1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-04-22 21:23:07 +03:00

Fix build errors

This commit is contained in:
Ivan Grokhotkov 2014-11-21 12:15:50 +03:00
parent 09e27637dc
commit 15b434f5e2
8 changed files with 335 additions and 434 deletions

View File

@ -138,27 +138,6 @@ void loop(void);
// greater than 255, so we can't store them in uint8_t's. // greater than 255, so we can't store them in uint8_t's.
#define PROGMEM #define PROGMEM
extern const uint16_t PROGMEM port_to_mode_PGM[];
extern const uint16_t PROGMEM port_to_input_PGM[];
extern const uint16_t PROGMEM port_to_output_PGM[];
extern const uint8_t PROGMEM digital_pin_to_port_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_bit_PGM[];
extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
//
// These perform slightly better as macros compared to inline functions
//
#define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) )
#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
#define analogInPinToBit(P) (P)
#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
#define portModeRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + (P))) )
#define NOT_A_PIN 0 #define NOT_A_PIN 0
#define NOT_A_PORT 0 #define NOT_A_PORT 0
@ -208,14 +187,8 @@ extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
#include "WCharacter.h" #include "WCharacter.h"
#include "WString.h" #include "WString.h"
/*
#include "HardwareSerial.h"
#include "USBAPI.h" #include "HardwareSerial.h"
#if defined(HAVE_HWSERIAL0) && defined(HAVE_CDCSERIAL)
#error "Targets with both UART0 and CDC serial not supported"
#endif
*/
uint16_t makeWord(uint16_t w); uint16_t makeWord(uint16_t w);
uint16_t makeWord(byte h, byte l); uint16_t makeWord(byte h, byte l);

