1
0
mirror of https://github.com/esp8266/Arduino.git synced 2025-06-19 09:42:11 +03:00

Merged master

This commit is contained in:
Cristian Maglie
2012-06-27 13:51:16 +02:00
326 changed files with 99701 additions and 4756 deletions

View File

@ -7,10 +7,15 @@ uno.upload.tool=avrdude
uno.upload.protocol=arduino
uno.upload.maximum_size=32256
uno.upload.speed=115200
uno.bootloader.tool=avrdude
uno.bootloader.erase.params=-e -Ulock:w:0x3F:m -Uefuse:w:0x05:m -Uhfuse:w:0xde:m -Ulfuse:w:0xff:m
uno.bootloader.write.params=-Uflash:w:{bootloader.file}:i -Ulock:w:0x0F:m
uno.bootloader.file={runtime.ide.path}/hardware/arduino/avr/optiboot/optiboot_atmega328.hex
uno.bootloader.low_fuses=0xFF
uno.bootloader.high_fuses=0xDE
uno.bootloader.extended_fuses=0x05
uno.bootloader.unlock_bits=0x3F
uno.bootloader.lock_bits=0x0F
uno.bootloader.file=optiboot/optiboot_atmega328.hex
uno.build.mcu=atmega328p
uno.build.f_cpu=16000000L
uno.build.core=arduino
@ -145,23 +150,28 @@ mega.build.variant=mega
##############################################################
leonardo.name=Arduino Leonardo
leonardo.upload.tool=avrdude
leonardo.upload.protocol=avr109
leonardo.upload.maximum_size=28672
leonardo.upload.speed=57600
leonardo.upload.disable_flushing=true
leonardo.upload.use_1200bps_touch=true
leonardo.bootloader.tool=avrdude
leonardo.bootloader.low_fuses=0xff
leonardo.bootloader.high_fuses=0xd8
leonardo.bootloader.extended_fuses=0xcb
leonardo.bootloader.path=caterina
leonardo.bootloader.file=Caterina-Leonardo.hex
leonardo.bootloader.file=caterina/Caterina-Leonardo.hex
leonardo.bootloader.unlock_bits=0x3F
leonardo.bootloader.lock_bits=0x2F
leonardo.build.mcu=atmega32u4
leonardo.build.f_cpu=16000000L
leonardo.build.vid=0x2341
leonardo.build.pid=0x8036
leonardo.build.core=arduino
leonardo.build.variant=leonardo
leonardo.build.extra_flags=-DUSB_VID={build.vid} -DUSB_PID={build.pid}
##############################################################

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,714 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
*/
#define INCLUDE_FROM_CATERINA_C
#include "Caterina.h"
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
* operating systems will not open the port unless the settings can be set successfully.
*/
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
.CharFormat = CDC_LINEENCODING_OneStopBit,
.ParityType = CDC_PARITY_None,
.DataBits = 8 };
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
* and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
* command.)
*/
static uint32_t CurrAddress;
/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
* via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
* loop until the AVR restarts and the application runs.
*/
static bool RunBootloader = true;
/* Pulse generation counters to keep track of the time remaining for each pulse type */
#define TX_RX_LED_PULSE_PERIOD 100
uint16_t TxLEDPulse = 0; // time remaining for Tx LED pulse
uint16_t RxLEDPulse = 0; // time remaining for Rx LED pulse
/* Bootloader timeout timer */
#define TIMEOUT_PERIOD 8000
uint16_t Timeout = 0;
uint16_t bootKey = 0x7777;
volatile uint16_t *const bootKeyPtr = (volatile uint16_t *)0x0800;
void StartSketch(void)
{
cli();
/* Undo TIMER1 setup and clear the count before running the sketch */
TIMSK1 = 0;
TCCR1B = 0;
TCNT1H = 0; // 16-bit write to TCNT1 requires high byte be written first
TCNT1L = 0;
/* Relocate the interrupt vector table to the application section */
MCUCR = (1 << IVCE);
MCUCR = 0;
L_LED_OFF();
TX_LED_OFF();
RX_LED_OFF();
/* jump to beginning of application space */
__asm__ volatile("jmp 0x0000");
}
/* Breathing animation on L LED indicates bootloader is running */
uint16_t LLEDPulse;
void LEDPulse(void)
{
LLEDPulse++;
uint8_t p = LLEDPulse >> 8;
if (p > 127)
p = 254-p;
p += p;
if (((uint8_t)LLEDPulse) > p)
L_LED_OFF();
else
L_LED_ON();
}
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until it times out or is instructed to exit.
*/
int main(void)
{
/* Save the value of the boot key memory before it is overwritten */
uint16_t bootKeyPtrVal = *bootKeyPtr;
*bootKeyPtr = 0;
/* Check the reason for the reset so we can act accordingly */
uint8_t mcusr_state = MCUSR; // store the initial state of the Status register
MCUSR = 0; // clear all reset flags
/* Watchdog may be configured with a 15 ms period so must disable it before going any further */
wdt_disable();
if (mcusr_state & (1<<EXTRF)) {
// External reset - we should continue to self-programming mode.
} else if (mcusr_state == (1<<PORF) && pgm_read_word(0) != 0xFFFF) {
// After a power-on reset skip the bootloader and jump straight to sketch
// if one exists.
StartSketch();
} else if ((mcusr_state == (1<<WDRF)) && (bootKeyPtrVal != bootKey) && (pgm_read_word(0) != 0xFFFF)) {
// If it looks like an "accidental" watchdog reset then start the sketch.
StartSketch();
}
/* Setup hardware required for the bootloader */
SetupHardware();
/* Enable global interrupts so that the USB stack can function */
sei();
Timeout = 0;
while (RunBootloader)
{
CDC_Task();
USB_USBTask();
/* Time out and start the sketch if one is present */
if (Timeout > TIMEOUT_PERIOD)
RunBootloader = false;
LEDPulse();
}
/* Disconnect from the host - USB interface will be reset later along with the AVR */
USB_Detach();
/* Jump to beginning of application space to run the sketch - do not reset */
StartSketch();
}
/** Configures all hardware required for the bootloader. */
void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
wdt_disable();
/* Disable clock division */
clock_prescale_set(clock_div_1);
/* Relocate the interrupt vector table to the bootloader section */
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
LED_SETUP();
CPU_PRESCALE(0);
L_LED_OFF();
TX_LED_OFF();
RX_LED_OFF();
/* Initialize TIMER1 to handle bootloader timeout and LED tasks.
* With 16 MHz clock and 1/64 prescaler, timer 1 is clocked at 250 kHz
* Our chosen compare match generates an interrupt every 1 ms.
* This interrupt is disabled selectively when doing memory reading, erasing,
* or writing since SPM has tight timing requirements.
*/
OCR1AH = 0;
OCR1AL = 250;
TIMSK1 = (1 << OCIE1A); // enable timer 1 output compare A match interrupt
TCCR1B = ((1 << CS11) | (1 << CS10)); // 1/64 prescaler on timer 1 input
/* Initialize USB Subsystem */
USB_Init();
}
//uint16_t ctr = 0;
ISR(TIMER1_COMPA_vect, ISR_BLOCK)
{
/* Reset counter */
TCNT1H = 0;
TCNT1L = 0;
/* Check whether the TX or RX LED one-shot period has elapsed. if so, turn off the LED */
if (TxLEDPulse && !(--TxLEDPulse))
TX_LED_OFF();
if (RxLEDPulse && !(--RxLEDPulse))
RX_LED_OFF();
if (pgm_read_word(0) != 0xFFFF)
Timeout++;
}
/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
* to relay data to and from the attached USB host.
*/
void EVENT_USB_Device_ConfigurationChanged(void)
{
/* Setup CDC Notification, Rx and Tx Endpoints */
Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
ENDPOINT_BANK_SINGLE);
Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
ENDPOINT_BANK_SINGLE);
Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
ENDPOINT_BANK_SINGLE);
}
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
* the device from the USB host before passing along unhandled control requests to the library for processing
* internally.
*/
void EVENT_USB_Device_ControlRequest(void)
{
/* Ignore any requests that aren't directed to the CDC interface */
if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
(REQTYPE_CLASS | REQREC_INTERFACE))
{
return;
}
/* Process CDC specific control requests */
switch (USB_ControlRequest.bRequest)
{
case CDC_REQ_GetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Write the line coding data to the control endpoint */
Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearOUT();
}
break;
case CDC_REQ_SetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Read the line coding data in from the host into the global struct */
Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearIN();
}
break;
}
}
#if !defined(NO_BLOCK_SUPPORT)
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
* on the AVR910 protocol command issued.
*
* \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
*/
static void ReadWriteMemoryBlock(const uint8_t Command)
{
uint16_t BlockSize;
char MemoryType;
bool HighByte = false;
uint8_t LowByte = 0;
BlockSize = (FetchNextCommandByte() << 8);
BlockSize |= FetchNextCommandByte();
MemoryType = FetchNextCommandByte();
if ((MemoryType != 'E') && (MemoryType != 'F'))
{
/* Send error byte back to the host */
WriteNextResponseByte('?');
return;
}
/* Disable timer 1 interrupt - can't afford to process nonessential interrupts
* while doing SPM tasks */
TIMSK1 = 0;
/* Check if command is to read memory */
if (Command == 'g')
{
/* Re-enable RWW section */
boot_rww_enable();
while (BlockSize--)
{
if (MemoryType == 'F')
{
/* Read the next FLASH byte from the current FLASH page */
#if (FLASHEND > 0xFFFF)
WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
#else
WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
#endif
/* If both bytes in current word have been read, increment the address counter */
if (HighByte)
CurrAddress += 2;
HighByte = !HighByte;
}
else
{
/* Read the next EEPROM byte into the endpoint */
WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
/* Increment the address counter after use */
CurrAddress += 2;
}
}
}
else
{
uint32_t PageStartAddress = CurrAddress;
if (MemoryType == 'F')
{
boot_page_erase(PageStartAddress);
boot_spm_busy_wait();
}
while (BlockSize--)
{
if (MemoryType == 'F')
{
/* If both bytes in current word have been written, increment the address counter */
if (HighByte)
{
/* Write the next FLASH word to the current FLASH page */
boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
/* Increment the address counter after use */
CurrAddress += 2;
}
else
{
LowByte = FetchNextCommandByte();
}
HighByte = !HighByte;
}
else
{
/* Write the next EEPROM byte from the endpoint */
eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
/* Increment the address counter after use */
CurrAddress += 2;
}
}
/* If in FLASH programming mode, commit the page after writing */
if (MemoryType == 'F')
{
/* Commit the flash page to memory */
boot_page_write(PageStartAddress);
/* Wait until write operation has completed */
boot_spm_busy_wait();
}
/* Send response byte back to the host */
WriteNextResponseByte('\r');
}
/* Re-enable timer 1 interrupt disabled earlier in this routine */
TIMSK1 = (1 << OCIE1A);
}
#endif
/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
* to allow reception of the next data packet from the host.
*
* \return Next received byte from the host in the CDC data OUT endpoint
*/
static uint8_t FetchNextCommandByte(void)
{
/* Select the OUT endpoint so that the next data byte can be read */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* If OUT endpoint empty, clear it and wait for the next packet from the host */
while (!(Endpoint_IsReadWriteAllowed()))
{
Endpoint_ClearOUT();
while (!(Endpoint_IsOUTReceived()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return 0;
}
}
/* Fetch the next byte from the OUT endpoint */
return Endpoint_Read_8();
}
/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
* bank when full ready for the next byte in the packet to the host.
*
* \param[in] Response Next response byte to send to the host
*/
static void WriteNextResponseByte(const uint8_t Response)
{
/* Select the IN endpoint so that the next data byte can be written */
Endpoint_SelectEndpoint(CDC_TX_EPNUM);
/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
if (!(Endpoint_IsReadWriteAllowed()))
{
Endpoint_ClearIN();
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
}
/* Write the next byte to the IN endpoint */
Endpoint_Write_8(Response);
TX_LED_ON();
TxLEDPulse = TX_RX_LED_PULSE_PERIOD;
}
#define STK_OK 0x10
#define STK_INSYNC 0x14 // ' '
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
* and send the appropriate response back to the host.
*/
void CDC_Task(void)
{
/* Select the OUT endpoint */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* Check if endpoint has a command in it sent from the host */
if (!(Endpoint_IsOUTReceived()))
return;
RX_LED_ON();
RxLEDPulse = TX_RX_LED_PULSE_PERIOD;
/* Read in the bootloader command (first byte sent from host) */
uint8_t Command = FetchNextCommandByte();
if (Command == 'E')
{
/* We nearly run out the bootloader timeout clock,
* leaving just a few hundred milliseconds so the
* bootloder has time to respond and service any
* subsequent requests */
Timeout = TIMEOUT_PERIOD - 500;
/* Re-enable RWW section - must be done here in case
* user has disabled verification on upload. */
boot_rww_enable_safe();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'T')
{
FetchNextCommandByte();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if ((Command == 'L') || (Command == 'P'))
{
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 't')
{
// Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader
WriteNextResponseByte(0x44);
WriteNextResponseByte(0x00);
}
else if (Command == 'a')
{
// Indicate auto-address increment is supported
WriteNextResponseByte('Y');
}
else if (Command == 'A')
{
// Set the current address to that given by the host
CurrAddress = (FetchNextCommandByte() << 9);
CurrAddress |= (FetchNextCommandByte() << 1);
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'p')
{
// Indicate serial programmer back to the host
WriteNextResponseByte('S');
}
else if (Command == 'S')
{
// Write the 7-byte software identifier to the endpoint
for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
}
else if (Command == 'V')
{
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
}
else if (Command == 's')
{
WriteNextResponseByte(AVR_SIGNATURE_3);
WriteNextResponseByte(AVR_SIGNATURE_2);
WriteNextResponseByte(AVR_SIGNATURE_1);
}
else if (Command == 'e')
{
// Clear the application section of flash
for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
{
boot_page_erase(CurrFlashAddress);
boot_spm_busy_wait();
boot_page_write(CurrFlashAddress);
boot_spm_busy_wait();
}
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
else if (Command == 'l')
{
// Set the lock bits to those given by the host
boot_lock_bits_set(FetchNextCommandByte());
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
#endif
else if (Command == 'r')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
}
else if (Command == 'F')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
}
else if (Command == 'N')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
}
else if (Command == 'Q')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
}
#if !defined(NO_BLOCK_SUPPORT)
else if (Command == 'b')
{
WriteNextResponseByte('Y');
// Send block size to the host
WriteNextResponseByte(SPM_PAGESIZE >> 8);
WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
}
else if ((Command == 'B') || (Command == 'g'))
{
// Keep resetting the timeout counter if we're receiving self-programming instructions
Timeout = 0;
// Delegate the block write/read to a separate function for clarity
ReadWriteMemoryBlock(Command);
}
#endif
#if !defined(NO_FLASH_BYTE_SUPPORT)
else if (Command == 'C')
{
// Write the high byte to the current flash page
boot_page_fill(CurrAddress, FetchNextCommandByte());
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'c')
{
// Write the low byte to the current flash page
boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
// Increment the address
CurrAddress += 2;
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'm')
{
// Commit the flash page to memory
boot_page_write(CurrAddress);
// Wait until write operation has completed
boot_spm_busy_wait();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'R')
{
#if (FLASHEND > 0xFFFF)
uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
#else
uint16_t ProgramWord = pgm_read_word(CurrAddress);
#endif
WriteNextResponseByte(ProgramWord >> 8);
WriteNextResponseByte(ProgramWord & 0xFF);
}
#endif
#if !defined(NO_EEPROM_BYTE_SUPPORT)
else if (Command == 'D')
{
// Read the byte from the endpoint and write it to the EEPROM
eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
// Increment the address after use
CurrAddress += 2;
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'd')
{
// Read the EEPROM byte and write it to the endpoint
WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
// Increment the address after use
CurrAddress += 2;
}
#endif
else if (Command != 27)
{
// Unknown (non-sync) command, return fail code
WriteNextResponseByte('?');
}
/* Select the IN endpoint */
Endpoint_SelectEndpoint(CDC_TX_EPNUM);
/* Remember if the endpoint is completely full before clearing it */
bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
/* Send the endpoint data to the host */
Endpoint_ClearIN();
/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
if (IsEndpointFull)
{
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
Endpoint_ClearIN();
}
/* Wait until the data has been sent to the host */
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
/* Select the OUT endpoint */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* Acknowledge the command from the host */
Endpoint_ClearOUT();
}

