void ICACHE_FLASH_ATTR HardwareSerial::begin(unsigned long baud, byte config)
{ {
_uart = uart0_init(baud, &serial_rx_handler); _rx_buffer = new cbuf(SERIAL_RX_BUFFER_SIZE);
_tx_buffer = new cbuf(SERIAL_TX_BUFFER_SIZE);
uart_set_debug(false);
_uart = uart0_init(baud);
_written = false; _written = false;
uart_set_debug(0); delay(1);
} }
void ICACHE_FLASH_ATTR HardwareSerial::end() void ICACHE_FLASH_ATTR HardwareSerial::end()
{ {
uart0_uninit(_uart); uart0_uninit(_uart);
delete _rx_buffer;
delete _tx_buffer;
_uart = 0; _uart = 0;
_rx_buffer = 0;
_tx_buffer = 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::setDebugOutput(bool en)
{
uart_set_debug(en);
} }
int ICACHE_FLASH_ATTR HardwareSerial::available(void) int ICACHE_FLASH_ATTR HardwareSerial::available(void)
{ {
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE; return static_cast<int>(_rx_buffer->getSize());
} }
int ICACHE_FLASH_ATTR HardwareSerial::peek(void) int ICACHE_FLASH_ATTR HardwareSerial::peek(void)
{ {
if (_rx_buffer_head == _rx_buffer_tail) { return _rx_buffer->peek();
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::read(void) int ICACHE_FLASH_ATTR HardwareSerial::read(void)
{ {
// if the head isn't ahead of the tail, we don't have any characters return _rx_buffer->read();
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
} }
int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void) int ICACHE_FLASH_ATTR HardwareSerial::availableForWrite(void)
{ {
tx_buffer_index_t head = _tx_buffer_head; return static_cast<int>(_tx_buffer->room());
tx_buffer_index_t tail = _tx_buffer_tail;
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
} }
void ICACHE_FLASH_ATTR HardwareSerial::flush() void ICACHE_FLASH_ATTR HardwareSerial::flush()
{ {
if (!_written) if (!_written)
return; return;
uart0_flush(_uart);
_tx_buffer->flush();
_rx_buffer->flush();
_written = false;
} }
size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c) size_t ICACHE_FLASH_ATTR HardwareSerial::write(uint8_t c)
{ {
uart0_transmit_char(_uart, c);
// // If the buffer and the data register is empty, just write the byte
// // to the data register and be done. This shortcut helps
// // significantly improve the effective datarate at high (>
// // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
// if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
// *_udr = c;
// sbi(*_ucsra, TXC0);
// return 1;
// }
// tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// // If the output buffer is full, there's nothing for it other than to
// // wait for the interrupt handler to empty it a bit
// while (i == _tx_buffer_tail) {
// if (bit_is_clear(SREG, SREG_I)) {
// // Interrupts are disabled, so we'll have to poll the data
// // register empty flag ourselves. If it is set, pretend an
// // interrupt has happened and call the handler to free up
// // space for us.
// if(bit_is_set(*_ucsra, UDRE0))
// _tx_udr_empty_irq();
// } else {
// // nop, the interrupt handler will free up space for us
// }
// }
// _tx_buffer[_tx_buffer_head] = c;
// _tx_buffer_head = i;
// sbi(*_ucsrb, UDRIE0);
_written = true; _written = true;
size_t room = uart0_get_tx_fifo_room();
if (room > 0 && _tx_buffer->empty())
{
uart0_transmit_char(_uart, c);
if (room < 10)
{
uart0_arm_tx_interrupt();
}
return 1;
}
while (_tx_buffer->room() == 0)
{
yield();
}
_tx_buffer->write(c);
return 1; return 1;
} }
ICACHE_FLASH_ATTR HardwareSerial::operator bool() const
{
return _uart != 0;
}
void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c) void ICACHE_FLASH_ATTR HardwareSerial::_rx_complete_irq(char c)
{ {
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE; _rx_buffer->write(c);
}
if (i != _rx_buffer_tail) { void ICACHE_FLASH_ATTR HardwareSerial::_tx_empty_irq(void)
_rx_buffer[_rx_buffer_head] = c; {
_rx_buffer_head = i; size_t queued = _tx_buffer->getSize();
if (!queued)
{
uart0_disarm_tx_interrupt();
return;
}
size_t room = uart0_get_tx_fifo_room();
int n = static_cast<int>((queued < room) ? queued : room);
while (n--)
{
uart0_transmit_char(_uart, _tx_buffer->read());
} }
} }
// void HardwareSerial::_tx_udr_empty_irq(void)
// {
// // If interrupts are enabled, there must be more data in the output
// // buffer. Send the next byte
// unsigned char c = _tx_buffer[_tx_buffer_tail];
// _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
// *_udr = c;
// // clear the TXC bit -- "can be cleared by writing a one to its bit
// // location". This makes sure flush() won't return until the bytes
// // actually got written
// sbi(*_ucsra, TXC0);
// if (_tx_buffer_head == _tx_buffer_tail) {
// // Buffer empty, so disable interrupts
// cbi(*_ucsrb, UDRIE0);
// }
// }