View File

@ -28,126 +28,195 @@
#include <inttypes.h> #include <inttypes.h>
#include "Arduino.h" #include "Arduino.h"
#include "HardwareSerial.h" extern "C" {
#include "HardwareSerial_private.h" #include "osapi.h"
#include "ets_sys.h"
// this next line disables the entire HardwareSerial.cpp, #include "mem.h"
// this is so I can support Attiny series and any other chip without a uart #include "uart_register.h"
#if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3) #include "user_interface.h"
// SerialEvent functions are weak, so when the user doesn't define them,
// the linker just sets their address to 0 (which is checked below).
// The Serialx_available is just a wrapper around Serialx.available(),
// but we can refer to it weakly so we don't pull in the entire
// HardwareSerial instance if the user doesn't also refer to it.
#if defined(HAVE_HWSERIAL0)
void serialEvent() __attribute__((weak));
bool Serial0_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL1)
void serialEvent1() __attribute__((weak));
bool Serial1_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL2)
void serialEvent2() __attribute__((weak));
bool Serial2_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL3)
void serialEvent3() __attribute__((weak));
bool Serial3_available() __attribute__((weak));
#endif
void serialEventRun(void)
{
#if defined(HAVE_HWSERIAL0)
if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
#endif
#if defined(HAVE_HWSERIAL1)
if (Serial1_available && serialEvent1 && Serial1_available()) serialEvent1();
#endif
#if defined(HAVE_HWSERIAL2)
if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2();
#endif
#if defined(HAVE_HWSERIAL3)
if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif
} }
// Actual interrupt handlers ////////////////////////////////////////////////////////////// #include "HardwareSerial.h"
void HardwareSerial::_tx_udr_empty_irq(void) typedef void (*uart_rx_handler_t)(char);
uart_t* uart0_init(int baud_rate, uart_rx_handler_t rx_handler);
void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart);
void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo
void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
void uart_set_debug(int enabled);
int uart_get_debug();
struct uart_
{ {
// If interrupts are enabled, there must be more data in the output int baud_rate;
// buffer. Send the next byte uart_rx_handler_t rx_handler;
unsigned char c = _tx_buffer[_tx_buffer_tail]; };
_tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
*_udr = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
sbi(*_ucsra, TXC0);
if (_tx_buffer_head == _tx_buffer_tail) { #define UART_TX_FIFO_SIZE 0x7f
// Buffer empty, so disable interrupts
cbi(*_ucsrb, UDRIE0); void uart0_rx_handler(uart_t* uart)
{
if (READ_PERI_REG(UART_INT_ST(0)) & UART_RXFIFO_FULL_INT_ST)
{
while(true)
{
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (!rx_count)
break;
for(int cnt = 0; cnt < rx_count; ++cnt)
{
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
(*uart->rx_handler)(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
} }
} }
// Public Methods ////////////////////////////////////////////////////////////// void uart0_wait_for_tx_fifo(size_t size_needed)
{
while (true)
{
size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if (tx_count <= (UART_TX_FIFO_SIZE - size_needed))
break;
}
}
void uart0_wait_for_transmit(uart_t* uart)
{
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE);
}
void uart0_transmit_char(uart_t* uart, char c)
{
WRITE_PERI_REG(UART_FIFO(0), c);
}
void uart0_transmit(uart_t* uart, const char* buf, size_t size)
{
while (size)
{
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart0_wait_for_tx_fifo(part_size);
for(;part_size;--part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(0), *buf);
}
}
void uart0_flush(uart_t* uart)
{
SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
}
void uart0_interrupt_enable(uart_t* uart)
{
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff);
ETS_UART_INTR_ATTACH(&uart0_rx_handler, uart);
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_ENABLE();
}
void uart0_interrupt_disable(uart_t* uart)
{
SET_PERI_REG_MASK(UART_INT_ENA(0), 0);
ETS_UART_INTR_DISABLE();
}
void uart0_set_baudrate(uart_t* uart, int baud_rate)
{
uart->baud_rate = baud_rate;
uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate));
}
int uart0_get_baudrate(uart_t* uart)
{
return uart->baud_rate;
}
uart_t* uart0_init(int baudrate, uart_rx_handler_t rx_handler)
{
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->rx_handler = rx_handler;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
uart0_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_flush(uart);
uart0_interrupt_enable(uart);
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S));
return uart;
}
void uart0_uninit(uart_t* uart)
{
uart0_interrupt_disable(uart);
// TODO: revert pin functions
os_free(uart);
}
void
uart_ignore_char(char c)
{
}
void
uart_write_char(char c)
{
if (c == '\n')
WRITE_PERI_REG(UART_FIFO(0), '\r');
WRITE_PERI_REG(UART_FIFO(0), c);
}
int s_uart_debug_enabled = 1;
void uart_set_debug(int enabled)
{
s_uart_debug_enabled = enabled;
if (enabled)
ets_install_putc1((void *)&uart_write_char);
else
ets_install_putc1((void *)&uart_ignore_char);
