1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-08-18 17:42:23 +03:00

updated Firmata library to version 2.3.5 and moved to the new library format

This commit is contained in:
Fede85
2013-07-04 13:29:15 +02:00
parent 38c3bbbd3c
commit 10a4241ba7
18 changed files with 162 additions and 316 deletions

425
libraries/Firmata/src/Boards.h Executable file
View File

@@ -0,0 +1,425 @@
/* Boards.h - Hardware Abstraction Layer for Firmata library */
#ifndef Firmata_Boards_h
#define Firmata_Boards_h
#include <inttypes.h>
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h" // for digitalRead, digitalWrite, etc
#else
#include "WProgram.h"
#endif
// Normally Servo.h must be included before Firmata.h (which then includes
// this file). If Servo.h wasn't included, this allows the code to still
// compile, but without support for any Servos. Hopefully that's what the
// user intended by not including Servo.h
#ifndef MAX_SERVOS
#define MAX_SERVOS 0
#endif
/*
Firmata Hardware Abstraction Layer
Firmata is built on top of the hardware abstraction functions of Arduino,
specifically digitalWrite, digitalRead, analogWrite, analogRead, and
pinMode. While these functions offer simple integer pin numbers, Firmata
needs more information than is provided by Arduino. This file provides
all other hardware specific details. To make Firmata support a new board,
only this file should require editing.
The key concept is every "pin" implemented by Firmata may be mapped to
any pin as implemented by Arduino. Usually a simple 1-to-1 mapping is
best, but such mapping should not be assumed. This hardware abstraction
layer allows Firmata to implement any number of pins which map onto the
Arduino implemented pins in almost any arbitrary way.
General Constants:
These constants provide basic information Firmata requires.
TOTAL_PINS: The total number of pins Firmata implemented by Firmata.
Usually this will match the number of pins the Arduino functions
implement, including any pins pins capable of analog or digital.
However, Firmata may implement any number of pins. For example,
on Arduino Mini with 8 analog inputs, 6 of these may be used
for digital functions, and 2 are analog only. On such boards,
Firmata can implement more pins than Arduino's pinMode()
function, in order to accommodate those special pins. The
Firmata protocol supports a maximum of 128 pins, so this
constant must not exceed 128.
TOTAL_ANALOG_PINS: The total number of analog input pins implemented.
The Firmata protocol allows up to 16 analog inputs, accessed
using offsets 0 to 15. Because Firmata presents the analog
inputs using different offsets than the actual pin numbers
(a legacy of Arduino's analogRead function, and the way the
analog input capable pins are physically labeled on all
Arduino boards), the total number of analog input signals
must be specified. 16 is the maximum.
VERSION_BLINK_PIN: When Firmata starts up, it will blink the version
number. This constant is the Arduino pin number where a
LED is connected.
Pin Mapping Macros:
These macros provide the mapping between pins as implemented by
Firmata protocol and the actual pin numbers used by the Arduino
functions. Even though such mappings are often simple, pin
numbers received by Firmata protocol should always be used as
input to these macros, and the result of the macro should be
used with with any Arduino function.
When Firmata is extended to support a new pin mode or feature,
a pair of macros should be added and used for all hardware
access. For simple 1:1 mapping, these macros add no actual
overhead, yet their consistent use allows source code which
uses them consistently to be easily adapted to all other boards
with different requirements.
IS_PIN_XXXX(pin): The IS_PIN macros resolve to true or non-zero
if a pin as implemented by Firmata corresponds to a pin
that actually implements the named feature.
PIN_TO_XXXX(pin): The PIN_TO macros translate pin numbers as
implemented by Firmata to the pin numbers needed as inputs
to the Arduino functions. The corresponding IS_PIN macro
should always be tested before using a PIN_TO macro, so
these macros only need to handle valid Firmata pin
numbers for the named feature.
Port Access Inline Funtions:
For efficiency, Firmata protocol provides access to digital
input and output pins grouped by 8 bit ports. When these
groups of 8 correspond to actual 8 bit ports as implemented
by the hardware, these inline functions can provide high
speed direct port access. Otherwise, a default implementation
using 8 calls to digitalWrite or digitalRead is used.
When porting Firmata to a new board, it is recommended to
use the default functions first and focus only on the constants
and macros above. When those are working, if optimized port
access is desired, these inline functions may be extended.
