1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-07-21 21:22:31 +03:00

Fix build errors

This commit is contained in:
Ivan Grokhotkov
2014-11-21 12:15:50 +03:00
parent 09e27637dc
commit 15b434f5e2
8 changed files with 335 additions and 434 deletions

View File

@ -1,25 +1,25 @@
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include <stdlib.h>
@ -28,225 +28,305 @@
#include <inttypes.h>
#include "Arduino.h"
extern "C" {
#include "osapi.h"
#include "ets_sys.h"
#include "mem.h"
#include "uart_register.h"
#include "user_interface.h"
}
#include "HardwareSerial.h"
#include "HardwareSerial_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(HAVE_HWSERIAL0) || defined(HAVE_HWSERIAL1) || defined(HAVE_HWSERIAL2) || defined(HAVE_HWSERIAL3)
typedef void (*uart_rx_handler_t)(char);
// SerialEvent functions are weak, so when the user doesn't define them,
// the linker just sets their address to 0 (which is checked below).
// The Serialx_available is just a wrapper around Serialx.available(),
// but we can refer to it weakly so we don't pull in the entire
// HardwareSerial instance if the user doesn't also refer to it.
#if defined(HAVE_HWSERIAL0)
void serialEvent() __attribute__((weak));
bool Serial0_available() __attribute__((weak));
#endif
uart_t* uart0_init(int baud_rate, uart_rx_handler_t rx_handler);
void uart0_set_baudrate(uart_t* uart, int baud_rate);
int uart0_get_baudrate(uart_t* uart);
void uart0_uninit(uart_t* uart);
void uart0_transmit(uart_t* uart, const char* buf, size_t size); // may block on TX fifo
void uart0_wait_for_transmit(uart_t* uart);
void uart0_transmit_char(uart_t* uart, char c); // does not block, but character will be lost if FIFO is full
#if defined(HAVE_HWSERIAL1)
void serialEvent1() __attribute__((weak));
bool Serial1_available() __attribute__((weak));
#endif
void uart_set_debug(int enabled);
int uart_get_debug();
#if defined(HAVE_HWSERIAL2)
void serialEvent2() __attribute__((weak));
bool Serial2_available() __attribute__((weak));
#endif
#if defined(HAVE_HWSERIAL3)
void serialEvent3() __attribute__((weak));
bool Serial3_available() __attribute__((weak));
#endif
void serialEventRun(void)
struct uart_
{
#if defined(HAVE_HWSERIAL0)
if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
#endif
#if defined(HAVE_HWSERIAL1)
if (Serial1_available && serialEvent1 && Serial1_available()) serialEvent1();
#endif
#if defined(HAVE_HWSERIAL2)
if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2();
#endif
#if defined(HAVE_HWSERIAL3)
if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif
int baud_rate;
uart_rx_handler_t rx_handler;
};
#define UART_TX_FIFO_SIZE 0x7f
void uart0_rx_handler(uart_t* uart)
{
if (READ_PERI_REG(UART_INT_ST(0)) & UART_RXFIFO_FULL_INT_ST)
{
while(true)
{
int rx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT;
if (!rx_count)
break;
for(int cnt = 0; cnt < rx_count; ++cnt)
{
char c = READ_PERI_REG(UART_FIFO(0)) & 0xFF;
(*uart->rx_handler)(c);
}
}
WRITE_PERI_REG(UART_INT_CLR(0), UART_RXFIFO_FULL_INT_CLR);
}
}
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_tx_udr_empty_irq(void)
void uart0_wait_for_tx_fifo(size_t size_needed)
{
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