View File

@ -0,0 +1,99 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for BootloaderCDC.c.
*/
#ifndef _CDC_H_
#define _CDC_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/boot.h>
#include <avr/eeprom.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include "Descriptors.h"
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
/** Version major of the CDC bootloader. */
#define BOOTLOADER_VERSION_MAJOR 0x01
/** Version minor of the CDC bootloader. */
#define BOOTLOADER_VERSION_MINOR 0x00
/** Hardware version major of the CDC bootloader. */
#define BOOTLOADER_HWVERSION_MAJOR 0x01
/** Hardware version minor of the CDC bootloader. */
#define BOOTLOADER_HWVERSION_MINOR 0x00
/** Eight character bootloader firmware identifier reported to the host when requested */
#define SOFTWARE_IDENTIFIER "CATERINA"
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define LED_SETUP() DDRC |= (1<<7); DDRB |= (1<<0); DDRD |= (1<<5);
#define L_LED_OFF() PORTC &= ~(1<<7)
#define L_LED_ON() PORTC |= (1<<7)
#define L_LED_TOGGLE() PORTC ^= (1<<7)
#define TX_LED_OFF() PORTD |= (1<<5)
#define TX_LED_ON() PORTD &= ~(1<<5)
#define RX_LED_OFF() PORTB |= (1<<0)
#define RX_LED_ON() PORTB &= ~(1<<0)
/* Type Defines: */
/** Type define for a non-returning pointer to the start of the loaded application in flash memory. */
typedef void (*AppPtr_t)(void) ATTR_NO_RETURN;
/* Function Prototypes: */
void StartSketch(void);
void LEDPulse(void);
void CDC_Task(void);
void SetupHardware(void);
void EVENT_USB_Device_ConfigurationChanged(void);
#if defined(INCLUDE_FROM_CATERINA_C) || defined(__DOXYGEN__)
#if !defined(NO_BLOCK_SUPPORT)
static void ReadWriteMemoryBlock(const uint8_t Command);
#endif
static uint8_t FetchNextCommandByte(void);
static void WriteNextResponseByte(const uint8_t Response);
#endif
#endif

View File

@ -0,0 +1,262 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** Device descriptor structure. This descriptor, located in SRAM memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
const USB_Descriptor_Device_t DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(01.10),
.Class = CDC_CSCP_CDCClass,
.SubClass = CDC_CSCP_NoSpecificSubclass,
.Protocol = CDC_CSCP_NoSpecificProtocol,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = DEVICE_VID,
.ProductID = DEVICE_PID,
.ReleaseNumber = VERSION_BCD(00.01),
.ManufacturerStrIndex = 0x02,
.ProductStrIndex = 0x01,
.SerialNumStrIndex = NO_DESCRIPTOR,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in SRAM memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
const USB_Descriptor_Configuration_t ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t),
.TotalInterfaces = 2,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = USB_CONFIG_ATTR_BUSPOWERED,
.MaxPowerConsumption = USB_CONFIG_POWER_MA(100)
},
.CDC_CCI_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 0,
.AlternateSetting = 0,
.TotalEndpoints = 1,
.Class = CDC_CSCP_CDCClass,
.SubClass = CDC_CSCP_ACMSubclass,
.Protocol = CDC_CSCP_ATCommandProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.CDC_Functional_Header =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalHeader_t), .Type = DTYPE_CSInterface},
.Subtype = 0x00,
.CDCSpecification = VERSION_BCD(01.10),
},
.CDC_Functional_ACM =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalACM_t), .Type = DTYPE_CSInterface},
.Subtype = 0x02,
.Capabilities = 0x04,
},
.CDC_Functional_Union =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalUnion_t), .Type = DTYPE_CSInterface},
.Subtype = 0x06,
.MasterInterfaceNumber = 0,
.SlaveInterfaceNumber = 1,
},
.CDC_NotificationEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_IN | CDC_NOTIFICATION_EPNUM),
.Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_NOTIFICATION_EPSIZE,
.PollingIntervalMS = 0xFF
},
.CDC_DCI_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 1,
.AlternateSetting = 0,
.TotalEndpoints = 2,
.Class = CDC_CSCP_CDCDataClass,
.SubClass = CDC_CSCP_NoDataSubclass,
.Protocol = CDC_CSCP_NoDataProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.CDC_DataOutEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_OUT | CDC_RX_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_TXRX_EPSIZE,
.PollingIntervalMS = 0x01
},
.CDC_DataInEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_IN | CDC_TX_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_TXRX_EPSIZE,
.PollingIntervalMS = 0x01
}
};
/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
const USB_Descriptor_String_t LanguageString =
{
.Header = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},
.UnicodeString = {LANGUAGE_ID_ENG}
};
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
const USB_Descriptor_String_t ProductString =
{
.Header = {.Size = USB_STRING_LEN(16), .Type = DTYPE_String},
#if DEVICE_PID == 0x0036
.UnicodeString = L"Arduino Leonardo"
#else
.UnicodeString = L"USB IO board "
#endif
};
const USB_Descriptor_String_t ManufNameString =
{
.Header = {.Size = USB_STRING_LEN(11), .Type = DTYPE_String},
#if DEVICE_VID == 0x2341
.UnicodeString = L"Arduino LLC"
#else
.UnicodeString = L"Unknown "
#endif
};
/** This function is called by the library when in device mode, and must be overridden (see LUFA library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
const void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = &DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = &ConfigurationDescriptor;
Size = sizeof(USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
if (!(DescriptorNumber))
{
Address = &LanguageString;
Size = LanguageString.Header.Size;
}
else if (DescriptorNumber == DeviceDescriptor.ProductStrIndex)
{
Address = &ProductString;
Size = ProductString.Header.Size;
} else if (DescriptorNumber == DeviceDescriptor.ManufacturerStrIndex)
{
Address = &ManufNameString;
Size = ManufNameString.Header.Size;
}
break;
}
*DescriptorAddress = Address;
return Size;
}