View File

@ -28,13 +28,8 @@
#include "Stream.h" #include "Stream.h"
#if !(defined(SERIAL_TX_BUFFER_SIZE) && defined(SERIAL_RX_BUFFER_SIZE)) #define SERIAL_TX_BUFFER_SIZE 256
#define SERIAL_TX_BUFFER_SIZE 64 #define SERIAL_RX_BUFFER_SIZE 256
#define SERIAL_RX_BUFFER_SIZE 64
#endif
typedef uint32_t tx_buffer_index_t;
typedef uint32_t rx_buffer_index_t;
// // Define config for Serial.begin(baud, config); // // Define config for Serial.begin(baud, config);
// #define SERIAL_5N1 0x00 // #define SERIAL_5N1 0x00
@ -62,24 +57,12 @@ typedef uint32_t rx_buffer_index_t;
// #define SERIAL_7O2 0x3C // #define SERIAL_7O2 0x3C
// #define SERIAL_8O2 0x3E // #define SERIAL_8O2 0x3E
struct uart_; class cbuf;
typedef uart_ uart_t; typedef struct uart_ uart_t;
class HardwareSerial : public Stream class HardwareSerial : public Stream
{ {
protected: public:
uart_t* _uart;
// Has any byte been written to the UART since begin()
bool _written;
volatile rx_buffer_index_t _rx_buffer_head;
volatile rx_buffer_index_t _rx_buffer_tail;
volatile tx_buffer_index_t _tx_buffer_head;
volatile tx_buffer_index_t _tx_buffer_tail;
unsigned char _rx_buffer[SERIAL_RX_BUFFER_SIZE];
unsigned char _tx_buffer[SERIAL_TX_BUFFER_SIZE];
public:
HardwareSerial(); HardwareSerial();
void begin(unsigned long baud) { begin(baud, 0); } void begin(unsigned long baud) { begin(baud, 0); }
@ -96,11 +79,20 @@ class HardwareSerial : public Stream
inline size_t write(unsigned int n) { return write((uint8_t)n); } inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); } inline size_t write(int n) { return write((uint8_t)n); }
using Print::write; // pull in write(str) and write(buf, size) from Print using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool() { return true; } operator bool() const;
// Interrupt handlers - Not intended to be called externally void setDebugOutput(bool);
protected:
friend void uart0_interrupt_handler(uart_t* uart);
void _rx_complete_irq(char c); void _rx_complete_irq(char c);
void _tx_udr_empty_irq(void); void _tx_empty_irq(void);
protected:
uart_t* _uart;
cbuf* _tx_buffer;
cbuf* _rx_buffer;
bool _written;
}; };
extern HardwareSerial Serial; extern HardwareSerial Serial;

View File

@ -41,6 +41,11 @@ public:
return _begin - _end - 1; return _begin - _end - 1;
} }
bool empty() const
{
return _begin == _end;
}
char peek() char peek()
{ {
if (_end == _begin) if (_end == _begin)