The recommended approach defines a symbol indicating which
optimization to use, and then conditional complication is
used within these functions.
readPort(port, bitmask): Read an 8 bit port, returning the value.
port: The port number, Firmata pins port*8 to port*8+7
bitmask: The actual pins to read, indicated by 1 bits.
writePort(port, value, bitmask): Write an 8 bit port.
port: The port number, Firmata pins port*8 to port*8+7
value: The 8 bit value to write
bitmask: The actual pins to write, indicated by 1 bits.
*/
/*==============================================================================
* Board Specific Configuration
*============================================================================*/
#ifndef digitalPinHasPWM
#define digitalPinHasPWM(p) IS_PIN_DIGITAL(p)
#endif
// Arduino Duemilanove, Diecimila, and NG
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
#if defined(NUM_ANALOG_INPUTS) && NUM_ANALOG_INPUTS == 6
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 20 // 14 digital + 6 analog
#else
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 22 // 14 digital + 8 analog
#endif
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) < 14 + TOTAL_ANALOG_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
#define ARDUINO_PINOUT_OPTIMIZE 1
// Wiring (and board)
#elif defined(WIRING)
#define VERSION_BLINK_PIN WLED
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= FIRST_ANALOG_PIN && (p) < (FIRST_ANALOG_PIN+TOTAL_ANALOG_PINS))
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == SDA || (p) == SCL)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - FIRST_ANALOG_PIN)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// old Arduinos
#elif defined(__AVR_ATmega8__)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 20 // 14 digital + 6 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) <= 19)
#define IS_PIN_ANALOG(p) ((p) >= 14 && (p) <= 19)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) (IS_PIN_DIGITAL(p) && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 14)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
#define ARDUINO_PINOUT_OPTIMIZE 1
// Arduino Mega
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TOTAL_ANALOG_PINS 16
#define TOTAL_PINS 70 // 54 digital + 16 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 54 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 2 && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 20 || (p) == 21)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 54)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Arduino DUE
#elif defined(__SAM3X8E__)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 66 // 54 digital + 12 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 54 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 2 && (p) - 2 < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 20 || (p) == 21) // 70 71
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 54)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define TOTAL_ANALOG_PINS 0
#define TOTAL_PINS 21 // 21 digital + no analog
#define VERSION_BLINK_PIN 6
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) (0)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) (0)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (0)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__) && defined(CORE_TEENSY)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 25 // 11 digital + 12 analog
#define VERSION_BLINK_PIN 11
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 11 && (p) <= 22)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 5 || (p) == 6)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (((p)<22)?21-(p):11)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy 3.0
#elif defined(__MK20DX128__)
#define TOTAL_ANALOG_PINS 14
#define TOTAL_PINS 38 // 24 digital + 10 analog-digital + 4 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) <= 34)
#define IS_PIN_ANALOG(p) (((p) >= 14 && (p) <= 23) || ((p) >= 34 && (p) <= 38))
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 18 || (p) == 19)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (((p)<=23)?(p)-14:(p)-24)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Teensy++ 1.0 and 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 46 // 38 digital + 8 analog