}
int uart_get_debug()
{
return s_uart_debug_enabled;
}
HardwareSerial Serial;
void serial_rx_handler(char c)
{
Serial._rx_complete_irq(c);
}
void HardwareSerial::begin(unsigned long baud, byte config) void HardwareSerial::begin(unsigned long baud, byte config)
{ {
// Try u2x mode first _uart = uart0_init(baud, &serial_rx_handler);
uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
*_ucsra = 1 << U2X0;
// hardcoded exception for 57600 for compatibility with the bootloader
// shipped with the Duemilanove and previous boards and the firmware
// on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot
// be > 4095, so switch back to non-u2x mode if the baud rate is too
// low.
if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095))
{
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
_written = false;
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
sbi(*_ucsrb, RXEN0);
sbi(*_ucsrb, TXEN0);
sbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
} }
void HardwareSerial::end() void HardwareSerial::end()
{ {
// wait for transmission of outgoing data uart0_uninit(_uart);
while (_tx_buffer_head != _tx_buffer_tail)
;
cbi(*_ucsrb, RXEN0);
cbi(*_ucsrb, TXEN0);
cbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
// clear any received data
_rx_buffer_head = _rx_buffer_tail;
} }
int HardwareSerial::available(void) int HardwareSerial::available(void)
@ -178,75 +247,86 @@ int HardwareSerial::read(void)
int HardwareSerial::availableForWrite(void) int HardwareSerial::availableForWrite(void)
{ {
#if (SERIAL_TX_BUFFER_SIZE>256)
uint8_t oldSREG = SREG;
cli();
#endif
tx_buffer_index_t head = _tx_buffer_head; tx_buffer_index_t head = _tx_buffer_head;
tx_buffer_index_t tail = _tx_buffer_tail; tx_buffer_index_t tail = _tx_buffer_tail;
#if (SERIAL_TX_BUFFER_SIZE>256)
SREG = oldSREG;
#endif
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail; if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1; return tail - head - 1;
} }
void HardwareSerial::flush() void HardwareSerial::flush()
{ {
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written) if (!_written)
return; return;
while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) {
if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0))
// Interrupts are globally disabled, but the DR empty
// interrupt should be enabled, so poll the DR empty flag to
// prevent deadlock
if (bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished tranmission (TXC is set).
} }
size_t HardwareSerial::write(uint8_t c) size_t HardwareSerial::write(uint8_t c)
{ {
// If the buffer and the data register is empty, just write the byte WRITE_PERI_REG(UART_FIFO(0), c);
// to the data register and be done. This shortcut helps // // If the buffer and the data register is empty, just write the byte
// significantly improve the effective datarate at high (> // // to the data register and be done. This shortcut helps
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown. // // significantly improve the effective datarate at high (>
if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) { // // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
*_udr = c; // if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
sbi(*_ucsra, TXC0); // *_udr = c;
return 1; // sbi(*_ucsra, TXC0);
// return 1;
// }
// tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// // If the output buffer is full, there's nothing for it other than to
// // wait for the interrupt handler to empty it a bit
// while (i == _tx_buffer_tail) {
// if (bit_is_clear(SREG, SREG_I)) {
// // Interrupts are disabled, so we'll have to poll the data
// // register empty flag ourselves. If it is set, pretend an
// // interrupt has happened and call the handler to free up
// // space for us.
// if(bit_is_set(*_ucsra, UDRE0))
// _tx_udr_empty_irq();
// } else {
// // nop, the interrupt handler will free up space for us
// }
// }
// _tx_buffer[_tx_buffer_head] = c;
// _tx_buffer_head = i;
// sbi(*_ucsrb, UDRIE0);
// _written = true;
// return 1;
}
void HardwareSerial::_rx_complete_irq(char c)
{
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE;
if (i != _rx_buffer_tail) {
_rx_buffer[_rx_buffer_head] = c;
_rx_buffer_head = i;
} }
tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == _tx_buffer_tail) {
if (bit_is_clear(SREG, SREG_I)) {
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if(bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
} else {
// nop, the interrupt handler will free up space for us
}
}
_tx_buffer[_tx_buffer_head] = c;
_tx_buffer_head = i;
sbi(*_ucsrb, UDRIE0);
_written = true;
return 1;
} }
#endif // whole file // void HardwareSerial::_tx_udr_empty_irq(void)
// {
// // If interrupts are enabled, there must be more data in the output
// // buffer. Send the next byte
// unsigned char c = _tx_buffer[_tx_buffer_tail];
// _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
// *_udr = c;
// // clear the TXC bit -- "can be cleared by writing a one to its bit
// // location". This makes sure flush() won't return until the bytes
// // actually got written
// sbi(*_ucsra, TXC0);
// if (_tx_buffer_head == _tx_buffer_tail) {
// // Buffer empty, so disable interrupts
// cbi(*_ucsrb, UDRIE0);
// }
// }