View File

@ -0,0 +1,139 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
#if defined(__AVR_AT90USB1287__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x97
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB647__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x96
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB1286__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x97
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB646__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x96
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_ATmega32U6__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x88
#elif defined(__AVR_ATmega32U4__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x87
#elif defined(__AVR_ATmega16U4__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x88
#elif defined(__AVR_ATmega32U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x8A
#elif defined(__AVR_ATmega16U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x89
#elif defined(__AVR_AT90USB162__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_ATmega8U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x93
#define AVR_SIGNATURE_3 0x89
#elif defined(__AVR_AT90USB82__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x82
#else
#error The selected AVR part is not currently supported by this bootloader.
#endif
/** Endpoint number for the CDC control interface event notification endpoint. */
#define CDC_NOTIFICATION_EPNUM 2
/** Endpoint number for the CDC data interface TX (data IN) endpoint. */
#define CDC_TX_EPNUM 3
/** Endpoint number for the CDC data interface RX (data OUT) endpoint. */
#define CDC_RX_EPNUM 4
/** Size of the CDC data interface TX and RX data endpoint banks, in bytes. */
#define CDC_TXRX_EPSIZE 16
/** Size of the CDC control interface notification endpoint bank, in bytes. */
#define CDC_NOTIFICATION_EPSIZE 8
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
// CDC Control Interface
USB_Descriptor_Interface_t CDC_CCI_Interface;
USB_CDC_Descriptor_FunctionalHeader_t CDC_Functional_Header;
USB_CDC_Descriptor_FunctionalACM_t CDC_Functional_ACM;
USB_CDC_Descriptor_FunctionalUnion_t CDC_Functional_Union;
USB_Descriptor_Endpoint_t CDC_NotificationEndpoint;
// CDC Data Interface
USB_Descriptor_Interface_t CDC_DCI_Interface;
USB_Descriptor_Endpoint_t CDC_DataOutEndpoint;
USB_Descriptor_Endpoint_t CDC_DataInEndpoint;
} USB_Descriptor_Configuration_t;
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3);
#endif

View File

@ -0,0 +1,728 @@
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, J<>rg Wunsch, et al.
# >> Modified for use with the LUFA project. <<
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
# Dean Camera
# Opendous Inc.
# Denver Gingerich
#
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings below first!
#
# make doxygen = Generate DoxyGen documentation for the project (must have
# DoxyGen installed)
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# USB vendor ID (VID)
# official Arduino LLC VID
# VID = 0x2341
# USB product ID (PID)
# official Leonardo PID
# PID = 0x0036
# MCU name
MCU = atmega32u4
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Target board (see library "Board Types" documentation, NONE for projects not requiring
# LUFA board drivers). If USER is selected, put custom board drivers in a directory called
# "Board" inside the application directory.
BOARD = USER
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Starting byte address of the bootloader, as a byte address - computed via the formula
# BOOT_START = ((FLASH_SIZE_KB - BOOT_SECTION_SIZE_KB) * 1024)
#
# Note that the bootloader size and start address given in AVRStudio is in words and not
# bytes, and so will need to be doubled to obtain the byte address needed by AVR-GCC.
FLASH_SIZE_KB = 32
BOOT_SECTION_SIZE_KB = 4
BOOT_START = 0x$(shell echo "obase=16; ($(FLASH_SIZE_KB) - $(BOOT_SECTION_SIZE_KB)) * 1024" | bc)
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# Target file name (without extension).
TARGET = Caterina
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = .
# Path to the LUFA library
LUFA_PATH = ../../../../../LUFA-111009
# LUFA library compile-time options and predefined tokens
LUFA_OPTS = -D USB_DEVICE_ONLY
LUFA_OPTS += -D DEVICE_STATE_AS_GPIOR=0
LUFA_OPTS += -D ORDERED_EP_CONFIG
LUFA_OPTS += -D FIXED_CONTROL_ENDPOINT_SIZE=8
LUFA_OPTS += -D FIXED_NUM_CONFIGURATIONS=1
LUFA_OPTS += -D USE_RAM_DESCRIPTORS
LUFA_OPTS += -D USE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
LUFA_OPTS += -D NO_INTERNAL_SERIAL
LUFA_OPTS += -D NO_DEVICE_SELF_POWER
LUFA_OPTS += -D NO_DEVICE_REMOTE_WAKEUP
LUFA_OPTS += -D NO_SOF_EVENTS
#LUFA_OPTS += -D NO_BLOCK_SUPPORT
#LUFA_OPTS += -D NO_EEPROM_BYTE_SUPPORT
#LUFA_OPTS += -D NO_FLASH_BYTE_SUPPORT
LUFA_OPTS += -D NO_LOCK_BYTE_WRITE_SUPPORT
# Create the LUFA source path variables by including the LUFA root makefile
include $(LUFA_PATH)/LUFA/makefile
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
Descriptors.c \
$(LUFA_SRC_USB) \
# List C++ source files here. (C dependencies are automatically generated.)
CPPSRC =
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS = $(LUFA_PATH)/
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=c99
# Place -D or -U options here for C sources
CDEFS = -DF_CPU=$(F_CPU)UL
CDEFS += -DF_USB=$(F_USB)UL
CDEFS += -DBOARD=BOARD_$(BOARD) -DARCH=ARCH_$(ARCH)
CDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CDEFS += -DDEVICE_VID=$(VID)UL
CDEFS += -DDEVICE_PID=$(PID)UL
CDEFS += $(LUFA_OPTS)
# Place -D or -U options here for ASM sources
ADEFS = -DF_CPU=$(F_CPU)
ADEFS += -DF_USB=$(F_USB)UL
ADEFS += -DBOARD=BOARD_$(BOARD)
ADEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
ADEFS += $(LUFA_OPTS)
# Place -D or -U options here for C++ sources
CPPDEFS = -DF_CPU=$(F_CPU)UL
CPPDEFS += -DF_USB=$(F_USB)UL
CPPDEFS += -DBOARD=BOARD_$(BOARD)
CPPDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CPPDEFS += $(LUFA_OPTS)
#CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS
#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char
CFLAGS += -funsigned-bitfields
CFLAGS += -ffunction-sections
CFLAGS += -fno-inline-small-functions
CFLAGS += -fpack-struct
CFLAGS += -fshort-enums
CFLAGS += -fno-strict-aliasing
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
#CFLAGS += -mshort-calls
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wundef
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(<:%.c=$(OBJDIR)/%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)
#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CPPFLAGS = -g$(DEBUG)
CPPFLAGS += $(CPPDEFS)
CPPFLAGS += -O$(OPT)
CPPFLAGS += -funsigned-char
CPPFLAGS += -funsigned-bitfields
CPPFLAGS += -fpack-struct
CPPFLAGS += -fshort-enums
CPPFLAGS += -fno-exceptions
CPPFLAGS += -Wall
CPPFLAGS += -Wundef
#CPPFLAGS += -mshort-calls
#CPPFLAGS += -fno-unit-at-a-time
#CPPFLAGS += -Wstrict-prototypes
#CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(<:%.cpp=$(OBJDIR)/%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = $(ADEFS) -Wa,-adhlns=$(<:%.S=$(OBJDIR)/%.lst),-gstabs,--listing-cont-lines=100
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
# List any extra directories to look for libraries here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRALIBDIRS =
#---------------- External Memory Options ----------------
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
EXTMEMOPTS =
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += -Wl,--section-start=.text=$(BOOT_START)
LDFLAGS += -Wl,--relax
LDFLAGS += -Wl,--gc-sections
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x
#---------------- Programming Options (avrdude) ----------------
# Programming hardware
# Type: avrdude -c ?
# to get a full listing.
#
AVRDUDE_PROGRAMMER = avrispmkII
# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = usb
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)
#---------------- Debugging Options ----------------
# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)
# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight
# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr
# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit
# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1
# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242
# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost
#============================================================================
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
AR = avr-ar rcs
NM = avr-nm
AVRDUDE = /Applications/avrdude -C /Applications/avrdude.conf -B 1
REMOVE = rm -f
REMOVEDIR = rm -rf
COPY = cp
WINSHELL = cmd
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling C:
MSG_COMPILING_CPP = Compiling C++:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
# Define all object files.
OBJ = $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
# Define all listing files.
LST = $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
# Compiler flags to generate dependency files.
GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_CPPFLAGS = -mmcu=$(MCU) -I. -x c++ $(CPPFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: begin gccversion sizebefore build sizeafter end
# Change the build target to build a HEX file or a library.
build: elf hex eep lss sym
#build: lib
elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
end:
@echo $(MSG_END)
@echo
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) $(MCU_FLAG) $(FORMAT_FLAG) $(TARGET).elf
MCU_FLAG = $(shell $(SIZE) --help | grep -- --mcu > /dev/null && echo --mcu=$(MCU) )
FORMAT_FLAG = $(shell $(SIZE) --help | grep -- --format=.*avr > /dev/null && echo --format=avr )
sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi
sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi
# Display compiler version information.
gccversion :
@$(CC) --version
# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)
debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause
else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT = $(OBJCOPY) --debugging
COFFCONVERT += --change-section-address .data-0x800000
COFFCONVERT += --change-section-address .bss-0x800000
COFFCONVERT += --change-section-address .noinit-0x800000
COFFCONVERT += --change-section-address .eeprom-0x810000
coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom -R .fuse -R .lock $< $@
%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0
# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -S -z $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@
# Create library from object files.
.SECONDARY : $(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@echo
@echo $(MSG_CREATING_LIBRARY) $@
$(AR) $@ $(OBJ)
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
$(OBJDIR)/%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create object files from C++ source files.
$(OBJDIR)/%.o : %.cpp
@echo
@echo $(MSG_COMPILING_CPP) $<
$(CC) -c $(ALL_CPPFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C++ source files.
%.s : %.cpp
$(CC) -S $(ALL_CPPFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
$(OBJDIR)/%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@
# Target: clean project.
clean: begin clean_list end
clean_list :
@echo
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVEDIR) .dep
doxygen:
@echo Generating Project Documentation \($(TARGET)\)...
@doxygen Doxygen.conf
@echo Documentation Generation Complete.
clean_doxygen:
rm -rf Documentation
checksource:
@for f in $(SRC) $(CPPSRC) $(ASRC); do \
if [ -f $$f ]; then \
echo "Found Source File: $$f" ; \
else \
echo "Source File Not Found: $$f" ; \
fi; done
# Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null)
# Include the dependency files.
-include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)
# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff doxygen clean \
clean_list clean_doxygen program debug gdb-config checksource