#define VERSION_BLINK_PIN 6
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 38 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 0 || (p) == 1)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 38)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Leonardo
#elif defined(__AVR_ATmega32U4__)
#define TOTAL_ANALOG_PINS 12
#define TOTAL_PINS 30 // 14 digital + 12 analog + 4 SPI (D14-D17 on ISP header)
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 0 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 18 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) ((p) == 3 || (p) == 5 || (p) == 6 || (p) == 9 || (p) == 10 || (p) == 11 || (p) == 13)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 2 || (p) == 3)
#define IS_PIN_SPI(p) ((p) == SS || (p) == MOSI || (p) == MISO || (p) == SCK)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) (p) - 18
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) (p)
// Sanguino
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TOTAL_ANALOG_PINS 8
#define TOTAL_PINS 32 // 24 digital + 8 analog
#define VERSION_BLINK_PIN 0
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 24 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 16 || (p) == 17)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 24)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// Illuminato
#elif defined(__AVR_ATmega645__)
#define TOTAL_ANALOG_PINS 6
#define TOTAL_PINS 42 // 36 digital + 6 analog
#define VERSION_BLINK_PIN 13
#define IS_PIN_DIGITAL(p) ((p) >= 2 && (p) < TOTAL_PINS)
#define IS_PIN_ANALOG(p) ((p) >= 36 && (p) < TOTAL_PINS)
#define IS_PIN_PWM(p) digitalPinHasPWM(p)
#define IS_PIN_SERVO(p) ((p) >= 0 && (p) < MAX_SERVOS)
#define IS_PIN_I2C(p) ((p) == 4 || (p) == 5)
#define PIN_TO_DIGITAL(p) (p)
#define PIN_TO_ANALOG(p) ((p) - 36)
#define PIN_TO_PWM(p) PIN_TO_DIGITAL(p)
#define PIN_TO_SERVO(p) ((p) - 2)
// anything else
#else
#error "Please edit Boards.h with a hardware abstraction for this board"
#endif
// as long this is not defined for all boards:
#ifndef IS_PIN_SPI(p)
#define IS_PIN_SPI(p) 0
#endif
/*==============================================================================
* readPort() - Read an 8 bit port
*============================================================================*/
static inline unsigned char readPort(byte, byte) __attribute__((always_inline, unused));
static inline unsigned char readPort(byte port, byte bitmask)
{
#if defined(ARDUINO_PINOUT_OPTIMIZE)
if (port == 0) return (PIND & 0xFC) & bitmask; // ignore Rx/Tx 0/1
if (port == 1) return ((PINB & 0x3F) | ((PINC & 0x03) << 6)) & bitmask;
if (port == 2) return ((PINC & 0x3C) >> 2) & bitmask;
return 0;
#else
unsigned char out=0, pin=port*8;
if (IS_PIN_DIGITAL(pin+0) && (bitmask & 0x01) && digitalRead(PIN_TO_DIGITAL(pin+0))) out |= 0x01;
if (IS_PIN_DIGITAL(pin+1) && (bitmask & 0x02) && digitalRead(PIN_TO_DIGITAL(pin+1))) out |= 0x02;
if (IS_PIN_DIGITAL(pin+2) && (bitmask & 0x04) && digitalRead(PIN_TO_DIGITAL(pin+2))) out |= 0x04;
if (IS_PIN_DIGITAL(pin+3) && (bitmask & 0x08) && digitalRead(PIN_TO_DIGITAL(pin+3))) out |= 0x08;
if (IS_PIN_DIGITAL(pin+4) && (bitmask & 0x10) && digitalRead(PIN_TO_DIGITAL(pin+4))) out |= 0x10;
if (IS_PIN_DIGITAL(pin+5) && (bitmask & 0x20) && digitalRead(PIN_TO_DIGITAL(pin+5))) out |= 0x20;
if (IS_PIN_DIGITAL(pin+6) && (bitmask & 0x40) && digitalRead(PIN_TO_DIGITAL(pin+6))) out |= 0x40;
if (IS_PIN_DIGITAL(pin+7) && (bitmask & 0x80) && digitalRead(PIN_TO_DIGITAL(pin+7))) out |= 0x80;
return out;
#endif
}
/*==============================================================================
* writePort() - Write an 8 bit port, only touch pins specified by a bitmask
*============================================================================*/
static inline unsigned char writePort(byte, byte, byte) __attribute__((always_inline, unused));
static inline unsigned char writePort(byte port, byte value, byte bitmask)
{
#if defined(ARDUINO_PINOUT_OPTIMIZE)
if (port == 0) {
bitmask = bitmask & 0xFC; // do not touch Tx & Rx pins
byte valD = value & bitmask;
byte maskD = ~bitmask;
cli();
PORTD = (PORTD & maskD) | valD;
sei();
} else if (port == 1) {
byte valB = (value & bitmask) & 0x3F;
byte valC = (value & bitmask) >> 6;
byte maskB = ~(bitmask & 0x3F);