unsigned char c = _tx_buffer[_tx_buffer_tail];
_tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
*_udr = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
sbi(*_ucsra, TXC0);
if (_tx_buffer_head == _tx_buffer_tail) {
// Buffer empty, so disable interrupts
cbi(*_ucsrb, UDRIE0);
}
while (true)
{
size_t tx_count = (READ_PERI_REG(UART_STATUS(0)) >> UART_TXFIFO_CNT_S) & UART_TXFIFO_CNT;
if (tx_count <= (UART_TX_FIFO_SIZE - size_needed))
break;
}
}
// Public Methods //////////////////////////////////////////////////////////////
void uart0_wait_for_transmit(uart_t* uart)
{
uart0_wait_for_tx_fifo(UART_TX_FIFO_SIZE);
}
void uart0_transmit_char(uart_t* uart, char c)
{
WRITE_PERI_REG(UART_FIFO(0), c);
}
void uart0_transmit(uart_t* uart, const char* buf, size_t size)
{
while (size)
{
size_t part_size = (size > UART_TX_FIFO_SIZE) ? UART_TX_FIFO_SIZE : size;
size -= part_size;
uart0_wait_for_tx_fifo(part_size);
for(;part_size;--part_size, ++buf)
WRITE_PERI_REG(UART_FIFO(0), *buf);
}
}
void uart0_flush(uart_t* uart)
{
SET_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(0), UART_RXFIFO_RST | UART_TXFIFO_RST);
}
void uart0_interrupt_enable(uart_t* uart)
{
WRITE_PERI_REG(UART_INT_CLR(0), 0x1ff);
ETS_UART_INTR_ATTACH(&uart0_rx_handler, uart);
SET_PERI_REG_MASK(UART_INT_ENA(0), UART_RXFIFO_FULL_INT_ENA);
ETS_UART_INTR_ENABLE();
}
void uart0_interrupt_disable(uart_t* uart)
{
SET_PERI_REG_MASK(UART_INT_ENA(0), 0);
ETS_UART_INTR_DISABLE();
}
void uart0_set_baudrate(uart_t* uart, int baud_rate)
{
uart->baud_rate = baud_rate;
uart_div_modify(0, UART_CLK_FREQ / (uart->baud_rate));
}
int uart0_get_baudrate(uart_t* uart)
{
return uart->baud_rate;
}
uart_t* uart0_init(int baudrate, uart_rx_handler_t rx_handler)
{
uart_t* uart = (uart_t*) os_malloc(sizeof(uart_t));
uart->rx_handler = rx_handler;
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
uart0_set_baudrate(uart, baudrate);
WRITE_PERI_REG(UART_CONF0(0), 0x3 << UART_BIT_NUM_S); // 8n1
uart0_flush(uart);
uart0_interrupt_enable(uart);
WRITE_PERI_REG(UART_CONF1(0), ((0x01 & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S));
return uart;
}
void uart0_uninit(uart_t* uart)
{
uart0_interrupt_disable(uart);
// TODO: revert pin functions
os_free(uart);
}
void
uart_ignore_char(char c)
{
}
void
uart_write_char(char c)
{
if (c == '\n')
WRITE_PERI_REG(UART_FIFO(0), '\r');
WRITE_PERI_REG(UART_FIFO(0), c);
}
int s_uart_debug_enabled = 1;
void uart_set_debug(int enabled)
{
s_uart_debug_enabled = enabled;
if (enabled)
ets_install_putc1((void *)&uart_write_char);
else
ets_install_putc1((void *)&uart_ignore_char);
}
int uart_get_debug()
{
return s_uart_debug_enabled;
}
HardwareSerial Serial;
void serial_rx_handler(char c)
{
Serial._rx_complete_irq(c);
}
void HardwareSerial::begin(unsigned long baud, byte config)
{
// Try u2x mode first
uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
*_ucsra = 1 << U2X0;
// hardcoded exception for 57600 for compatibility with the bootloader
// shipped with the Duemilanove and previous boards and the firmware
// on the 8U2 on the Uno and Mega 2560. Also, The baud_setting cannot
// be > 4095, so switch back to non-u2x mode if the baud rate is too
// low.
