mirror of
https://github.com/esp8266/Arduino.git
synced 2025-04-19 23:22:16 +03:00
commit
27de48b03f
@ -39,6 +39,7 @@ title: Change Log
|
||||
- Fix link-time dependency of ESP8266WebServer on SPIFFS (#862)
|
||||
- Allow setting client side TLS key and certificate
|
||||
- Replace chain of UDP pbufs with a single pbuf before sending (#1009)
|
||||
- Remove bundled OneWire - ESP8266 support has been merged in the official OneWire sources
|
||||
|
||||
### Tools
|
||||
|
||||
|
@ -10,7 +10,6 @@ title: Libraries
|
||||
* [SPI](#spi)
|
||||
* [SoftwareSerial](#softwareserial)
|
||||
* [ESP\-specific APIs](#esp-specific-apis)
|
||||
* [OneWire](#onewire)
|
||||
* [mDNS and DNS\-SD responder (ESP8266mDNS library)](#mdns-and-dns-sd-responder-esp8266mdns-library)
|
||||
* [SSDP responder (ESP8266SSDP)](#ssdp-responder-esp8266ssdp)
|
||||
* [DNS server (DNSServer library)](#dns-server-dnsserver-library)
|
||||
@ -111,12 +110,6 @@ TOUT pin has to be disconnected in this mode.
|
||||
Note that by default ADC is configured to read from TOUT pin using `analogRead(A0)`, and
|
||||
`ESP.getVCC()` is not available.
|
||||
|
||||
## OneWire
|
||||
|
||||
Library was adapted to work with ESP8266 by including register definitions into OneWire.h
|
||||
Note that if you already have OneWire library in your Arduino/libraries folder, it will be used
|
||||
instead of the one that comes with this package.
|
||||
|
||||
## mDNS and DNS-SD responder (ESP8266mDNS library)
|
||||
|
||||
Allows the sketch to respond to multicast DNS queries for domain names like "foo.local", and DNS-SD (service dicovery) queries.
|
||||
|
@ -1,561 +0,0 @@
|
||||
/*
|
||||
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
|
||||
|
||||
The latest version of this library may be found at:
|
||||
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
|
||||
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
|
||||
January 2010. At the time, it was in need of many bug fixes, but had
|
||||
been abandoned the original author (Jim Studt). None of the known
|
||||
contributors were interested in maintaining OneWire. Paul typically
|
||||
works on OneWire every 6 to 12 months. Patches usually wait that
|
||||
long. If anyone is interested in more actively maintaining OneWire,
|
||||
please contact Paul.
|
||||
|
||||
Version 2.2:
|
||||
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
|
||||
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
|
||||
Fix DS18B20 example negative temperature
|
||||
Fix DS18B20 example's low res modes, Ken Butcher
|
||||
Improve reset timing, Mark Tillotson
|
||||
Add const qualifiers, Bertrik Sikken
|
||||
Add initial value input to crc16, Bertrik Sikken
|
||||
Add target_search() function, Scott Roberts
|
||||
|
||||
Version 2.1:
|
||||
Arduino 1.0 compatibility, Paul Stoffregen
|
||||
Improve temperature example, Paul Stoffregen
|
||||
DS250x_PROM example, Guillermo Lovato
|
||||
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
|
||||
Improvements from Glenn Trewitt:
|
||||
- crc16() now works
|
||||
- check_crc16() does all of calculation/checking work.
|
||||
- Added read_bytes() and write_bytes(), to reduce tedious loops.
|
||||
- Added ds2408 example.
|
||||
Delete very old, out-of-date readme file (info is here)
|
||||
|
||||
Version 2.0: Modifications by Paul Stoffregen, January 2010:
|
||||
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
Search fix from Robin James
|
||||
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
||||
Use direct optimized I/O in all cases
|
||||
Disable interrupts during timing critical sections
|
||||
(this solves many random communication errors)
|
||||
Disable interrupts during read-modify-write I/O
|
||||
Reduce RAM consumption by eliminating unnecessary
|
||||
variables and trimming many to 8 bits
|
||||
Optimize both crc8 - table version moved to flash
|
||||
|
||||
Modified to work with larger numbers of devices - avoids loop.
|
||||
Tested in Arduino 11 alpha with 12 sensors.
|
||||
26 Sept 2008 -- Robin James
|
||||
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
||||
|
||||
Updated to work with arduino-0008 and to include skip() as of
|
||||
2007/07/06. --RJL20
|
||||
|
||||
Modified to calculate the 8-bit CRC directly, avoiding the need for
|
||||
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
|
||||
-- Tom Pollard, Jan 23, 2008
|
||||
|
||||
Jim Studt's original library was modified by Josh Larios.