View File

@ -28,67 +28,46 @@
#include "Stream.h" #include "Stream.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which head is the index of the location
// to which to write the next incoming character and tail is the index of the
// location from which to read.
// NOTE: a "power of 2" buffer size is reccomended to dramatically
// optimize all the modulo operations for ring buffers.
#if !(defined(SERIAL_TX_BUFFER_SIZE) && defined(SERIAL_RX_BUFFER_SIZE)) #if !(defined(SERIAL_TX_BUFFER_SIZE) && defined(SERIAL_RX_BUFFER_SIZE))
#if (RAMEND < 1000)
#define SERIAL_TX_BUFFER_SIZE 16
#define SERIAL_RX_BUFFER_SIZE 16
#else
#define SERIAL_TX_BUFFER_SIZE 64 #define SERIAL_TX_BUFFER_SIZE 64
#define SERIAL_RX_BUFFER_SIZE 64 #define SERIAL_RX_BUFFER_SIZE 64
#endif #endif
#endif
#if (SERIAL_TX_BUFFER_SIZE>256)
typedef uint16_t tx_buffer_index_t;
#else
typedef uint8_t tx_buffer_index_t;
#endif
#if (SERIAL_RX_BUFFER_SIZE>256)
typedef uint16_t rx_buffer_index_t;
#else
typedef uint8_t rx_buffer_index_t;
#endif
// Define config for Serial.begin(baud, config); typedef uint32_t tx_buffer_index_t;
#define SERIAL_5N1 0x00 typedef uint32_t rx_buffer_index_t;
#define SERIAL_6N1 0x02
#define SERIAL_7N1 0x04
#define SERIAL_8N1 0x06
#define SERIAL_5N2 0x08
#define SERIAL_6N2 0x0A
#define SERIAL_7N2 0x0C
#define SERIAL_8N2 0x0E
#define SERIAL_5E1 0x20
#define SERIAL_6E1 0x22
#define SERIAL_7E1 0x24
#define SERIAL_8E1 0x26
#define SERIAL_5E2 0x28
#define SERIAL_6E2 0x2A
#define SERIAL_7E2 0x2C
#define SERIAL_8E2 0x2E
#define SERIAL_5O1 0x30
#define SERIAL_6O1 0x32
#define SERIAL_7O1 0x34
#define SERIAL_8O1 0x36
#define SERIAL_5O2 0x38
#define SERIAL_6O2 0x3A
#define SERIAL_7O2 0x3C
#define SERIAL_8O2 0x3E
// // Define config for Serial.begin(baud, config);
// #define SERIAL_5N1 0x00
// #define SERIAL_6N1 0x02
// #define SERIAL_7N1 0x04
// #define SERIAL_8N1 0x06
// #define SERIAL_5N2 0x08
// #define SERIAL_6N2 0x0A
// #define SERIAL_7N2 0x0C
// #define SERIAL_8N2 0x0E
// #define SERIAL_5E1 0x20
// #define SERIAL_6E1 0x22
// #define SERIAL_7E1 0x24
// #define SERIAL_8E1 0x26
// #define SERIAL_5E2 0x28
// #define SERIAL_6E2 0x2A
// #define SERIAL_7E2 0x2C
// #define SERIAL_8E2 0x2E
// #define SERIAL_5O1 0x30
// #define SERIAL_6O1 0x32
// #define SERIAL_7O1 0x34
// #define SERIAL_8O1 0x36
// #define SERIAL_5O2 0x38
// #define SERIAL_6O2 0x3A
// #define SERIAL_7O2 0x3C
// #define SERIAL_8O2 0x3E
struct uart_;
typedef uart_ uart_t;
class HardwareSerial : public Stream class HardwareSerial : public Stream
{ {
protected: protected:
volatile uint8_t * const _ubrrh; uart_t* _uart;
volatile uint8_t * const _ubrrl;
volatile uint8_t * const _ucsra;
volatile uint8_t * const _ucsrb;
volatile uint8_t * const _ucsrc;
volatile uint8_t * const _udr;
// Has any byte been written to the UART since begin() // Has any byte been written to the UART since begin()
bool _written; bool _written;
@ -97,18 +76,13 @@ class HardwareSerial : public Stream
volatile tx_buffer_index_t _tx_buffer_head; volatile tx_buffer_index_t _tx_buffer_head;
volatile tx_buffer_index_t _tx_buffer_tail; volatile tx_buffer_index_t _tx_buffer_tail;
// Don't put any members after these buffers, since only the first
// 32 bytes of this struct can be accessed quickly using the ldd
// instruction.
unsigned char _rx_buffer[SERIAL_RX_BUFFER_SIZE]; unsigned char _rx_buffer[SERIAL_RX_BUFFER_SIZE];
unsigned char _tx_buffer[SERIAL_TX_BUFFER_SIZE]; unsigned char _tx_buffer[SERIAL_TX_BUFFER_SIZE];
public: public:
inline HardwareSerial( HardwareSerial() : _uart(0) { }
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb, void begin(unsigned long baud) { begin(baud, 0); }
volatile uint8_t *ucsrc, volatile uint8_t *udr);
void begin(unsigned long baud) { begin(baud, SERIAL_8N1); }
void begin(unsigned long, uint8_t); void begin(unsigned long, uint8_t);
void end(); void end();
virtual int available(void); virtual int available(void);
@ -125,27 +99,10 @@ class HardwareSerial : public Stream
operator bool() { return true; } operator bool() { return true; }
// Interrupt handlers - Not intended to be called externally // Interrupt handlers - Not intended to be called externally
inline void _rx_complete_irq(void); void _rx_complete_irq(char c);
void _tx_udr_empty_irq(void); void _tx_udr_empty_irq(void);
}; };
#if defined(UBRRH) || defined(UBRR0H) extern HardwareSerial Serial;
extern HardwareSerial Serial;
#define HAVE_HWSERIAL0
#endif
#if defined(UBRR1H)
extern HardwareSerial Serial1;
#define HAVE_HWSERIAL1
#endif
#if defined(UBRR2H)
extern HardwareSerial Serial2;
#define HAVE_HWSERIAL2
#endif
#if defined(UBRR3H)
extern HardwareSerial Serial3;
#define HAVE_HWSERIAL3
#endif
extern void serialEventRun(void) __attribute__((weak));
#endif #endif