View File

@ -1,115 +0,0 @@
:1078000011241FBECFEFDAE0DEBFCDBFFFC04101C4
:1078100042144505560455026403740300001E9586
:1078200087020110030000C18081C106C0FF0A0069
:107830000CA10185037508150026FF00954009017C
:107840008102954009029102C0040309041A033021
:1078500000300030003000300030003000300031A7
:1078600000370030003100380341007200640075B9
:107870000069006E006F0020004C0065006F006E14
:10788000006100720064006F00200062006F006FF2
:107890000074006C006F00610064006500720018E5
:1078A00003410072006400750069006E006F0020E3
:1078B000004C004C00430012010002020000404155
:1078C0002334000001000203011201000200000045
:1078D0004041233400000100020301090264000357
:1078E00001008032080B00020202010009040000BE
:1078F0000102020000052400100105240101010419
:107900002402020524060001070581031000400936
:10791000040100020A0000000705020240000007FF
:107920000583024000000904020001030000000971
:107930002101010001221E000705840340004000D0
:1079400020918A0130918B012C5F3F4F30938B0146
:1079500020938A01C901892F99278695982F803411
:1079600018F08FE7891B982F990F921710F44798FA
:107970000895479A08955D9A289A81E08093E000DF
:107980001092E200EE27FF27099408950F931F93AA
:10799000CF93DF93982FEB01042F10E088E760303E
:1079A000780730F411E083E0FB0180935700E895FD
:1079B000892F68E071E0402FF8D0112311F107B64C
:1079C00000FCFDCF402F4695FE01A8E0B1E020E08D
:1079D00031E009C08D919D910C0130935700E895DD
:1079E000112432962F5F2417A8F385E0FE018093BF
:1079F0005700E89507B600FCFDCF81E18093570062
:107A0000E895DF91CF911F910F91089588E10FB60E
:107A1000F89480936000109260000FBE5D9A289ADF
:107A200047983F9A209A559A90E890936100109257
:107A3000610081E885BF95BF9FD084E18093880174
:107A400080E180938901E0E0F0E0859194918F5F7F
:107A50009F4F19F081E080938F01EE24FF24BB2417
:107A6000B39454EFC52E51E0D52E13D2082F8EE0DB
:107A700098E7FC012491319602964491201711F069
:107A80002223B9F7109291011092900182E068E0F0
:107A900071E08BD0013479F4609108016058633053
:107AA00028F0683111F064E001C063E0C62FD0E037
:107AB000CF5DD7480EC0063571F480910801803340
:107AC00011F011E022C080910A01C82FD0E0C25EFF
:107AD000D74811E022C0053721F413E0CEE1D8E702
:107AE0001CC0053539F4E0900801F0900901EE0C56
:107AF000FF1C0AC0043631F482E0B701409109014D
:107B000045DF02C0043721F010E0C5E2D8E705C028
:107B100010910901E701E10EF11CBBD18097B1F48E
:107B200083E068E871E041E050E059D0112329F08A
:107B3000412F50E083E8BE0152D083E469E871E050
:107B400041E050E04CD0013509F08FCFD092910147
:107B5000C0929001B0928F01EE24FF2486CFFC01E9
:107B6000289884E680938D0104C08091F100819370
:107B700061506623D1F708951092910110929001FF
:107B800010928E0110928F0181E08093D70080EADD
:107B90008093D80082E189BD09B400FEFDCF80E961
:107BA0008093D8001092E0000895FB018093E900D3
:107BB00024E69BE611C08091E80085FFFCCF289861
:107BC00020938D018091F10081938091E80085FDE3
:107BD00002C09093E8004150442369F70895982F1C
:107BE000FB01282F207287708093E90064E63AE356
:107BF00017C08091E80085FFFCCF97FF02C08491F9
:107C000001C080813196211180E05D9860938C01E4
:107C10008093F1008091E80085FD02C03093E80078
:107C2000415050408FEF4F3F580719F796FF03C060
:107C30008AE38093E800089580919301813299F45A
:107C40005D9884E680938C0120E030E003C0808161
:107C50008093F100F901E050FF4F2F5F3F4F283034
:107C60003105A9F714C0803261F48091E80082FFE9
:107C7000FCCF80E091E067E072DF8BEF8093E8005B
:107C800006C0823221F4809194018093070181E043
:107C9000089520919501223289F1213081F480915B
:107CA000980190919901089711F420939A0180917D
:107CB0009A01882309F04FC0E9ECF8E74EC0223062
:107CC00021F484E6EBEDF8E71CC0233009F041C055
:107CD00080919401882319F4E9E4F8E73EC08230EA
:107CE00019F4E7E6F8E739C0833019F4EDE4F8E772
:107CF00034C0813071F5EFE9F8E72FC081E0EBE2A5
:107D0000F8E790919801382F981708F4392F90913F
:107D10008C0120E04EEF8091E8008570E1F38091C6
:107D2000E80082FD12C02F5F84915D988093F1007E
:107D3000822F8F7311F44093E800319694E6231755
:107D400050F390938C0181E0089590938C0180E032
:107D5000089580E00895E7EBF8E78491D2CF109280
:107D6000E9008091E80083FF61C082E991E068E06A
:107D7000F6DE82EF8093E8008091920187FF05C0D4
:107D80008091E80080FFFCCF03C08EEF8093E80075
:107D900080919301853051F48091E80080FFFCCF01
:107DA0008091940180688093E30039C08930E1F4C8
:107DB0008091940180938E01E7E2F8E791E031E051
:107DC00026E39093E9003093EB0084918093EC00DC
:107DD0002093ED009F5F3196953099F78EE7809361
:107DE000EA001092EA001BC0883049F490918E019D
:107DF0005D9884E680938C019093F10010C08823F5
:107E000039F45D9884E680938C011092F10007C0EC
:107E1000863011F43EDF01C00FDF882321F08EEFA2
:107E20008093E800089581E28093EB0008958091AB
:107E3000E1001092E100282F83FF0CC01092E900AE
:107E400081E08093EB001092EC0082E38093ED00E0
:107E500010928E0122FF1CC080918C01882331F08A
:107E6000815080938C01882309F45D9A80918D0163
:107E7000882331F0815080938D01882309F4289A5A
:107E800080918F01882321F410929101109290012A
:107E900008951F93CF93DF9312E0C0E9D1E05FDF35
:107EA000C6DF1093E9008091E80085FF13C0289891
:107EB00084E680938D019091F1008091E80085FD2A
:107EC00003C08BE68093E800892F90E0DF91CF918B
:107ED0001F91089580919001909191010197909345
:107EE0009101809390018091900190919101892B53
:0E7EF00009F441DDCE010197F1F722DDD0CF7C
:087EFE0000E10000000000009B
:040000030000780081
:00000001FF

View File

@ -1,105 +0,0 @@
###############################################################################
# Makefile for DiskLoader
###############################################################################
## General Flags
PROJECT = DiskLoader
TARGET = DiskLoader.elf
CC = avr-gcc
# BOARD2
MCU = atmega32u4
AVR_FREQ = 16000000L
# Specify the Arduino model using the assigned PID. This is used by Descriptors.c
# to set PID and product descriptor string
# Arduino Leonardo PID
ARDUINO_MODEL_PID = 0x0034
# Arduino Micro PID
#ARDUINO_MODEL_PID = 0x0035
# Change if your programmer is different
AVRDUDE_PROGRAMMER = avrispmkII
AVRDUDE_PORT = usb
# program name should not be changed...
PROGRAM = DiskLoader
AVRDUDE = avrdude
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) -p $(MCU)
## Options common to compile, link and assembly rules
COMMON = -mmcu=$(MCU)
override CFLAGS = -g -Wall -Os -mmcu=$(MCU) -DF_CPU=$(AVR_FREQ) -DARDUINO_MODEL_PID=$(ARDUINO_MODEL_PID) $(DEFS) -ffunction-sections -gdwarf-2 -fdata-sections -fno-split-wide-types
## Assembly specific flags
ASMFLAGS = $(COMMON)
ASMFLAGS += $(CFLAGS)
ASMFLAGS += -x assembler-with-cpp -Wa,-gdwarf2
## Linker flags
LDFLAGS = $(COMMON)
LDFLAGS += -Wl,-gc-sections,-Map=DiskLoader.map,--section-start=.text=0x7800,--relax
LDFLAGS += -nodefaultlibs -nostartfiles
## Intel Hex file production flags
HEX_EEPROM_FLAGS = -j .eeprom
HEX_EEPROM_FLAGS += --set-section-flags=.eeprom="alloc,load"
HEX_EEPROM_FLAGS += --change-section-lma .eeprom=0 --no-change-warnings
## Objects explicitly added by the user
LINKONLYOBJECTS =
MODULES := .
SRC_DIR := $(addprefix src/,$(MODULES))
BUILD_DIR := $(addprefix build/,$(MODULES))
SRC := $(foreach sdir,$(SRC_DIR),$(wildcard $(sdir)/*.cpp))
OBJ := $(patsubst src/%.cpp,build/%.o,$(SRC))
DEP := $(OBJ:%.o=%.d)
INCLUDES := $(addprefix -I,$(SRC_DIR))
vpath %.cpp $(SRC_DIR)
.PHONY: all checkdirs clean
all: checkdirs $(TARGET) DiskLoader.hex DiskLoader.lss size
-include $(DEP)
checkdirs: $(BUILD_DIR)
$(BUILD_DIR):
@mkdir -p $@
clean:
@rm -rf build/
@rm -f *.hex
@rm -f *.elf
@rm -f *.lss
@rm -f *.map
define make-goal
$1/%.o: %.cpp
$(CC) $(INCLUDES) $(CFLAGS) -c $$< -MD -o $$@
endef
$(foreach bdir,$(BUILD_DIR),$(eval $(call make-goal,$(bdir))))
$(TARGET): $(OBJ)
$(CC) $(LDFLAGS) $(LINKONLYOBJECTS) $(LIBDIRS) $(LIBS) $^ -o $@
%.hex: $(TARGET)
avr-objcopy -O ihex $(HEX_FLASH_FLAGS) $< $@
%.lss: $(TARGET)
avr-objdump -h -S $< > $@
size: $(TARGET)
@echo
# @avr-size -C --mcu=${MCU} ${TARGET}.elf
program: $(TARGET).hex
$(AVRDUDE) $(AVRDUDE_FLAGS) -B 5 -u -U flash:w:$(TARGET).hex