|
||||
|
||||
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
Much of the code was inspired by Derek Yerger's code, though I don't
|
||||
think much of that remains. In any event that was..
|
||||
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
|
||||
|
||||
The CRC code was excerpted and inspired by the Dallas Semiconductor
|
||||
sample code bearing this copyright.
|
||||
//---------------------------------------------------------------------------
|
||||
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included
|
||||
// in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
|
||||
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
// Except as contained in this notice, the name of Dallas Semiconductor
|
||||
// shall not be used except as stated in the Dallas Semiconductor
|
||||
// Branding Policy.
|
||||
//--------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "OneWire.h"
|
||||
|
||||
|
||||
OneWire::OneWire(uint8_t pin, bool pullup)
|
||||
{
|
||||
if(pullup) {
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
} else {
|
||||
pinMode(pin, INPUT);
|
||||
}
|
||||
bitmask = PIN_TO_BITMASK(pin);
|
||||
baseReg = PIN_TO_BASEREG(pin);
|
||||
#if ONEWIRE_SEARCH
|
||||
reset_search();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Perform the onewire reset function. We will wait up to 250uS for
|
||||
// the bus to come high, if it doesn't then it is broken or shorted
|
||||
// and we return a 0;
|
||||
//
|
||||
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
|
||||
//
|
||||
uint8_t OneWire::reset(void)
|
||||
{
|
||||
IO_REG_TYPE mask = bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
uint8_t r;
|
||||
uint8_t retries = 125;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(reg, mask);
|
||||
interrupts();
|
||||
// wait until the wire is high... just in case
|
||||
do {
|
||||
if (--retries == 0) return 0;
|
||||
delayMicroseconds(2);
|
||||
} while ( !DIRECT_READ(reg, mask));
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
interrupts();
|
||||
delayMicroseconds(480);
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(reg, mask); // allow it to float
|
||||
delayMicroseconds(70);
|
||||
r = !DIRECT_READ(reg, mask);
|
||||
interrupts();
|
||||
delayMicroseconds(410);
|
||||
return r;
|
||||
}
|
||||
|
||||
//
|
||||
// Write a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
void OneWire::write_bit(uint8_t v)
|
||||
{
|
||||
IO_REG_TYPE mask=bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
|
||||
if (v & 1) {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
delayMicroseconds(10);
|
||||
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(55);
|
||||
} else {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
delayMicroseconds(65);
|
||||
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(5);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Read a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
uint8_t OneWire::read_bit(void)
|
||||
{
|
||||
IO_REG_TYPE mask=bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
uint8_t r;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_OUTPUT(reg, mask);
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
delayMicroseconds(3);
|
||||
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
|
||||
delayMicroseconds(10);
|
||||
r = DIRECT_READ(reg, mask);
|
||||
interrupts();
|
||||
delayMicroseconds(53);
|
||||
return r;
|
||||
}
|
||||
|
||||
//
|
||||
// Write a byte. The writing code uses the active drivers to raise the
|
||||
// pin high, if you need power after the write (e.g. DS18S20 in
|
||||
// parasite power mode) then set 'power' to 1, otherwise the pin will
|
||||
// go tri-state at the end of the write to avoid heating in a short or
|
||||
// other mishap.
|
||||
//
|
||||
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
|
||||
uint8_t bitMask;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
OneWire::write_bit( (bitMask & v)?1:0);
|
||||
}
|
||||
if ( !power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
DIRECT_WRITE_LOW(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
|
||||
for (uint16_t i = 0 ; i < count ; i++)
|
||||
write(buf[i]);
|
||||
if (!power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
DIRECT_WRITE_LOW(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Read a byte
|
||||
//
|
||||
uint8_t OneWire::read() {
|
||||
uint8_t bitMask;
|
||||
uint8_t r = 0;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
if ( OneWire::read_bit()) r |= bitMask;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
|
||||
for (uint16_t i = 0 ; i < count ; i++)
|
||||
buf[i] = read();
|
||||
}
|
||||
|
||||
//
|
||||
// Do a ROM select
|
||||
//
|
||||
void OneWire::select(const uint8_t rom[8])
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
write(0x55); // Choose ROM
|
||||
|
||||
for (i = 0; i < 8; i++) write(rom[i]);
|
||||
}
|
||||
|
||||
//
|
||||
// Do a ROM skip
|
||||
//
|
||||
void OneWire::skip()
|
||||
{
|
||||
write(0xCC); // Skip ROM
|
||||
}
|
||||
|
||||
void OneWire::depower()
|
||||
{
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
|
||||
//
|
||||
// You need to use this function to start a search again from the beginning.
|
||||
// You do not need to do it for the first search, though you could.