View File

@ -1,123 +0,0 @@
/*
HardwareSerial_private.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3)
// Ensure that the various bit positions we use are available with a 0
// postfix, so we can always use the values for UART0 for all UARTs. The
// alternative, passing the various values for each UART to the
// HardwareSerial constructor also works, but makes the code bigger and
// slower.
#if !defined(TXC0)
#if defined(TXC)
// Some chips like ATmega8 don't have UPE, only PE. The other bits are
// named as expected.
#if !defined(UPE) && defined(PE)
#define UPE PE
#endif
// On ATmega8, the uart and its bits are not numbered, so there is no TXC0 etc.
#define TXC0 TXC
#define RXEN0 RXEN
#define TXEN0 TXEN
#define RXCIE0 RXCIE
#define UDRIE0 UDRIE
#define U2X0 U2X
#define UPE0 UPE
#define UDRE0 UDRE
#elif defined(TXC1)
// Some devices have uart1 but no uart0
#define TXC0 TXC1
#define RXEN0 RXEN1
#define TXEN0 TXEN1
#define RXCIE0 RXCIE1
#define UDRIE0 UDRIE1
#define U2X0 U2X1
#define UPE0 UPE1
#define UDRE0 UDRE1
#else
#error No UART found in HardwareSerial.cpp
#endif
#endif // !defined TXC0
// Check at compiletime that it is really ok to use the bit positions of
// UART0 for the other UARTs as well, in case these values ever get
// changed for future hardware.
#if defined(TXC1) && (TXC1 != TXC0 || RXEN1 != RXEN0 || RXCIE1 != RXCIE0 || \
UDRIE1 != UDRIE0 || U2X1 != U2X0 || UPE1 != UPE0 || \
UDRE1 != UDRE0)
#error "Not all bit positions for UART1 are the same as for UART0"
#endif
#if defined(TXC2) && (TXC2 != TXC0 || RXEN2 != RXEN0 || RXCIE2 != RXCIE0 || \
UDRIE2 != UDRIE0 || U2X2 != U2X0 || UPE2 != UPE0 || \
UDRE2 != UDRE0)
#error "Not all bit positions for UART2 are the same as for UART0"
#endif
#if defined(TXC3) && (TXC3 != TXC0 || RXEN3 != RXEN0 || RXCIE3 != RXCIE0 || \
UDRIE3 != UDRIE0 || U3X3 != U3X0 || UPE3 != UPE0 || \
UDRE3 != UDRE0)
#error "Not all bit positions for UART3 are the same as for UART0"
#endif
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr) :
_ubrrh(ubrrh), _ubrrl(ubrrl),
_ucsra(ucsra), _ucsrb(ucsrb), _ucsrc(ucsrc),
_udr(udr),
_rx_buffer_head(0), _rx_buffer_tail(0),
_tx_buffer_head(0), _tx_buffer_tail(0)
{
}
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_rx_complete_irq(void)
{
if (bit_is_clear(*_ucsra, UPE0)) {
// No Parity error, read byte and store it in the buffer if there is
// room
unsigned char c = *_udr;
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != _rx_buffer_tail) {
_rx_buffer[_rx_buffer_head] = c;
_rx_buffer_head = i;
}
} else {
// Parity error, read byte but discard it
*_udr;
};
}
#endif // whole file