View File

@ -1,239 +0,0 @@
#include "Platform.h"
// This bootloader creates a composite Serial device
//
// The serial interface supports a STK500v1 protocol that is very similar to optiboot
//
// The bootloader will timeout and start the firmware after a few hundred milliseconds
// if a usb connection is not detected.
//
// The tweakier code is to keep the bootloader below 2k (no interrupt table, for example)
extern "C"
void entrypoint(void) __attribute__ ((naked)) __attribute__ ((section (".vectors")));
void entrypoint(void)
{
asm volatile (
"eor r1, r1\n" // Zero register
"out 0x3F, r1\n" // SREG
"ldi r28, 0xFF\n"
"ldi r29, 0x0A\n"
"out 0x3E, r29\n" // SPH
"out 0x3D, r28\n" // SPL
"rjmp main" // Stack is all set up, start the main code
::);
}
u8 _flashbuf[128];
u8 _inSync;
u8 _ok;
extern volatile u8 _ejected;
extern volatile u16 _timeout;
void Program(u8 ep, u16 page, u8 count)
{
u8 write = page < 30*1024; // Don't write over firmware please
if (write)
boot_page_erase(page);
Recv(ep,_flashbuf,count); // Read while page is erasing
if (!write)
return;
boot_spm_busy_wait(); // Wait until the memory is erased.
count >>= 1;
u16* p = (u16*)page;
u16* b = (u16*)_flashbuf;
for (u8 i = 0; i < count; i++)
boot_page_fill(p++, b[i]);
boot_page_write(page);
boot_spm_busy_wait();
boot_rww_enable ();
}
int USBGetChar();
#define getch USBGetChar
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10
#define STK_OK 0x10
#define STK_INSYNC 0x14 // ' '
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
extern const u8 _readSize[] PROGMEM;
const u8 _readSize[] =
{
STK_GET_PARAMETER, 1,
STK_SET_DEVICE, 20,
STK_SET_DEVICE_EXT, 5,
STK_UNIVERSAL, 4,
STK_LOAD_ADDRESS, 2,
STK_PROG_PAGE, 3,
STK_READ_PAGE, 3,
0,0
};
extern const u8 _consts[] PROGMEM;
const u8 _consts[] =
{
SIGNATURE_0,
SIGNATURE_1,
SIGNATURE_2,
HW_VER, // Hardware version
SW_MAJOR, // Software major version
SW_MINOR, // Software minor version
0x03, // Unknown but seems to be required by avr studio 3.56
0x00, //
};
void USBInit(void);
int main(void) __attribute__ ((naked));
// STK500v1 main loop, very similar to optiboot in protocol and implementation
int main()
{
wdt_disable();
TXLED0;
RXLED0;
LED0;
BOARD_INIT();
USBInit();
_inSync = STK_INSYNC;
_ok = STK_OK;
if (pgm_read_word(0) != -1)
_ejected = 1;
for(;;)
{
u8* packet = _flashbuf;
u16 address = 0;
for (;;)
{
u8 cmd = getch();
// Read packet contents
u8 len;
const u8* rs = _readSize;
for(;;)
{
u8 c = pgm_read_byte(rs++);
len = pgm_read_byte(rs++);
if (c == cmd || c == 0)
break;
}
_timeout = 0;
// Read params
Recv(CDC_RX,packet,len);
// Send a response
u8 send = 0;
const u8* pgm = _consts+7; // 0
if (STK_GET_PARAMETER == cmd)
{
u8 i = packet[0] - 0x80;
if (i > 2)
i = (i == 0x18) ? 3 : 4; // 0x80:HW_VER,0x81:SW_MAJOR,0x82:SW_MINOR,0x18:3 or 0
pgm = _consts + i + 3;
send = 1;
}
else if (STK_UNIVERSAL == cmd)
{
if (packet[0] == 0x30)
pgm = _consts + packet[2]; // read signature
send = 1;
}
// Read signature bytes
else if (STK_READ_SIGN == cmd)
{
pgm = _consts;
send = 3;
}
else if (STK_LOAD_ADDRESS == cmd)
{
address = *((u16*)packet); // word addresses
address += address;
}
else if (STK_PROG_PAGE == cmd)
{
Program(CDC_RX,address,packet[1]);
}
else if (STK_READ_PAGE == cmd)
{
send = packet[1];
pgm = (const u8*)address;
address += send; // not sure of this is required
}
// Check sync
if (getch() != ' ')
break;
Transfer(CDC_TX,&_inSync,1);
// Send result
if (send)
Transfer(CDC_TX|TRANSFER_PGM,pgm,send); // All from pgm memory
// Send ok
Transfer(CDC_TX|TRANSFER_RELEASE,&_ok,1);
if (cmd == 'Q')
break;
}
_timeout = 500; // wait a moment before exiting the bootloader - may need to finish responding to 'Q' for example
_ejected = 1;
}
}
// Nice breathing LED indicates we are in the firmware
u16 _pulse;
void LEDPulse()
{
_pulse += 4;
u8 p = _pulse >> 9;
if (p > 63)
p = 127-p;
p += p;
if (((u8)_pulse) > p)
LED0;
else
LED1;
}
void Reboot()
{
TXLED0; // switch off the RX and TX LEDs before starting the user sketch
RXLED0;
UDCON = 1; // Detatch USB
UDIEN = 0;
asm volatile ( // Reset vector to run firmware
"clr r30\n"
"clr r31\n"
"ijmp\n"
::);
}

View File

@ -1,51 +0,0 @@
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/boot.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define DISABLE_JTAG() MCUCR = (1 << JTD) | (1 << IVCE) | (0 << PUD); MCUCR = (1 << JTD) | (0 << IVSEL) | (0 << IVCE) | (0 << PUD);
#define USB_PID_LEONARDO 0x0034
#define USB_PID_MICRO 0x0035
#define USB_VID 0x2341 // arduino LLC vid
#define USB_PID ARDUINO_MODEL_PID // passed in by Makefile - 0x0034 for Leonardo, 0x0035 for MIcro
#define USB_SERIAL_STRING '0','0','0','0','0','0','0','0','1','7','0','1'
#define OEM_NAME 'l','e','o','n','a','r','d','o' // 8 chars
#define BOARD_INIT() DDRC |= (1<<7); DDRB |= (1<<0); DDRD |= (1<<5); CPU_PRESCALE(0); DISABLE_JTAG();
#define LED0 PORTC &= ~(1<<7)
#define LED1 PORTC |= (1<<7)
#define TXLED0 PORTD |= (1<<5)
#define TXLED1 PORTD &= ~(1<<5)
#define RXLED0 PORTB |= (1<<0)
#define RXLED1 PORTB &= ~(1<<0)
#define TRANSFER_PGM 0x80
#define TRANSFER_RELEASE 0x40
#define TRANSFER_ZERO 0x20
void Transfer(u8 ep, const u8* data, int len);
void Recv(u8 ep, u8* dst, u8 len);
void Program(u8 ep, u16 page, u8 count);
#define CDC_ENABLED
#include "USBCore.h"
#include "USBDesc.h"