|
||||
//
|
||||
void OneWire::reset_search()
|
||||
{
|
||||
// reset the search state
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
for(int i = 7; ; i--) {
|
||||
ROM_NO[i] = 0;
|
||||
if ( i == 0) break;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
//
|
||||
void OneWire::target_search(uint8_t family_code)
|
||||
{
|
||||
// set the search state to find SearchFamily type devices
|
||||
ROM_NO[0] = family_code;
|
||||
for (uint8_t i = 1; i < 8; i++)
|
||||
ROM_NO[i] = 0;
|
||||
LastDiscrepancy = 64;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
}
|
||||
|
||||
//
|
||||
// Perform a search. If this function returns a '1' then it has
|
||||
// enumerated the next device and you may retrieve the ROM from the
|
||||
// OneWire::address variable. If there are no devices, no further
|
||||
// devices, or something horrible happens in the middle of the
|
||||
// enumeration then a 0 is returned. If a new device is found then
|
||||
// its address is copied to newAddr. Use OneWire::reset_search() to
|
||||
// start over.
|
||||
//
|
||||
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
||||
//--------------------------------------------------------------------------
|
||||
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
||||
// search state.
|
||||
// Return TRUE : device found, ROM number in ROM_NO buffer
|
||||
// FALSE : device not found, end of search
|
||||
//
|
||||
uint8_t OneWire::search(uint8_t *newAddr)
|
||||
{
|
||||
uint8_t id_bit_number;
|
||||
uint8_t last_zero, rom_byte_number, search_result;
|
||||
uint8_t id_bit, cmp_id_bit;
|
||||
|
||||
unsigned char rom_byte_mask, search_direction;
|
||||
|
||||
// initialize for search
|
||||
id_bit_number = 1;
|
||||
last_zero = 0;
|
||||
rom_byte_number = 0;
|
||||
rom_byte_mask = 1;
|
||||
search_result = 0;
|
||||
|
||||
// if the last call was not the last one
|
||||
if (!LastDeviceFlag)
|
||||
{
|
||||
// 1-Wire reset
|
||||
if (!reset())
|
||||
{
|
||||
// reset the search
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
// issue the search command
|
||||
write(0xF0);
|
||||
|
||||
// loop to do the search
|
||||
do
|
||||
{
|
||||
// read a bit and its complement
|
||||
id_bit = read_bit();
|
||||
cmp_id_bit = read_bit();
|
||||
|
||||
// check for no devices on 1-wire
|
||||
if ((id_bit == 1) && (cmp_id_bit == 1))
|
||||
break;
|
||||
else
|
||||
{
|
||||
// all devices coupled have 0 or 1
|
||||
if (id_bit != cmp_id_bit)
|
||||
search_direction = id_bit; // bit write value for search
|
||||
else
|
||||
{
|
||||
// if this discrepancy if before the Last Discrepancy
|
||||
// on a previous next then pick the same as last time
|
||||
if (id_bit_number < LastDiscrepancy)
|
||||
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
|
||||
else
|
||||
// if equal to last pick 1, if not then pick 0
|
||||
search_direction = (id_bit_number == LastDiscrepancy);
|
||||
|
||||
// if 0 was picked then record its position in LastZero
|
||||
if (search_direction == 0)
|
||||
{
|
||||
last_zero = id_bit_number;
|
||||
|
||||
// check for Last discrepancy in family
|
||||
if (last_zero < 9)
|
||||
LastFamilyDiscrepancy = last_zero;
|
||||
}
|
||||
}
|
||||
|
||||
// set or clear the bit in the ROM byte rom_byte_number
|
||||
// with mask rom_byte_mask
|
||||
if (search_direction == 1)
|
||||
ROM_NO[rom_byte_number] |= rom_byte_mask;
|
||||
else
|
||||
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
|
||||
|
||||
// serial number search direction write bit
|
||||
write_bit(search_direction);
|
||||
|
||||
// increment the byte counter id_bit_number
|
||||
// and shift the mask rom_byte_mask
|
||||
id_bit_number++;
|
||||
rom_byte_mask <<= 1;
|
||||
|
||||
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
||||
if (rom_byte_mask == 0)
|
||||
{
|
||||
rom_byte_number++;
|
||||
rom_byte_mask = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
||||
|
||||
// if the search was successful then
|
||||
if (!(id_bit_number < 65))
|
||||
{
|
||||
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
|
||||
LastDiscrepancy = last_zero;
|
||||
|
||||
// check for last device
|
||||
if (LastDiscrepancy == 0)
|
||||
LastDeviceFlag = TRUE;
|
||||
|
||||
search_result = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
// if no device found then reset counters so next 'search' will be like a first
|
||||
if (!search_result || !ROM_NO[0])
|
||||
{
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
search_result = FALSE;
|
||||
}
|
||||
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
|
||||
return search_result;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC
|
||||
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
||||
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
||||
//
|
||||
|
||||
#if ONEWIRE_CRC8_TABLE
|
||||
// This table comes from Dallas sample code where it is freely reusable,
|
||||
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
||||
static const uint8_t PROGMEM dscrc_table[] = {
|
||||
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
||||
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
||||
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
||||
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
||||
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
||||
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
||||
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
||||
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
||||
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
||||
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
||||
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
||||
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
||||
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
||||
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
||||
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
||||
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
||||
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
||||
// and the registers. (note: this might better be done without to
|
||||
// table, it would probably be smaller and certainly fast enough
|
||||
// compared to all those delayMicrosecond() calls. But I got
|
||||
// confused, so I use this table from the examples.)