byte maskC = ~((bitmask & 0xC0) >> 6);
cli();
PORTB = (PORTB & maskB) | valB;
PORTC = (PORTC & maskC) | valC;
sei();
} else if (port == 2) {
bitmask = bitmask & 0x0F;
byte valC = (value & bitmask) << 2;
byte maskC = ~(bitmask << 2);
cli();
PORTC = (PORTC & maskC) | valC;
sei();
}
#else
byte pin=port*8;
if ((bitmask & 0x01)) digitalWrite(PIN_TO_DIGITAL(pin+0), (value & 0x01));
if ((bitmask & 0x02)) digitalWrite(PIN_TO_DIGITAL(pin+1), (value & 0x02));
if ((bitmask & 0x04)) digitalWrite(PIN_TO_DIGITAL(pin+2), (value & 0x04));
if ((bitmask & 0x08)) digitalWrite(PIN_TO_DIGITAL(pin+3), (value & 0x08));
if ((bitmask & 0x10)) digitalWrite(PIN_TO_DIGITAL(pin+4), (value & 0x10));
if ((bitmask & 0x20)) digitalWrite(PIN_TO_DIGITAL(pin+5), (value & 0x20));
if ((bitmask & 0x40)) digitalWrite(PIN_TO_DIGITAL(pin+6), (value & 0x40));
if ((bitmask & 0x80)) digitalWrite(PIN_TO_DIGITAL(pin+7), (value & 0x80));
#endif
}
#ifndef TOTAL_PORTS
#define TOTAL_PORTS ((TOTAL_PINS + 7) / 8)
#endif
#endif /* Firmata_Boards_h */

459
libraries/Firmata/src/Firmata.cpp Executable file
View File

@@ -0,0 +1,459 @@
/*
Firmata.cpp - Firmata library
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
//******************************************************************************
//* Includes
//******************************************************************************
#include "Firmata.h"
#include "HardwareSerial.h"
extern "C" {
#include <string.h>
#include <stdlib.h>
}
//******************************************************************************
//* Support Functions
//******************************************************************************
void FirmataClass::sendValueAsTwo7bitBytes(int value)
{
FirmataSerial->write(value & B01111111); // LSB
FirmataSerial->write(value >> 7 & B01111111); // MSB
}
void FirmataClass::startSysex(void)
{
FirmataSerial->write(START_SYSEX);
}
void FirmataClass::endSysex(void)
{
FirmataSerial->write(END_SYSEX);
}
//******************************************************************************
//* Constructors
//******************************************************************************
FirmataClass::FirmataClass()
{
firmwareVersionCount = 0;
firmwareVersionVector = 0;
systemReset();
}
//******************************************************************************
//* Public Methods
//******************************************************************************
/* begin method with default serial bitrate */
void FirmataClass::begin(void)
{
begin(57600);
}
/* begin method for overriding default serial bitrate */
void FirmataClass::begin(long speed)
{
Serial.begin(speed);
begin(Serial);
blinkVersion();
}
/* begin method for overriding default stream */
void FirmataClass::begin(Stream &s)
{
FirmataSerial = &s;
printVersion();
printFirmwareVersion();
}
// output the protocol version message to the serial port
void FirmataClass::printVersion(void) {
FirmataSerial->write(REPORT_VERSION);
FirmataSerial->write(FIRMATA_MAJOR_VERSION);
FirmataSerial->write(FIRMATA_MINOR_VERSION);
}
void FirmataClass::blinkVersion(void)
{
// flash the pin with the protocol version
pinMode(VERSION_BLINK_PIN,OUTPUT);
strobeBlinkPin(FIRMATA_MAJOR_VERSION, 40, 210);
delay(250);
strobeBlinkPin(FIRMATA_MINOR_VERSION, 40, 210);
delay(125);
}
void FirmataClass::printFirmwareVersion(void)
{
byte i;
if(firmwareVersionCount) { // make sure that the name has been set before reporting
startSysex();
FirmataSerial->write(REPORT_FIRMWARE);
FirmataSerial->write(firmwareVersionVector[0]); // major version number
FirmataSerial->write(firmwareVersionVector[1]); // minor version number
for(i=2; i<firmwareVersionCount; ++i) {
sendValueAsTwo7bitBytes(firmwareVersionVector[i]);
}
endSysex();
}
}
void FirmataClass::setFirmwareNameAndVersion(const char *name, byte major, byte minor)
{
const char *filename;
char *extension;
// parse out ".cpp" and "applet/" that comes from using __FILE__
extension = strstr(name, ".cpp");
filename = strrchr(name, '/') + 1; //points to slash, +1 gets to start of filename
// add two bytes for version numbers
if(extension && filename) {
firmwareVersionCount = extension - filename + 2;
} else {
firmwareVersionCount = strlen(name) + 2;
filename = name;
}
free(firmwareVersionVector);
firmwareVersionVector = (byte *) malloc(firmwareVersionCount);