View File

@ -1,510 +0,0 @@
/* Copyright (c) 2010, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#define CDC_TX CDC_ENDPOINT_IN
#define CDC_RX CDC_ENDPOINT_OUT
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */
void Reboot();
//==================================================================
//==================================================================
typedef struct
{
u32 dwDTERate;
u8 bCharFormat;
u8 bParityType;
u8 bDataBits;
u8 lineState;
} LineInfo;
static volatile LineInfo _usbLineInfo = { 57600, 0x00, 0x00, 0x00, 0x00 };
//==================================================================
//==================================================================
// 4 bytes of RAM
volatile u8 _usbConfiguration;
volatile u8 _ejected;
volatile u16 _timeout;
static inline void WaitIN(void)
{
while (!(UEINTX & (1<<TXINI)));
}
static inline void ClearIN(void)
{
UEINTX = ~(1<<TXINI);
}
static inline void WaitOUT(void)
{
while (!(UEINTX & (1<<RXOUTI)))
;
}
static inline u8 WaitForINOrOUT()
{
while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
;
return (UEINTX & (1<<RXOUTI)) == 0;
}
static inline void ClearOUT(void)
{
UEINTX = ~(1<<RXOUTI);
}
static
void Send(volatile const u8* data, u8 count)
{
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
while (count--)
UEDATX = *data++;
}
void Recv(volatile u8* data, u8 count)
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
while (count--)
*data++ = UEDATX;
}
static inline u8 Recv8()
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
return UEDATX;
}
static inline void Send8(u8 d)
{
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
UEDATX = d;
}
static inline void SetEP(u8 ep)
{
UENUM = ep;
}
static inline u8 FifoByteCount()
{
return UEBCLX;
}
static inline u8 ReceivedSetupInt()
{
return UEINTX & (1<<RXSTPI);
}
static inline void ClearSetupInt()
{
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}
static inline void Stall()
{
UECONX = (1<<STALLRQ) | (1<<EPEN);
}
static inline u8 ReadWriteAllowed()
{
return UEINTX & (1<<RWAL);
}
static inline u8 Stalled()
{
return UEINTX & (1<<STALLEDI);
}
static inline u8 FifoFree()
{
return UEINTX & (1<<FIFOCON);
}
static inline void ReleaseRX()
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
static inline void ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
static inline u8 FrameNumber()
{
return UDFNUML;
}
//==================================================================
//==================================================================
#define EP_SINGLE_64 0x32 // EP0
#define EP_DOUBLE_64 0x36 // Other endpoints
static void InitEP(u8 index, u8 type, u8 size)
{
UENUM = index;
UECONX = 1;
UECFG0X = type;
UECFG1X = size;
}
// API
void USBInit(void)
{
_timeout = 0;
_usbConfiguration = 0;
_ejected = 0;
UHWCON = 0x01; // power internal reg (don't need this?)
USBCON = (1<<USBE)|(1<<FRZCLK); // clock frozen, usb enabled
PLLCSR = 0x12; // Need 16 MHz xtal
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
;
USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDCON = 0; // enable attach resistor
}
u8 USBGetConfiguration(void)
{
return _usbConfiguration;
}
u8 HasData(u8 ep)
{
SetEP(ep);
return ReadWriteAllowed(); // count in fifo
}
int USBGetChar();
void Recv(u8 ep, u8* dst, u8 len)
{
SetEP(ep);
while (len--)
{
while (!ReadWriteAllowed())
;
*dst++ = Recv8();
if (!ReadWriteAllowed()) // release empty buffer
ReleaseRX();
}
}
// Transmit a packet to endpoint
void Transfer(u8 ep, const u8* data, int len)
{
u8 zero = ep & TRANSFER_ZERO;
SetEP(ep & 7);
while (len--)
{
while (!ReadWriteAllowed())
; // TODO Check for STALL etc
u8 d = (ep & TRANSFER_PGM) ? pgm_read_byte(data) : data[0];
data++;
if (zero)
d = 0;
Send8(d);
if (!ReadWriteAllowed())
ReleaseTX();
}
if (ep & TRANSFER_RELEASE)
ReleaseTX();
}
extern const u8 _initEndpoints[] PROGMEM;
const u8 _initEndpoints[] =
{
0,
#ifdef CDC_ENABLED
EP_TYPE_INTERRUPT_IN, // CDC_ENDPOINT_ACM
EP_TYPE_BULK_OUT, // CDC_ENDPOINT_OUT
EP_TYPE_BULK_IN, // CDC_ENDPOINT_IN
#endif
EP_TYPE_INTERRUPT_IN, // HID_ENDPOINT_INT
};
static void InitEndpoints()
{
for (u8 i = 1; i < sizeof(_initEndpoints); i++)
{
UENUM = i;
UECONX = 1;
UECFG0X = pgm_read_byte(_initEndpoints+i);
UECFG1X = EP_DOUBLE_64;
}
UERST = 0x7E; // And reset them
UERST = 0;
}
typedef struct
{
u8 bmRequestType;
u8 bRequest;
u8 wValueL;
u8 wValueH;
u16 wIndex;
u16 wLength;
} Setup;
Setup _setup;
//bool USBHook(Setup& setup)
bool USBHook()
{
Setup& setup = _setup;
u8 r = setup.bRequest;
// CDC Requests
if (CDC_GET_LINE_CODING == r)
{
Send((const volatile u8*)&_usbLineInfo,7);
}
else if (CDC_SET_LINE_CODING == r)
{
WaitOUT();
Recv((volatile u8*)&_usbLineInfo,7);
ClearOUT();
}
else if (CDC_SET_CONTROL_LINE_STATE == r)
{
_usbLineInfo.lineState = setup.wValueL;
}
return true;
}
extern const u8 _rawHID[] PROGMEM;
#define LSB(_x) ((_x) & 0xFF)
#define MSB(_x) ((_x) >> 8)
#define RAWHID_USAGE_PAGE 0xFFC0
#define RAWHID_USAGE 0x0C00
#define RAWHID_TX_SIZE 64
#define RAWHID_RX_SIZE 64
const u8 _rawHID[] =
{
// RAW HID
0x06, LSB(RAWHID_USAGE_PAGE), MSB(RAWHID_USAGE_PAGE), // 30
0x0A, LSB(RAWHID_USAGE), MSB(RAWHID_USAGE),
0xA1, 0x01, // Collection 0x01
0x85, 0x03, // REPORT_ID (3)
0x75, 0x08, // report size = 8 bits
0x15, 0x00, // logical minimum = 0
0x26, 0xFF, 0x00, // logical maximum = 255
0x95, 64, // report count TX
0x09, 0x01, // usage
0x81, 0x02, // Input (array)
0x95, 64, // report count RX
0x09, 0x02, // usage
0x91, 0x02, // Output (array)
0xC0 // end collection
};
u8 _cdcComposite = 0;
bool SendDescriptor()
{
Setup& setup = _setup;
u8 desc_length = 0;
const u8* desc_addr = 0;
u8 t = setup.wValueH;
if (0x22 == t)
{
desc_addr = _rawHID;
desc_length = sizeof(desc_length);
} else if (USB_DEVICE_DESCRIPTOR_TYPE == t)
{
if (setup.wLength == 8)
_cdcComposite = 1;
desc_addr = _cdcComposite ? (const u8*)&USB_DeviceDescriptorA : (const u8*)&USB_DeviceDescriptor;
}
else if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
{
desc_addr = (const u8*)&USB_ConfigDescriptor;
desc_length = sizeof(USB_ConfigDescriptor);
}
else if (USB_STRING_DESCRIPTOR_TYPE == t)
{
if (setup.wValueL == 0)
desc_addr = (const u8*)&STRING_LANGUAGE;
else if (setup.wValueL == IPRODUCT)
desc_addr = (const u8*)&STRING_IPRODUCT;
else if (setup.wValueL == ISERIAL)
desc_addr = (const u8*)&STRING_SERIAL;
else if (setup.wValueL == IMANUFACTURER)
desc_addr = (const u8*)&STRING_IMANUFACTURER;
else
return false;
} else
return false;
if (desc_length == 0)
desc_length = pgm_read_byte(desc_addr);
if ((u8)setup.wLength < desc_length) // bit of a cheat limiting to 255 bytes TODO (saved 8 bytes)
desc_length = (u8)setup.wLength;
// Send descriptor
// EP0 is 64 bytes long
// RWAL and FIFOCON don't work on EP0
u8 n = 0;
do
{
if (!WaitForINOrOUT())
return false;
Send8(pgm_read_byte(&desc_addr[n++]));
u8 clr = n & 0x3F;
if (!clr)
ClearIN(); // Fifo is full, release this packet
} while (n < desc_length);
return true;
}
void USBSetupInterrupt()
{
SetEP(0);
if (!ReceivedSetupInt())
return;
Setup& setup = _setup; // global saves ~30 bytes
Recv((u8*)&setup,8);
ClearSetupInt();
if (setup.bmRequestType & DEVICETOHOST)
WaitIN();
else
ClearIN();
bool ok = true;
u8 r = setup.bRequest;
if (SET_ADDRESS == r)
{
WaitIN();
UDADDR = setup.wValueL | (1<<ADDEN);
}
else if (SET_CONFIGURATION == r)
{
_usbConfiguration = setup.wValueL;
InitEndpoints();
}
else if (GET_CONFIGURATION == r)
{
Send8(_usbConfiguration);
}
else if (GET_STATUS == r)
{
Send8(0); // All good as far as I know
}
else if (GET_DESCRIPTOR == r)
{
ok = SendDescriptor();
}
else
{
ok = USBHook();
}
if (ok)
ClearIN();
else
Stall();
}
void USBGeneralInterrupt()
{
u8 udint = UDINT;
UDINT = 0;
// End of Reset
if (udint & (1<<EORSTI))
{
InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
_usbConfiguration = 0; // not configured yet
}
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if (udint & (1<<SOFI))
{
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
if (!_ejected)
_timeout = 0;
}
}
void LEDPulse();
int USBGetChar()
{
for(;;)
{
USBSetupInterrupt();
USBGeneralInterrupt();
// Read a char
if (HasData(CDC_RX))
{
u8 c = Recv8();
if (!ReadWriteAllowed())
ReleaseRX();
return c;
}
if (!--_timeout) {
Reboot(); // USB not connected, run firmware
}
_delay_us(100); // stretch out the bootloader period to about 5 seconds after enumeration
LEDPulse();
}
return -1;
}