|
||||
//
|
||||
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#else
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
||||
// this is much slower, but much smaller, than the lookup table.
|
||||
//
|
||||
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
uint8_t inbyte = *addr++;
|
||||
for (uint8_t i = 8; i; i--) {
|
||||
uint8_t mix = (crc ^ inbyte) & 0x01;
|
||||
crc >>= 1;
|
||||
if (mix) crc ^= 0x8C;
|
||||
inbyte >>= 1;
|
||||
}
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC16
|
||||
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
|
||||
{
|
||||
crc = ~crc16(input, len, crc);
|
||||
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
||||
}
|
||||
|
||||
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
|
||||
{
|
||||
static const uint8_t oddparity[16] =
|
||||
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
||||
|
||||
for (uint16_t i = 0 ; i < len ; i++) {
|
||||
// Even though we're just copying a byte from the input,
|
||||
// we'll be doing 16-bit computation with it.
|
||||
uint16_t cdata = input[i];
|
||||
cdata = (cdata ^ crc) & 0xff;
|
||||
crc >>= 8;
|
||||
|
||||
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
||||
crc ^= 0xC001;
|
||||
|
||||
cdata <<= 6;
|
||||
crc ^= cdata;
|
||||
cdata <<= 1;
|
||||
crc ^= cdata;
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
@ -1,240 +0,0 @@
|
||||
#ifndef OneWire_h
|
||||
#define OneWire_h
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#if ARDUINO >= 100
|
||||
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
|
||||
#else
|
||||
#include "WProgram.h" // for delayMicroseconds
|
||||
#include "pins_arduino.h" // for digitalPinToBitMask, etc
|
||||
#endif
|
||||
|
||||
// You can exclude certain features from OneWire. In theory, this
|
||||
// might save some space. In practice, the compiler automatically
|
||||
// removes unused code (technically, the linker, using -fdata-sections
|
||||
// and -ffunction-sections when compiling, and Wl,--gc-sections
|
||||
// when linking), so most of these will not result in any code size
|
||||
// reduction. Well, unless you try to use the missing features
|
||||
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
|
||||
// is the exception, because it selects a fast but large algorithm
|
||||
// or a small but slow algorithm.
|
||||
|
||||
// you can exclude onewire_search by defining that to 0
|
||||
#ifndef ONEWIRE_SEARCH
|
||||
#define ONEWIRE_SEARCH 1
|
||||
#endif
|
||||
|
||||
// You can exclude CRC checks altogether by defining this to 0
|
||||
#ifndef ONEWIRE_CRC
|
||||
#define ONEWIRE_CRC 1
|
||||
#endif
|
||||
|
||||
// Select the table-lookup method of computing the 8-bit CRC
|
||||
// by setting this to 1. The lookup table enlarges code size by
|
||||
// about 250 bytes. It does NOT consume RAM (but did in very
|
||||
// old versions of OneWire). If you disable this, a slower
|
||||
// but very compact algorithm is used.
|
||||
#ifndef ONEWIRE_CRC8_TABLE
|
||||
#define ONEWIRE_CRC8_TABLE 1
|
||||
#endif
|
||||
|
||||
// You can allow 16-bit CRC checks by defining this to 1
|
||||
// (Note that ONEWIRE_CRC must also be 1.)
|
||||
#ifndef ONEWIRE_CRC16
|
||||
#define ONEWIRE_CRC16 1
|
||||
#endif
|
||||
|
||||
#define FALSE 0
|
||||
#define TRUE 1
|
||||
|
||||
// Platform specific I/O definitions
|
||||
|
||||
#if defined(__AVR__)
|
||||
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint8_t
|
||||
#define IO_REG_ASM asm("r30")
|
||||
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
|
||||
|
||||
#elif defined(__MK20DX128__)
|
||||
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
|
||||
#define PIN_TO_BITMASK(pin) (1)
|
||||
#define IO_REG_TYPE uint8_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (*((base)+512))
|
||||
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
|
||||
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
|
||||
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
|
||||
|
||||
#elif defined(__SAM3X8E__)
|
||||
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
|
||||
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
|
||||
// If you have trouble with OneWire on Arduino Due, please check the
|
||||
// status of delayMicroseconds() before reporting a bug in OneWire!