firmwareVersionVector[firmwareVersionCount] = 0;
firmwareVersionVector[0] = major;
firmwareVersionVector[1] = minor;
strncpy((char*)firmwareVersionVector + 2, filename, firmwareVersionCount - 2);
// alas, no snprintf on Arduino
// snprintf(firmwareVersionVector, MAX_DATA_BYTES, "%c%c%s",
// (char)major, (char)minor, firmwareVersionVector);
}
// this method is only used for unit testing
// void FirmataClass::unsetFirmwareVersion()
// {
// firmwareVersionCount = 0;
// free(firmwareVersionVector);
// firmwareVersionVector = 0;
// }
//------------------------------------------------------------------------------
// Serial Receive Handling
int FirmataClass::available(void)
{
return FirmataSerial->available();
}
void FirmataClass::processSysexMessage(void)
{
switch(storedInputData[0]) { //first byte in buffer is command
case REPORT_FIRMWARE:
printFirmwareVersion();
break;
case STRING_DATA:
if(currentStringCallback) {
byte bufferLength = (sysexBytesRead - 1) / 2;
char *buffer = (char*)malloc(bufferLength * sizeof(char));
byte i = 1;
byte j = 0;
while(j < bufferLength) {
buffer[j] = (char)storedInputData[i];
i++;
buffer[j] += (char)(storedInputData[i] << 7);
i++;
j++;
}
(*currentStringCallback)(buffer);
}
break;
default:
if(currentSysexCallback)
(*currentSysexCallback)(storedInputData[0], sysexBytesRead - 1, storedInputData + 1);
}
}
void FirmataClass::processInput(void)
{
int inputData = FirmataSerial->read(); // this is 'int' to handle -1 when no data
int command;
// TODO make sure it handles -1 properly
if (parsingSysex) {
if(inputData == END_SYSEX) {
//stop sysex byte
parsingSysex = false;
//fire off handler function
processSysexMessage();
} else {
//normal data byte - add to buffer
storedInputData[sysexBytesRead] = inputData;
sysexBytesRead++;
}
} else if( (waitForData > 0) && (inputData < 128) ) {
waitForData--;
storedInputData[waitForData] = inputData;
if( (waitForData==0) && executeMultiByteCommand ) { // got the whole message
switch(executeMultiByteCommand) {
case ANALOG_MESSAGE:
if(currentAnalogCallback) {
(*currentAnalogCallback)(multiByteChannel,
(storedInputData[0] << 7)
+ storedInputData[1]);
}
break;
case DIGITAL_MESSAGE:
if(currentDigitalCallback) {
(*currentDigitalCallback)(multiByteChannel,
(storedInputData[0] << 7)
+ storedInputData[1]);
}
break;
case SET_PIN_MODE:
if(currentPinModeCallback)
(*currentPinModeCallback)(storedInputData[1], storedInputData[0]);
break;
case REPORT_ANALOG:
if(currentReportAnalogCallback)
(*currentReportAnalogCallback)(multiByteChannel,storedInputData[0]);
break;
case REPORT_DIGITAL:
if(currentReportDigitalCallback)
(*currentReportDigitalCallback)(multiByteChannel,storedInputData[0]);
break;
}
executeMultiByteCommand = 0;
}
} else {
// remove channel info from command byte if less than 0xF0
if(inputData < 0xF0) {
command = inputData & 0xF0;
multiByteChannel = inputData & 0x0F;
} else {
command = inputData;
// commands in the 0xF* range don't use channel data
}
switch (command) {
case ANALOG_MESSAGE:
case DIGITAL_MESSAGE:
case SET_PIN_MODE:
waitForData = 2; // two data bytes needed
executeMultiByteCommand = command;
break;
case REPORT_ANALOG:
case REPORT_DIGITAL:
waitForData = 1; // two data bytes needed
executeMultiByteCommand = command;
break;
case START_SYSEX:
parsingSysex = true;
sysexBytesRead = 0;
break;
case SYSTEM_RESET:
systemReset();
break;
case REPORT_VERSION:
Firmata.printVersion();
break;
}
}
}
//------------------------------------------------------------------------------
// Serial Send Handling
// send an analog message
void FirmataClass::sendAnalog(byte pin, int value)
{
// pin can only be 0-15, so chop higher bits
FirmataSerial->write(ANALOG_MESSAGE | (pin & 0xF));
sendValueAsTwo7bitBytes(value);
}
// send a single digital pin in a digital message
void FirmataClass::sendDigital(byte pin, int value)
{
/* TODO add single pin digital messages to the protocol, this needs to
* track the last digital data sent so that it can be sure to change just
* one bit in the packet. This is complicated by the fact that the
* numbering of the pins will probably differ on Arduino, Wiring, and
* other boards. The DIGITAL_MESSAGE sends 14 bits at a time, but it is
* probably easier to send 8 bit ports for any board with more than 14
* digital pins.