View File

@ -21,6 +21,9 @@
#define Character_h #define Character_h
#include <ctype.h> #include <ctype.h>
#define isascii(__c) ((unsigned)(__c)<=0177)
#define toascii(__c) ((__c)&0177)
// WCharacter.h prototypes // WCharacter.h prototypes
inline boolean isAlphaNumeric(int c) __attribute__((always_inline)); inline boolean isAlphaNumeric(int c) __attribute__((always_inline));

View File

@ -21,6 +21,12 @@
#include "WString.h" #include "WString.h"
#include "stdlib_noniso.h" #include "stdlib_noniso.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
}
/*********************************************/ /*********************************************/
/* Constructors */ /* Constructors */
/*********************************************/ /*********************************************/
@ -115,7 +121,7 @@ String::String(double value, unsigned char decimalPlaces)
String::~String() String::~String()
{ {
free(buffer); os_free(buffer);
} }
/*********************************************/ /*********************************************/
@ -131,7 +137,7 @@ inline void String::init(void)
void String::invalidate(void) void String::invalidate(void)
{ {
if (buffer) free(buffer); if (buffer) os_free(buffer);
buffer = NULL; buffer = NULL;
capacity = len = 0; capacity = len = 0;
} }
@ -183,7 +189,7 @@ void String::move(String &rhs)
rhs.len = 0; rhs.len = 0;
return; return;
} else { } else {
free(buffer); os_free(buffer);
} }
} }
buffer = rhs.buffer; buffer = rhs.buffer;

View File

@ -24,12 +24,12 @@ extern "C" void __cxa_deleted_virtual(void) __attribute__ ((__noreturn__));
void __cxa_pure_virtual(void) { void __cxa_pure_virtual(void) {
// We might want to write some diagnostics to uart in this case // We might want to write some diagnostics to uart in this case
//std::terminate(); //std::terminate();
abort(); while(true) {}
} }
void __cxa_deleted_virtual(void) { void __cxa_deleted_virtual(void) {
// We might want to write some diagnostics to uart in this case // We might want to write some diagnostics to uart in this case
//std::terminate(); //std::terminate();
abort(); while(true) {}
} }

View File

@ -16,21 +16,26 @@
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/ */
#include <stdlib.h> extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
}
void *operator new(size_t size) { void *operator new(size_t size) {
return malloc(size); return os_malloc(size);
} }
void *operator new[](size_t size) { void *operator new[](size_t size) {
return malloc(size); return os_malloc(size);
} }
void operator delete(void * ptr) { void operator delete(void * ptr) {
free(ptr); os_free(ptr);
} }
void operator delete[](void * ptr) { void operator delete[](void * ptr) {
free(ptr); os_free(ptr);
} }