|
||||
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint32_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
|
||||
#ifndef PROGMEM
|
||||
#define PROGMEM
|
||||
#endif
|
||||
#ifndef pgm_read_byte
|
||||
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
|
||||
#endif
|
||||
|
||||
#elif defined(__PIC32MX__)
|
||||
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint32_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
|
||||
|
||||
#elif defined(ARDUINO_ARCH_ESP8266)
|
||||
#define PIN_TO_BASEREG(pin) ((volatile uint32_t*) GPO)
|
||||
#define PIN_TO_BITMASK(pin) (1 << pin)
|
||||
#define IO_REG_TYPE uint32_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) ((GPI & (mask)) ? 1 : 0) //GPIO_IN_ADDRESS
|
||||
#define DIRECT_MODE_INPUT(base, mask) (GPE &= ~(mask)) //GPIO_ENABLE_W1TC_ADDRESS
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) (GPE |= (mask)) //GPIO_ENABLE_W1TS_ADDRESS
|
||||
#define DIRECT_WRITE_LOW(base, mask) (GPOC = (mask)) //GPIO_OUT_W1TC_ADDRESS
|
||||
#define DIRECT_WRITE_HIGH(base, mask) (GPOS = (mask)) //GPIO_OUT_W1TS_ADDRESS
|
||||
|
||||
#else
|
||||
#error "Please define I/O register types here"
|
||||
#endif
|
||||
|
||||
|
||||
class OneWire
|
||||
{
|
||||
private:
|
||||
IO_REG_TYPE bitmask;
|
||||
volatile IO_REG_TYPE *baseReg;
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
// global search state
|
||||
unsigned char ROM_NO[8];
|
||||
uint8_t LastDiscrepancy;
|
||||
uint8_t LastFamilyDiscrepancy;
|
||||
uint8_t LastDeviceFlag;
|
||||
#endif
|
||||
|
||||
public:
|
||||
OneWire(uint8_t pin, bool pullup = true);
|
||||
|
||||
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
|
||||
// with a presence pulse. Returns 0 if there is no device or the
|
||||
// bus is shorted or otherwise held low for more than 250uS
|
||||
uint8_t reset(void);
|
||||
|
||||
// Issue a 1-Wire rom select command, you do the reset first.
|
||||
void select(const uint8_t rom[8]);
|
||||
|
||||
// Issue a 1-Wire rom skip command, to address all on bus.
|
||||
void skip(void);
|
||||
|
||||
// Write a byte. If 'power' is one then the wire is held high at
|
||||
// the end for parasitically powered devices. You are responsible
|
||||
// for eventually depowering it by calling depower() or doing
|
||||
// another read or write.
|
||||
void write(uint8_t v, uint8_t power = 0);
|
||||
|
||||
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
|
||||
|
||||
// Read a byte.
|
||||
uint8_t read(void);
|
||||
|
||||
void read_bytes(uint8_t *buf, uint16_t count);
|
||||
|
||||
// Write a bit. The bus is always left powered at the end, see
|
||||
// note in write() about that.
|
||||
void write_bit(uint8_t v);
|
||||
|
||||
// Read a bit.
|
||||
uint8_t read_bit(void);
|
||||
|
||||
// Stop forcing power onto the bus. You only need to do this if
|
||||
// you used the 'power' flag to write() or used a write_bit() call
|
||||
// and aren't about to do another read or write. You would rather
|
||||
// not leave this powered if you don't have to, just in case
|
||||
// someone shorts your bus.
|
||||
void depower(void);
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
// Clear the search state so that if will start from the beginning again.
|
||||
void reset_search();
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
void target_search(uint8_t family_code);
|
||||
|
||||
// Look for the next device. Returns 1 if a new address has been
|
||||
// returned. A zero might mean that the bus is shorted, there are
|
||||
// no devices, or you have already retrieved all of them. It
|
||||
// might be a good idea to check the CRC to make sure you didn't
|
||||
// get garbage. The order is deterministic. You will always get
|
||||
// the same devices in the same order.
|
||||
uint8_t search(uint8_t *newAddr);
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC
|
||||
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
|
||||
// ROM and scratchpad registers.
|
||||
static uint8_t crc8(const uint8_t *addr, uint8_t len);
|
||||
|
||||
#if ONEWIRE_CRC16
|
||||
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
// Example usage (reading a DS2408):
|
||||
// // Put everything in a buffer so we can compute the CRC easily.