*/
// TODO: the digital message should not be sent on the serial port every
// time sendDigital() is called. Instead, it should add it to an int
// which will be sent on a schedule. If a pin changes more than once
// before the digital message is sent on the serial port, it should send a
// digital message for each change.
// if(value == 0)
// sendDigitalPortPair();
}
// send 14-bits in a single digital message (protocol v1)
// send an 8-bit port in a single digital message (protocol v2)
void FirmataClass::sendDigitalPort(byte portNumber, int portData)
{
FirmataSerial->write(DIGITAL_MESSAGE | (portNumber & 0xF));
FirmataSerial->write((byte)portData % 128); // Tx bits 0-6
FirmataSerial->write(portData >> 7); // Tx bits 7-13
}
void FirmataClass::sendSysex(byte command, byte bytec, byte* bytev)
{
byte i;
startSysex();
FirmataSerial->write(command);
for(i=0; i<bytec; i++) {
sendValueAsTwo7bitBytes(bytev[i]);
}
endSysex();
}
void FirmataClass::sendString(byte command, const char* string)
{
sendSysex(command, strlen(string), (byte *)string);
}
// send a string as the protocol string type
void FirmataClass::sendString(const char* string)
{
sendString(STRING_DATA, string);
}
// expose the write method
void FirmataClass::write(byte c)
{
FirmataSerial->write(c);
}
// Internal Actions/////////////////////////////////////////////////////////////
// generic callbacks
void FirmataClass::attach(byte command, callbackFunction newFunction)
{
switch(command) {
case ANALOG_MESSAGE: currentAnalogCallback = newFunction; break;
case DIGITAL_MESSAGE: currentDigitalCallback = newFunction; break;
case REPORT_ANALOG: currentReportAnalogCallback = newFunction; break;
case REPORT_DIGITAL: currentReportDigitalCallback = newFunction; break;
case SET_PIN_MODE: currentPinModeCallback = newFunction; break;
}
}
void FirmataClass::attach(byte command, systemResetCallbackFunction newFunction)
{
switch(command) {
case SYSTEM_RESET: currentSystemResetCallback = newFunction; break;
}
}
void FirmataClass::attach(byte command, stringCallbackFunction newFunction)
{
switch(command) {
case STRING_DATA: currentStringCallback = newFunction; break;
}
}
void FirmataClass::attach(byte command, sysexCallbackFunction newFunction)
{
currentSysexCallback = newFunction;
}
void FirmataClass::detach(byte command)
{
switch(command) {
case SYSTEM_RESET: currentSystemResetCallback = NULL; break;
case STRING_DATA: currentStringCallback = NULL; break;
case START_SYSEX: currentSysexCallback = NULL; break;
default:
attach(command, (callbackFunction)NULL);
}
}
// sysex callbacks
/*
* this is too complicated for analogReceive, but maybe for Sysex?