View File

@ -1,246 +0,0 @@
// Copyright (c) 2010, Peter Barrett
/*
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#ifndef __USBCORE_H__
#define __USBCORE_H__
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
// bmRequestType
#define HOSTTODEVICE 0x00
#define DEVICETOHOST 0x80
#define STANDARD 0x00
#define CLASS 0x20
#define VENDOR 0x40
#define DEVICE 0x00
#define INTERFACE 0x01
#define ENDPOINT 0x02
#define OTHER 0x03
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
// Descriptors
#define USB_DEVICE_DESC_SIZE 18
#define USB_CONFIGUARTION_DESC_SIZE 9
#define USB_INTERFACE_DESC_SIZE 9
#define USB_ENDPOINT_DESC_SIZE 7
#define USB_DEVICE_DESCRIPTOR_TYPE 1
#define USB_CONFIGURATION_DESCRIPTOR_TYPE 2
#define USB_STRING_DESCRIPTOR_TYPE 3
#define USB_INTERFACE_DESCRIPTOR_TYPE 4
#define USB_ENDPOINT_DESCRIPTOR_TYPE 5
#define USB_DEVICE_CLASS_COMMUNICATIONS 0x02
#define USB_DEVICE_CLASS_HUMAN_INTERFACE 0x03
#define USB_DEVICE_CLASS_STORAGE 0x08
#define USB_DEVICE_CLASS_VENDOR_SPECIFIC 0xFF
#define USB_CONFIG_POWERED_MASK 0x40
#define USB_CONFIG_BUS_POWERED 0x80
#define USB_CONFIG_SELF_POWERED 0xC0
#define USB_CONFIG_REMOTE_WAKEUP 0x20
// bMaxPower in Configuration Descriptor
#define USB_CONFIG_POWER_MA(mA) ((mA)/2)
// bEndpointAddress in Endpoint Descriptor
#define USB_ENDPOINT_DIRECTION_MASK 0x80
#define USB_ENDPOINT_OUT(addr) ((addr) | 0x00)
#define USB_ENDPOINT_IN(addr) ((addr) | 0x80)
#define USB_ENDPOINT_TYPE_MASK 0x03
#define USB_ENDPOINT_TYPE_CONTROL 0x00
#define USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01
#define USB_ENDPOINT_TYPE_BULK 0x02
#define USB_ENDPOINT_TYPE_INTERRUPT 0x03
#define TOBYTES(x) ((x) & 0xFF),(((x) >> 8) & 0xFF)
#define CDC_V1_10 0x0110
#define CDC_COMMUNICATION_INTERFACE_CLASS 0x02
#define CDC_CALL_MANAGEMENT 0x01
#define CDC_ABSTRACT_CONTROL_MODEL 0x02
#define CDC_HEADER 0x00
#define CDC_ABSTRACT_CONTROL_MANAGEMENT 0x02
#define CDC_UNION 0x06
#define CDC_CS_INTERFACE 0x24
#define CDC_CS_ENDPOINT 0x25
#define CDC_DATA_INTERFACE_CLASS 0x0A
// Device
typedef struct {
u8 len; // 18
u8 dtype; // 1 USB_DEVICE_DESCRIPTOR_TYPE
u16 usbVersion; // 0x200
u8 deviceClass;
u8 deviceSubClass;
u8 deviceProtocol;
u8 packetSize0; // Packet 0
u16 idVendor;
u16 idProduct;
u16 deviceVersion; // 0x100
u8 iManufacturer;
u8 iProduct;
u8 iSerialNumber;
u8 bNumConfigurations;
} DeviceDescriptor;
// Config
typedef struct {
u8 len; // 9
u8 dtype; // 2
u16 clen; // total length
u8 numInterfaces;
u8 config;
u8 iconfig;
u8 attributes;
u8 maxPower;
} ConfigDescriptor;
// String
// Interface
typedef struct
{
u8 len; // 9
u8 dtype; // 4
u8 number;
u8 alternate;
u8 numEndpoints;
u8 interfaceClass;
u8 interfaceSubClass;
u8 protocol;
u8 iInterface;
} InterfaceDescriptor;
// Endpoint
typedef struct
{
u8 len; // 7
u8 dtype; // 5
u8 addr;
u8 attr;
u16 packetSize;
u8 interval;
} EndpointDescriptor;
// Interface Association Descriptor
// Used to bind 2 interfaces together in CDC compostite device
typedef struct
{
u8 len; // 8
u8 dtype; // 11
u8 firstInterface;
u8 interfaceCount;
u8 functionClass;
u8 funtionSubClass;
u8 functionProtocol;
u8 iInterface;
} IADDescriptor;
// CDC CS interface descriptor
typedef struct
{
u8 len; // 5
u8 dtype; // 0x24
u8 subtype;
u8 d0;
u8 d1;
} CDCCSInterfaceDescriptor;
typedef struct
{
u8 len; // 4
u8 dtype; // 0x24
u8 subtype;
u8 d0;
} CDCCSInterfaceDescriptor4;
typedef struct
{
IADDescriptor iad; // Only needed on compound device
// Control
InterfaceDescriptor cif; //
CDCCSInterfaceDescriptor header;
CDCCSInterfaceDescriptor callManagement;
CDCCSInterfaceDescriptor4 controlManagement;
CDCCSInterfaceDescriptor functionalDescriptor;
EndpointDescriptor cifin;
// Data
InterfaceDescriptor dif;
EndpointDescriptor in;
EndpointDescriptor out;
} CDCDescriptor;
typedef struct
{
u8 len; // 9
u8 dtype; // 0x21
u8 addr;
u8 versionL; // 0x101
u8 versionH; // 0x101
u8 country;
u8 desctype; // 0x22 report
u8 descLenL;
u8 descLenH;
} HIDDescDescriptor;
typedef struct
{
InterfaceDescriptor hid;
HIDDescDescriptor desc;
EndpointDescriptor in;
} HIDDescriptor;
#define D_DEVICE(_class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs) \
{ 18, 1, 0x200, _class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs }
#define D_CONFIG(_totalLength,_interfaces) \
{ 9, 2, _totalLength,_interfaces, 1, 0, USB_CONFIG_BUS_POWERED, USB_CONFIG_POWER_MA(100) }
#define D_INTERFACE(_n,_numEndpoints,_class,_subClass,_protocol) \
{ 9, 4, _n, 0, _numEndpoints, _class,_subClass, _protocol, 0 }
#define D_ENDPOINT(_addr,_attr,_packetSize, _interval) \
{ 7, 5, _addr,_attr,_packetSize, _interval }
#define D_IAD(_firstInterface, _count, _class, _subClass, _protocol) \
{ 8, 11, _firstInterface, _count, _class, _subClass, _protocol, 0 }
#define D_HIDREPORT(_descriptorLength) \
{ 9, 0x21, 0x1, 0x1, 0, 1, 0x22, _descriptorLength, 0 }
#define D_CDCCS(_subtype,_d0,_d1) { 5, 0x24, _subtype, _d0, _d1 }
#define D_CDCCS4(_subtype,_d0) { 4, 0x24, _subtype, _d0 }
#endif

View File

@ -1,87 +0,0 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
//====================================================================================================
//====================================================================================================
// Actual device descriptors
const u16 STRING_LANGUAGE[2] = {
(3<<8) | (2+2),
0x0409 // English
};
const u16 STRING_SERIAL[13] = {
(3<<8) | (2+2*12),
USB_SERIAL_STRING
};
const u16 STRING_IPRODUCT[28] = {
(3<<8) | (2+2*27),
#if USB_PID == USB_PID_LEONARDO
'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o',' ','b','o','o','t','l','o','a','d','e','r'
#elif USB_PID == USB_PID_MICRO
'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ','b','o','o','t','l','o','a','d','e','r',' ',' ',' '
#endif
};
const u16 STRING_IMANUFACTURER[12] = {
(3<<8) | (2+2*11),
'A','r','d','u','i','n','o',' ','L','L','C'
};
//#ifdef CDC_ENABLED
DeviceDescriptor USB_DeviceDescriptorA = D_DEVICE(0X02,0X00,0X00,64,USB_VID,USB_PID,0x100,0,IPRODUCT,ISERIAL,1);
//#else
DeviceDescriptor USB_DeviceDescriptor = D_DEVICE(0x00,0x00,0x00,64,USB_VID,USB_PID,0x100,0,IPRODUCT,ISERIAL,1);
//#endif
Config USB_ConfigDescriptor =
{
D_CONFIG(sizeof(Config),INTERFACE_COUNT),
#ifdef CDC_ENABLED
// CDC
{
D_IAD(0,2,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,1),
// CDC communication interface
D_INTERFACE(CDC_ACM_INTERFACE,1,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,0),
D_CDCCS(CDC_HEADER,0x10,0x01), // Header (1.10 bcd)
D_CDCCS(CDC_CALL_MANAGEMENT,1,1), // Device handles call management
D_CDCCS4(CDC_ABSTRACT_CONTROL_MANAGEMENT,2), // SET_LINE_CODING, GET_LINE_CODING, SET_CONTROL_LINE_STATE supported
D_CDCCS(CDC_UNION,CDC_ACM_INTERFACE,CDC_DATA_INTERFACE), // Communication interface is master, data interface is slave 0
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_ACM),USB_ENDPOINT_TYPE_INTERRUPT,0x10,0x40),
// CDC data interface
D_INTERFACE(CDC_DATA_INTERFACE,2,CDC_DATA_INTERFACE_CLASS,0,0),
D_ENDPOINT(USB_ENDPOINT_OUT(CDC_ENDPOINT_OUT),USB_ENDPOINT_TYPE_BULK,0x40,0),
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_IN ),USB_ENDPOINT_TYPE_BULK,0x40,0)
},
#endif
// HID
{
D_INTERFACE(HID_INTERFACE,1,3,0,0),
D_HIDREPORT(30),
D_ENDPOINT(USB_ENDPOINT_IN (HID_ENDPOINT_INT),USB_ENDPOINT_TYPE_INTERRUPT,0x40,0x40)
}
};

View File

@ -1,65 +0,0 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#ifdef CDC_ENABLED
#define CDC_ACM_INTERFACE 0 // CDC ACM
#define CDC_DATA_INTERFACE 1 // CDC Data
#define CDC_ENDPOINT_ACM 1
#define CDC_ENDPOINT_OUT 2
#define CDC_ENDPOINT_IN 3
#define HID_INTERFACE 2 // HID Interface
#define HID_ENDPOINT_INT 4
#define INTERFACE_COUNT 3 // 2 for cdc + 1 for hid
#else
#define HID_INTERFACE 2 // HID Interface
#define HID_ENDPOINT_INT 4
#define INTERFACE_COUNT 1 // 1 for hid
#endif
typedef struct
{
ConfigDescriptor config;
#ifdef CDC_ENABLED
CDCDescriptor cdc;
#endif
HIDDescriptor hid;
} Config;
extern Config USB_ConfigDescriptor PROGMEM;
extern DeviceDescriptor USB_DeviceDescriptor PROGMEM;
extern DeviceDescriptor USB_DeviceDescriptorA PROGMEM;
extern const u16 STRING_LANGUAGE[2] PROGMEM;
extern const u16 STRING_IPRODUCT[28] PROGMEM;
extern const u16 STRING_IMANUFACTURER[12] PROGMEM;
extern const u16 STRING_SERIAL[13] PROGMEM;
#define IMANUFACTURER 1
#define IPRODUCT 2
#define ISERIAL 3
#define CDC_TX CDC_ENDPOINT_IN
#define CDC_RX CDC_ENDPOINT_OUT

View File

@ -20,6 +20,7 @@ extern "C"{
#define INPUT 0x0
#define OUTPUT 0x1
#define INPUT_PULLUP 0x2
#define true 0x1
#define false 0x0