|
||||
// uint8_t buf[13];
|
||||
// buf[0] = 0xF0; // Read PIO Registers
|
||||
// buf[1] = 0x88; // LSB address
|
||||
// buf[2] = 0x00; // MSB address
|
||||
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
||||
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
||||
// // Handle error.
|
||||
// }
|
||||
//
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param inverted_crc - The two CRC16 bytes in the received data.
|
||||
// This should just point into the received data,
|
||||
// *not* at a 16-bit integer.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return True, iff the CRC matches.
|
||||
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
|
||||
|
||||
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
||||
// the integrity of data received from many 1-Wire devices. Note that the
|
||||
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
||||
// for two reasons:
|
||||
// 1) The CRC is transmitted bitwise inverted.
|
||||
// 2) Depending on the endian-ness of your processor, the binary
|
||||
// representation of the two-byte return value may have a different
|
||||
// byte order than the two bytes you get from 1-Wire.
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return The CRC16, as defined by Dallas Semiconductor.
|
||||
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif
|
@ -1,112 +0,0 @@
|
||||
#include <OneWire.h>
|
||||
|
||||
// OneWire DS18S20, DS18B20, DS1822 Temperature Example
|
||||
//
|
||||
// http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
//
|
||||
// The DallasTemperature library can do all this work for you!
|
||||
// http://milesburton.com/Dallas_Temperature_Control_Library
|
||||
|
||||
OneWire ds(2); // on pin 2 (a 4.7K resistor is necessary)
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop(void) {
|
||||
byte i;
|
||||
byte present = 0;
|
||||
byte type_s;
|
||||
byte data[12];
|
||||
byte addr[8];
|
||||
float celsius, fahrenheit;
|
||||
|
||||
if ( !ds.search(addr)) {
|
||||
Serial.println("No more addresses.");
|
||||
Serial.println();
|
||||
ds.reset_search();
|
||||
delay(250);
|
||||
return;
|
||||
}
|
||||
|
||||
Serial.print("ROM =");
|
||||
for( i = 0; i < 8; i++) {
|
||||
Serial.write(' ');
|
||||
Serial.print(addr[i], HEX);
|
||||
}
|
||||
|
||||
if (OneWire::crc8(addr, 7) != addr[7]) {
|
||||
Serial.println("CRC is not valid!");
|
||||
return;
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
// the first ROM byte indicates which chip
|
||||
switch (addr[0]) {
|
||||
case 0x10:
|
||||
Serial.println(" Chip = DS18S20"); // or old DS1820
|
||||
type_s = 1;
|
||||
break;
|
||||
case 0x28:
|
||||
Serial.println(" Chip = DS18B20");
|
||||
type_s = 0;
|
||||
break;
|
||||
case 0x22:
|
||||
Serial.println(" Chip = DS1822");
|
||||
type_s = 0;
|
||||
break;
|
||||
default:
|
||||
Serial.println("Device is not a DS18x20 family device.");
|
||||
return;
|
||||
}
|
||||
|
||||
ds.reset();
|
||||
ds.select(addr);
|
||||
ds.write(0x44, 1); // start conversion, with parasite power on at the end
|
||||
|
||||
delay(1000); // maybe 750ms is enough, maybe not
|
||||
// we might do a ds.depower() here, but the reset will take care of it.
|
||||
|
||||
present = ds.reset();
|
||||
ds.select(addr);
|
||||
ds.write(0xBE); // Read Scratchpad
|
||||
|
||||
Serial.print(" Data = ");
|
||||
Serial.print(present, HEX);
|
||||
Serial.print(" ");
|
||||
for ( i = 0; i < 9; i++) { // we need 9 bytes
|
||||
data[i] = ds.read();
|
||||
Serial.print(data[i], HEX);
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.print(" CRC=");
|
||||
Serial.print(OneWire::crc8(data, 8), HEX);
|
||||
Serial.println();
|
||||
|
||||
// Convert the data to actual temperature
|
||||
// because the result is a 16 bit signed integer, it should
|
||||
// be stored to an "int16_t" type, which is always 16 bits
|
||||
// even when compiled on a 32 bit processor.