void FirmataClass::attachSysex(sysexFunction newFunction)
{
byte i;
byte tmpCount = analogReceiveFunctionCount;
analogReceiveFunction* tmpArray = analogReceiveFunctionArray;
analogReceiveFunctionCount++;
analogReceiveFunctionArray = (analogReceiveFunction*) calloc(analogReceiveFunctionCount, sizeof(analogReceiveFunction));
for(i = 0; i < tmpCount; i++) {
analogReceiveFunctionArray[i] = tmpArray[i];
}
analogReceiveFunctionArray[tmpCount] = newFunction;
free(tmpArray);
}
*/
//******************************************************************************
//* Private Methods
//******************************************************************************
// resets the system state upon a SYSTEM_RESET message from the host software
void FirmataClass::systemReset(void)
{
byte i;
waitForData = 0; // this flag says the next serial input will be data
executeMultiByteCommand = 0; // execute this after getting multi-byte data
multiByteChannel = 0; // channel data for multiByteCommands
for(i=0; i<MAX_DATA_BYTES; i++) {
storedInputData[i] = 0;
}
parsingSysex = false;
sysexBytesRead = 0;
if(currentSystemResetCallback)
(*currentSystemResetCallback)();
//flush(); //TODO uncomment when Firmata is a subclass of HardwareSerial
}
// =============================================================================
// used for flashing the pin for the version number
void FirmataClass::strobeBlinkPin(int count, int onInterval, int offInterval)
{
byte i;
pinMode(VERSION_BLINK_PIN, OUTPUT);
for(i=0; i<count; i++) {
delay(offInterval);
digitalWrite(VERSION_BLINK_PIN, HIGH);
delay(onInterval);
digitalWrite(VERSION_BLINK_PIN, LOW);
}
}
// make one instance for the user to use
FirmataClass Firmata;

165
libraries/Firmata/src/Firmata.h Executable file
View File

@@ -0,0 +1,165 @@
/*
Firmata.h - Firmata library
Copyright (C) 2006-2008 Hans-Christoph Steiner. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
See file LICENSE.txt for further informations on licensing terms.
*/
#ifndef Firmata_h
#define Firmata_h
#include "Boards.h" /* Hardware Abstraction Layer + Wiring/Arduino */
/* Version numbers for the protocol. The protocol is still changing, so these
* version numbers are important. This number can be queried so that host
* software can test whether it will be compatible with the currently
* installed firmware. */
#define FIRMATA_MAJOR_VERSION 2 // for non-compatible changes
#define FIRMATA_MINOR_VERSION 3 // for backwards compatible changes
#define FIRMATA_BUGFIX_VERSION 5 // for bugfix releases
#define MAX_DATA_BYTES 32 // max number of data bytes in non-Sysex messages
// message command bytes (128-255/0x80-0xFF)
#define DIGITAL_MESSAGE 0x90 // send data for a digital pin
#define ANALOG_MESSAGE 0xE0 // send data for an analog pin (or PWM)
#define REPORT_ANALOG 0xC0 // enable analog input by pin #
#define REPORT_DIGITAL 0xD0 // enable digital input by port pair
//
#define SET_PIN_MODE 0xF4 // set a pin to INPUT/OUTPUT/PWM/etc
//
#define REPORT_VERSION 0xF9 // report protocol version
#define SYSTEM_RESET 0xFF // reset from MIDI
//
#define START_SYSEX 0xF0 // start a MIDI Sysex message
#define END_SYSEX 0xF7 // end a MIDI Sysex message
// extended command set using sysex (0-127/0x00-0x7F)
/* 0x00-0x0F reserved for user-defined commands */
#define SERVO_CONFIG 0x70 // set max angle, minPulse, maxPulse, freq
#define STRING_DATA 0x71 // a string message with 14-bits per char
#define SHIFT_DATA 0x75 // a bitstream to/from a shift register
#define I2C_REQUEST 0x76 // send an I2C read/write request
#define I2C_REPLY 0x77 // a reply to an I2C read request
#define I2C_CONFIG 0x78 // config I2C settings such as delay times and power pins
#define EXTENDED_ANALOG 0x6F // analog write (PWM, Servo, etc) to any pin
#define PIN_STATE_QUERY 0x6D // ask for a pin's current mode and value
#define PIN_STATE_RESPONSE 0x6E // reply with pin's current mode and value
#define CAPABILITY_QUERY 0x6B // ask for supported modes and resolution of all pins
#define CAPABILITY_RESPONSE 0x6C // reply with supported modes and resolution
#define ANALOG_MAPPING_QUERY 0x69 // ask for mapping of analog to pin numbers