if (((F_CPU == 16000000UL) && (baud == 57600)) || (baud_setting >4095))
{
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
_written = false;
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
sbi(*_ucsrb, RXEN0);
sbi(*_ucsrb, TXEN0);
sbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
_uart = uart0_init(baud, &serial_rx_handler);
}
void HardwareSerial::end()
{
// wait for transmission of outgoing data
while (_tx_buffer_head != _tx_buffer_tail)
;
cbi(*_ucsrb, RXEN0);
cbi(*_ucsrb, TXEN0);
cbi(*_ucsrb, RXCIE0);
cbi(*_ucsrb, UDRIE0);
// clear any received data
_rx_buffer_head = _rx_buffer_tail;
uart0_uninit(_uart);
}
int HardwareSerial::available(void)
{
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
}
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
}
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
}
int HardwareSerial::availableForWrite(void)
{
#if (SERIAL_TX_BUFFER_SIZE>256)
uint8_t oldSREG = SREG;
cli();
#endif
tx_buffer_index_t head = _tx_buffer_head;
tx_buffer_index_t tail = _tx_buffer_tail;
#if (SERIAL_TX_BUFFER_SIZE>256)
SREG = oldSREG;
#endif
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
tx_buffer_index_t head = _tx_buffer_head;
tx_buffer_index_t tail = _tx_buffer_tail;
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}
void HardwareSerial::flush()
{
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written)
return;
while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) {
if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0))
// Interrupts are globally disabled, but the DR empty
// interrupt should be enabled, so poll the DR empty flag to
// prevent deadlock
if (bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished tranmission (TXC is set).
if (!_written)
return;
}
size_t HardwareSerial::write(uint8_t c)
{
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
*_udr = c;
sbi(*_ucsra, TXC0);
return 1;
}
tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == _tx_buffer_tail) {
if (bit_is_clear(SREG, SREG_I)) {
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if(bit_is_set(*_ucsra, UDRE0))
_tx_udr_empty_irq();
} else {
// nop, the interrupt handler will free up space for us
}
}
WRITE_PERI_REG(UART_FIFO(0), c);
// // If the buffer and the data register is empty, just write the byte
// // to the data register and be done. This shortcut helps
// // significantly improve the effective datarate at high (>
// // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
// if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
// *_udr = c;
// sbi(*_ucsra, TXC0);
// return 1;
// }
// tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
// // If the output buffer is full, there's nothing for it other than to
// // wait for the interrupt handler to empty it a bit
// while (i == _tx_buffer_tail) {
// if (bit_is_clear(SREG, SREG_I)) {
// // Interrupts are disabled, so we'll have to poll the data
// // register empty flag ourselves. If it is set, pretend an
// // interrupt has happened and call the handler to free up
// // space for us.
// if(bit_is_set(*_ucsra, UDRE0))
// _tx_udr_empty_irq();
// } else {
// // nop, the interrupt handler will free up space for us
// }
// }
_tx_buffer[_tx_buffer_head] = c;
_tx_buffer_head = i;
sbi(*_ucsrb, UDRIE0);
_written = true;
return 1;
// _tx_buffer[_tx_buffer_head] = c;
// _tx_buffer_head = i;
// sbi(*_ucsrb, UDRIE0);
// _written = true;
// return 1;
}
void HardwareSerial::_rx_complete_irq(char c)
{
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE;
if (i != _rx_buffer_tail) {
_rx_buffer[_rx_buffer_head] = c;
_rx_buffer_head = i;
}
}
#endif // whole file
// void HardwareSerial::_tx_udr_empty_irq(void)
// {
// // If interrupts are enabled, there must be more data in the output
// // buffer. Send the next byte
// unsigned char c = _tx_buffer[_tx_buffer_tail];
// _tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
// *_udr = c;
// // clear the TXC bit -- "can be cleared by writing a one to its bit
// // location". This makes sure flush() won't return until the bytes
// // actually got written
// sbi(*_ucsra, TXC0);
// if (_tx_buffer_head == _tx_buffer_tail) {
// // Buffer empty, so disable interrupts
// cbi(*_ucsrb, UDRIE0);
// }
// }