|
||||
int16_t raw = (data[1] << 8) | data[0];
|
||||
if (type_s) {
|
||||
raw = raw << 3; // 9 bit resolution default
|
||||
if (data[7] == 0x10) {
|
||||
// "count remain" gives full 12 bit resolution
|
||||
raw = (raw & 0xFFF0) + 12 - data[6];
|
||||
}
|
||||
} else {
|
||||
byte cfg = (data[4] & 0x60);
|
||||
// at lower res, the low bits are undefined, so let's zero them
|
||||
if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
|
||||
else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
|
||||
else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
|
||||
//// default is 12 bit resolution, 750 ms conversion time
|
||||
}
|
||||
celsius = (float)raw / 16.0;
|
||||
fahrenheit = celsius * 1.8 + 32.0;
|
||||
Serial.print(" Temperature = ");
|
||||
Serial.print(celsius);
|
||||
Serial.print(" Celsius, ");
|
||||
Serial.print(fahrenheit);
|
||||
Serial.println(" Fahrenheit");
|
||||
}
|
@ -1,77 +0,0 @@
|
||||
#include <OneWire.h>
|
||||
|
||||
/*
|
||||
* DS2408 8-Channel Addressable Switch
|
||||
*
|
||||
* Writte by Glenn Trewitt, glenn at trewitt dot org
|
||||
*
|
||||
* Some notes about the DS2408:
|
||||
* - Unlike most input/output ports, the DS2408 doesn't have mode bits to
|
||||
* set whether the pins are input or output. If you issue a read command,
|
||||
* they're inputs. If you write to them, they're outputs.
|
||||
* - For reading from a switch, you should use 10K pull-up resisters.
|
||||
*/
|
||||
|
||||
void PrintBytes(uint8_t* addr, uint8_t count, bool newline=0) {
|
||||
for (uint8_t i = 0; i < count; i++) {
|
||||
Serial.print(addr[i]>>4, HEX);
|
||||
Serial.print(addr[i]&0x0f, HEX);
|
||||
}
|
||||
if (newline)
|
||||
Serial.println();
|
||||
}
|
||||
|
||||
void ReadAndReport(OneWire* net, uint8_t* addr) {
|
||||
Serial.print(" Reading DS2408 ");
|
||||
PrintBytes(addr, 8);
|
||||
Serial.println();
|
||||
|
||||
uint8_t buf[13]; // Put everything in the buffer so we can compute CRC easily.
|
||||
buf[0] = 0xF0; // Read PIO Registers
|
||||
buf[1] = 0x88; // LSB address
|
||||
buf[2] = 0x00; // MSB address
|
||||
net->write_bytes(buf, 3);
|
||||
net->read_bytes(buf+3, 10); // 3 cmd bytes, 6 data bytes, 2 0xFF, 2 CRC16
|
||||
net->reset();
|
||||
|
||||
if (!OneWire::check_crc16(buf, 11, &buf[11])) {
|
||||
Serial.print("CRC failure in DS2408 at ");
|
||||
PrintBytes(addr, 8, true);
|
||||
return;
|
||||
}
|
||||
Serial.print(" DS2408 data = ");
|
||||
// First 3 bytes contain command, register address.
|
||||
Serial.println(buf[3], BIN);
|
||||
}
|
||||
|
||||
OneWire net(2); // on pin 2
|
||||
|
||||
void setup(void) {
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop(void) {
|
||||
byte i;
|
||||
byte present = 0;
|
||||
byte addr[8];
|
||||
|
||||
if (!net.search(addr)) {
|
||||
Serial.print("No more addresses.\n");
|
||||
net.reset_search();
|
||||
delay(1000);
|
||||
return;
|
||||
}
|
||||
|
||||
if (OneWire::crc8(addr, 7) != addr[7]) {
|
||||
Serial.print("CRC is not valid!\n");
|
||||
return;
|
||||
}
|
||||
|
||||
if (addr[0] != 0x29) {
|
||||
PrintBytes(addr, 8);
|
||||
Serial.print(" is not a DS2408.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
ReadAndReport(&net, addr);
|
||||
}
|
@ -1,90 +0,0 @@
|
||||
/*
|
||||
DS250x add-only programmable memory reader w/SKIP ROM.
|
||||
|
||||
The DS250x is a 512/1024bit add-only PROM(you can add data but cannot change the old one) that's used mainly for device identification purposes
|
||||
like serial number, mfgr data, unique identifiers, etc. It uses the Maxim 1-wire bus.
|
||||
|
||||
This sketch will use the SKIP ROM function that skips the 1-Wire search phase since we only have one device connected in the bus on digital pin 6.
|
||||
If more than one device is connected to the bus, it will fail.
|
||||
Sketch will not verify if device connected is from the DS250x family since the skip rom function effectively skips the family-id byte readout.
|
||||
thus it is possible to run this sketch with any Maxim OneWire device in which case the command CRC will most likely fail.
|
||||
Sketch will only read the first page of memory(32bits) starting from the lower address(0000h), if more than 1 device is present, then use the sketch with search functions.