#define ANALOG_MAPPING_RESPONSE 0x6A // reply with mapping info
#define REPORT_FIRMWARE 0x79 // report name and version of the firmware
#define SAMPLING_INTERVAL 0x7A // set the poll rate of the main loop
#define SYSEX_NON_REALTIME 0x7E // MIDI Reserved for non-realtime messages
#define SYSEX_REALTIME 0x7F // MIDI Reserved for realtime messages
// these are DEPRECATED to make the naming more consistent
#define FIRMATA_STRING 0x71 // same as STRING_DATA
#define SYSEX_I2C_REQUEST 0x76 // same as I2C_REQUEST
#define SYSEX_I2C_REPLY 0x77 // same as I2C_REPLY
#define SYSEX_SAMPLING_INTERVAL 0x7A // same as SAMPLING_INTERVAL
// pin modes
//#define INPUT 0x00 // defined in wiring.h
//#define OUTPUT 0x01 // defined in wiring.h
#define ANALOG 0x02 // analog pin in analogInput mode
#define PWM 0x03 // digital pin in PWM output mode
#define SERVO 0x04 // digital pin in Servo output mode
#define SHIFT 0x05 // shiftIn/shiftOut mode
#define I2C 0x06 // pin included in I2C setup
#define TOTAL_PIN_MODES 7
extern "C" {
// callback function types
typedef void (*callbackFunction)(byte, int);
typedef void (*systemResetCallbackFunction)(void);
typedef void (*stringCallbackFunction)(char*);
typedef void (*sysexCallbackFunction)(byte command, byte argc, byte*argv);
}
// TODO make it a subclass of a generic Serial/Stream base class
class FirmataClass
{
public:
FirmataClass();
/* Arduino constructors */
void begin();
void begin(long);
void begin(Stream &s);
/* querying functions */
void printVersion(void);
void blinkVersion(void);
void printFirmwareVersion(void);
//void setFirmwareVersion(byte major, byte minor); // see macro below
void setFirmwareNameAndVersion(const char *name, byte major, byte minor);
//void unsetFirmwareVersion(); // only used for unit test
/* serial receive handling */
int available(void);
void processInput(void);
/* serial send handling */
void sendAnalog(byte pin, int value);
void sendDigital(byte pin, int value); // TODO implement this
void sendDigitalPort(byte portNumber, int portData);
void sendString(const char* string);
void sendString(byte command, const char* string);
void sendSysex(byte command, byte bytec, byte* bytev);
void write(byte c);
/* attach & detach callback functions to messages */
void attach(byte command, callbackFunction newFunction);
void attach(byte command, systemResetCallbackFunction newFunction);
void attach(byte command, stringCallbackFunction newFunction);
void attach(byte command, sysexCallbackFunction newFunction);
void detach(byte command);
private:
Stream *FirmataSerial;
/* firmware name and version */
byte firmwareVersionCount;
byte *firmwareVersionVector;
/* input message handling */
byte waitForData; // this flag says the next serial input will be data
byte executeMultiByteCommand; // execute this after getting multi-byte data
byte multiByteChannel; // channel data for multiByteCommands
byte storedInputData[MAX_DATA_BYTES]; // multi-byte data
/* sysex */
boolean parsingSysex;
int sysexBytesRead;
/* callback functions */
callbackFunction currentAnalogCallback;
callbackFunction currentDigitalCallback;
callbackFunction currentReportAnalogCallback;
callbackFunction currentReportDigitalCallback;
callbackFunction currentPinModeCallback;
systemResetCallbackFunction currentSystemResetCallback;
stringCallbackFunction currentStringCallback;
sysexCallbackFunction currentSysexCallback;
/* private methods ------------------------------ */
void processSysexMessage(void);
void systemReset(void);
void strobeBlinkPin(int count, int onInterval, int offInterval);
void sendValueAsTwo7bitBytes(int value);
void startSysex(void);
void endSysex(void);
};
extern FirmataClass Firmata;
/*==============================================================================
* MACROS
*============================================================================*/
/* shortcut for setFirmwareNameAndVersion() that uses __FILE__ to set the
* firmware name. It needs to be a macro so that __FILE__ is included in the
* firmware source file rather than the library source file.
*/
#define setFirmwareVersion(x, y) setFirmwareNameAndVersion(__FILE__, x, y)
#endif /* Firmata_h */