|
||||
Remember to put a 4.7K pullup resistor between pin 6 and +Vcc
|
||||
|
||||
To change the range or ammount of data to read, simply change the data array size, LSB/MSB addresses and for loop iterations
|
||||
|
||||
This example code is in the public domain and is provided AS-IS.
|
||||
|
||||
Built with Arduino 0022 and PJRC OneWire 2.0 library http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
|
||||
created by Guillermo Lovato <glovato@gmail.com>
|
||||
march/2011
|
||||
|
||||
*/
|
||||
|
||||
#include <OneWire.h>
|
||||
OneWire ds(2); // OneWire bus on digital pin 2
|
||||
void setup() {
|
||||
Serial.begin (9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
byte i; // This is for the for loops
|
||||
boolean present; // device present var
|
||||
byte data[32]; // container for the data from device
|
||||
byte leemem[3] = { // array with the commands to initiate a read, DS250x devices expect 3 bytes to start a read: command,LSB&MSB adresses
|
||||
0xF0 , 0x00 , 0x00 }; // 0xF0 is the Read Data command, followed by 00h 00h as starting address(the beginning, 0000h)
|
||||
byte ccrc; // Variable to store the command CRC
|
||||
byte ccrc_calc;
|
||||
|
||||
present = ds.reset(); // OneWire bus reset, always needed to start operation on the bus, returns a 1/TRUE if there's a device present.
|
||||
ds.skip(); // Skip ROM search
|
||||
|
||||
if (present == TRUE){ // We only try to read the data if there's a device present
|
||||
Serial.println("DS250x device present");
|
||||
ds.write(leemem[0],1); // Read data command, leave ghost power on
|
||||
ds.write(leemem[1],1); // LSB starting address, leave ghost power on
|
||||
ds.write(leemem[2],1); // MSB starting address, leave ghost power on
|
||||
|
||||
ccrc = ds.read(); // DS250x generates a CRC for the command we sent, we assign a read slot and store it's value
|
||||
ccrc_calc = OneWire::crc8(leemem, 3); // We calculate the CRC of the commands we sent using the library function and store it
|
||||
|
||||
if ( ccrc_calc != ccrc) { // Then we compare it to the value the ds250x calculated, if it fails, we print debug messages and abort
|
||||
Serial.println("Invalid command CRC!");
|
||||
Serial.print("Calculated CRC:");
|
||||
Serial.println(ccrc_calc,HEX); // HEX makes it easier to observe and compare
|
||||
Serial.print("DS250x readback CRC:");
|
||||
Serial.println(ccrc,HEX);
|
||||
return; // Since CRC failed, we abort the rest of the loop and start over
|
||||
}
|
||||
Serial.println("Data is: "); // For the printout of the data
|
||||
for ( i = 0; i < 32; i++) { // Now it's time to read the PROM data itself, each page is 32 bytes so we need 32 read commands
|
||||
data[i] = ds.read(); // we store each read byte to a different position in the data array
|
||||
Serial.print(data[i]); // printout in ASCII
|
||||
Serial.print(" "); // blank space
|
||||
}
|
||||
Serial.println();
|
||||
delay(5000); // Delay so we don't saturate the serial output
|
||||
}
|
||||
else { // Nothing is connected in the bus
|
||||
Serial.println("Nothing connected");
|
||||
delay(3000);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,38 +0,0 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For OneWire
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
OneWire KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
reset KEYWORD2
|
||||
write_bit KEYWORD2
|
||||
read_bit KEYWORD2
|
||||
write KEYWORD2
|
||||
write_bytes KEYWORD2
|
||||
read KEYWORD2
|
||||
read_bytes KEYWORD2
|
||||
select KEYWORD2
|
||||
skip KEYWORD2
|
||||
depower KEYWORD2
|
||||
reset_search KEYWORD2
|
||||
search KEYWORD2
|
||||
crc8 KEYWORD2
|
||||
crc16 KEYWORD2
|
||||
check_crc16 KEYWORD2
|
||||
|
||||
#######################################
|
||||
# Instances (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
@ -1,10 +0,0 @@
|
||||
name=OneWire(esp8266)
|
||||
version=2.2
|
||||
author=Jim Studt, Tom Pollard, Robin James, Glenn Trewitt, Jason Dangel, Guillermo Lovato, Paul Stoffregen, Scott Roberts, Bertrik Sikken, Mark Tillotson, Ken Butcher, Roger Clark, Love Nystrom
|
||||
maintainer=
|
||||
sentence=Access 1-wire temperature sensors, memory and other chips. ESP8266 compatible version.
|
||||
paragraph=
|
||||
category=Communication
|
||||
url=
|
||||
architectures=esp8266
|
||||
|
Loading…
x
Reference in New Issue
Block a user