View File

@ -23,12 +23,20 @@
#if defined(USBCON)
#ifdef CDC_ENABLED
void Reboot()
#if (RAMEND < 1000)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
struct ring_buffer
{
USB.detach();
cli();
asm volatile("jmp 0x7800"); // jump to bootloader - DiskLoader takes up last 2 kB
}
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile int head;
volatile int tail;
};
ring_buffer cdc_rx_buffer = { { 0 }, 0, 0};
typedef struct
{
@ -92,9 +100,28 @@ bool WEAK CDC_Setup(Setup& setup)
if (CDC_SET_CONTROL_LINE_STATE == r)
{
if (0 != _usbLineInfo.lineState && 1200 == _usbLineInfo.dwDTERate) // auto-reset is triggered when the port, already open at 1200 bps, is closed
Reboot();
_usbLineInfo.lineState = setup.wValueL;
// auto-reset into the bootloader is triggered when the port, already
// open at 1200 bps, is closed. this is the signal to start the watchdog
// with a relatively long period so it can finish housekeeping tasks
// like servicing endpoints before the sketch ends
if (1200 == _usbLineInfo.dwDTERate) {
// We check DTR state to determine if host port is open (bit 0 of lineState).
if ((_usbLineInfo.lineState & 0x01) == 0) {
*(uint16_t *)0x0800 = 0x7777;
wdt_enable(WDTO_120MS);
} else {
// Most OSs do some intermediate steps when configuring ports and DTR can
// twiggle more than once before stabilizing.
// To avoid spurious resets we set the watchdog to 250ms and eventually
// cancel if DTR goes back high.
wdt_disable();
wdt_reset();
*(uint16_t *)0x0800 = 0x0;
}
}
return true;
}
}
@ -111,33 +138,49 @@ void Serial_::end(void)
{
}
int Serial_::available(void)
void Serial_::accept(void)
{
u8 avail = USB_Available(CDC_RX);
if (_serialPeek != -1)
avail++;
return avail;
ring_buffer *buffer = &cdc_rx_buffer;
int c = USB_Recv(CDC_RX);
int i = (unsigned int)(buffer->head+1) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != buffer->tail) {
buffer->buffer[buffer->head] = c;
buffer->head = i;
}
}
int Serial_::available(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
return (unsigned int)(SERIAL_BUFFER_SIZE + buffer->head - buffer->tail) % SERIAL_BUFFER_SIZE;
}
// peek is nasty
int Serial_::peek(void)
{
if (_serialPeek == -1)
_serialPeek = read();
return _serialPeek;
ring_buffer *buffer = &cdc_rx_buffer;
if (buffer->head == buffer->tail) {
return -1;
} else {
return buffer->buffer[buffer->tail];
}
}
int Serial_::read(void)
{
int c;
if (_serialPeek != -1)
{
c = _serialPeek;
_serialPeek = -1;
ring_buffer *buffer = &cdc_rx_buffer;
// if the head isn't ahead of the tail, we don't have any characters
if (buffer->head == buffer->tail) {
return -1;
} else {
c = USB_Recv(CDC_RX);
}
return c;
unsigned char c = buffer->buffer[buffer->tail];
buffer->tail = (unsigned int)(buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c;
}
}
void Serial_::flush(void)
@ -169,7 +212,22 @@ size_t Serial_::write(uint8_t c)
return 0;
}
// This operator is a convenient way for a sketch to check whether the
// port has actually been configured and opened by the host (as opposed
// to just being connected to the host). It can be used, for example, in
// setup() before printing to ensure that an application on the host is
// actually ready to receive and display the data.
// We add a short delay before returning to fix a bug observed by Federico
// where the port is configured (lineState != 0) but not quite opened.
Serial_::operator bool() {
bool result = false;
if (_usbLineInfo.lineState > 0)
result = true;
delay(10);
return result;
}
Serial_ Serial;
#endif
#endif /* if defined(USBCON) */
#endif /* if defined(USBCON) */

View File

@ -144,7 +144,6 @@ u8 _hid_protocol = 1;
u8 _hid_idle = 1;
#define WEAK __attribute__ ((weak))
#define WEAK
int WEAK HID_GetInterface(u8* interfaceNum)
{
@ -202,7 +201,15 @@ bool WEAK HID_Setup(Setup& setup)
//================================================================================
// Mouse
Mouse_::Mouse_() : _buttons(0)
Mouse_::Mouse_(void) : _buttons(0)
{
}
void Mouse_::begin(void)
{
}
void Mouse_::end(void)
{
}
@ -245,7 +252,7 @@ void Mouse_::release(uint8_t b)
bool Mouse_::isPressed(uint8_t b)
{
if (b & _buttons > 0)
if ((b & _buttons) > 0)
return true;
return false;
}
@ -254,7 +261,15 @@ bool Mouse_::isPressed(uint8_t b)
//================================================================================
// Keyboard
Keyboard_::Keyboard_() : _keyMap(0)
Keyboard_::Keyboard_(void)
{
}
void Keyboard_::begin(void)
{
}
void Keyboard_::end(void)
{
}
@ -263,11 +278,6 @@ void Keyboard_::sendReport(KeyReport* keys)
HID_SendReport(2,keys,sizeof(KeyReport));
}
void Keyboard_::setKeyMap(KeyMap* keyMap)
{
_keyMap = keyMap;
}
extern
const uint8_t _asciimap[128] PROGMEM;
@ -406,41 +416,105 @@ const uint8_t _asciimap[128] =
};
uint8_t USBPutChar(uint8_t c);
size_t Keyboard_::write(uint8_t c)
// press() adds the specified key (printing, non-printing, or modifier)
// to the persistent key report and sends the report. Because of the way
// USB HID works, the host acts like the key remains pressed until we
// call release(), releaseAll(), or otherwise clear the report and resend.
size_t Keyboard_::press(uint8_t k)
{
// Keydown
{
KeyReport keys = {0};
if (_keyMap)
_keyMap->charToKey(c,&keys);
else
{
if (c >= 128) {
setWriteError();
return 0;
}
c = pgm_read_byte(_asciimap + c);
if (!c) {
setWriteError();
return 0;
}
if (c & 0x80)
{
keys.modifiers |= KEY_MODIFIER_LEFT_SHIFT;
c &= 0x7F;
}
keys.keys[0] = c;
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers |= (1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
setWriteError();
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers |= 0x02; // the left shift modifier
k &= 0x7F;
}
sendReport(&keys);
}
// Keyup
{
KeyReport keys = {0};
sendReport(&keys);
// Add k to the key report only if it's not already present
// and if there is an empty slot.
if (_keyReport.keys[0] != k && _keyReport.keys[1] != k &&
_keyReport.keys[2] != k && _keyReport.keys[3] != k &&
_keyReport.keys[4] != k && _keyReport.keys[5] != k) {
for (i=0; i<6; i++) {
if (_keyReport.keys[i] == 0x00) {
_keyReport.keys[i] = k;
break;
}
}
if (i == 6) {
setWriteError();
return 0;
}
}
sendReport(&_keyReport);
return 1;
}
// release() takes the specified key out of the persistent key report and
// sends the report. This tells the OS the key is no longer pressed and that
// it shouldn't be repeated any more.
size_t Keyboard_::release(uint8_t k)
{
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers &= ~(1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers &= ~(0x02); // the left shift modifier
k &= 0x7F;
}
}
// Test the key report to see if k is present. Clear it if it exists.
// Check all positions in case the key is present more than once (which it shouldn't be)
for (i=0; i<6; i++) {
if (0 != k && _keyReport.keys[i] == k) {
_keyReport.keys[i] = 0x00;
}
}
sendReport(&_keyReport);
return 1;
}
void Keyboard_::releaseAll(void)
{
_keyReport.keys[0] = 0;
_keyReport.keys[1] = 0;
_keyReport.keys[2] = 0;
_keyReport.keys[3] = 0;
_keyReport.keys[4] = 0;
_keyReport.keys[5] = 0;
_keyReport.modifiers = 0;
sendReport(&_keyReport);
}
size_t Keyboard_::write(uint8_t c)
{
uint8_t p = press(c); // Keydown
uint8_t r = release(c); // Keyup
return (p); // just return the result of press() since release() almost always returns 1
}
#endif
#endif /* if defined(USBCON) */

View File

@ -46,8 +46,8 @@
struct ring_buffer
{
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile int head;
volatile int tail;
volatile unsigned int head;
volatile unsigned int tail;
};
#if defined(USBCON)
@ -398,6 +398,10 @@ size_t HardwareSerial::write(uint8_t c)
return 1;
}
HardwareSerial::operator bool() {
return true;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(UBRRH) && defined(UBRRL)

View File

@ -57,6 +57,7 @@ class HardwareSerial : public Stream
virtual void flush(void);
virtual size_t write(uint8_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
#if defined(UBRRH) || defined(UBRR0H)

View File

@ -41,7 +41,7 @@ size_t Print::write(const uint8_t *buffer, size_t size)
size_t Print::print(const __FlashStringHelper *ifsh)
{
const prog_char *p = (const prog_char *)ifsh;
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t n = 0;
while (1) {
unsigned char c = pgm_read_byte(p++);
@ -226,6 +226,9 @@ size_t Print::printFloat(double number, uint8_t digits)
{
size_t n = 0;
if (isnan(number)) return print("nan");
if (isinf(number)) return print("inf");
// Handle negative numbers
if (number < 0.0)
{

View File

@ -46,7 +46,10 @@ class Print
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) { return write((const uint8_t *)str, strlen(str)); }
size_t write(const char *str) {
if (str == NULL) return 0;
return write((const uint8_t *)str, strlen(str));
}
virtual size_t write(const uint8_t *buffer, size_t size);
size_t print(const __FlashStringHelper *);

View File

@ -99,25 +99,27 @@ bool Stream::findUntil(char *target, size_t targetLen, char *terminator, size_t
size_t index = 0; // maximum target string length is 64k bytes!
size_t termIndex = 0;
int c;
if( *target == 0)
return true; // return true if target is a null string
return true; // return true if target is a null string
while( (c = timedRead()) > 0){
if(c != target[index])
index = 0; // reset index if any char does not match
if( c == target[index]){
//////Serial.print("found "); Serial.write(c); Serial.print("index now"); Serial.println(index+1);
//////Serial.print("found "); Serial.write(c); Serial.print("index now"); Serial.println(index+1);
if(++index >= targetLen){ // return true if all chars in the target match
return true;
}
}
else{
index = 0; // reset index if any char does not match
}
if(termLen > 0 && c == terminator[termIndex]){
if(++termIndex >= termLen)
return false; // return false if terminate string found before target string
if(++termIndex >= termLen)
return false; // return false if terminate string found before target string
}
else
termIndex = 0;
termIndex = 0;
}
return false;
}
@ -242,3 +244,27 @@ size_t Stream::readBytesUntil(char terminator, char *buffer, size_t length)
return index; // return number of characters, not including null terminator
}
String Stream::readString()
{
String ret;
int c = timedRead();
while (c >= 0)
{
ret += (char)c;
c = timedRead();
}
return ret;
}
String Stream::readStringUntil(char terminator)
{
String ret;
int c = timedRead();
while (c >= 0 && c != terminator)
{
ret += (char)c;
c = timedRead();
}
return ret;
}

View File

@ -82,6 +82,8 @@ class Stream : public Print
// returns the number of characters placed in the buffer (0 means no valid data found)
// Arduino String functions to be added here
String readString();
String readStringUntil(char terminator);
protected:
long parseInt(char skipChar); // as above but the given skipChar is ignored

View File

@ -9,17 +9,17 @@
//================================================================================
// USB
class USB_
class USBDevice_
{
public:
USB_();
USBDevice_();
bool configured();
void attach();
void detach(); // Serial port goes down too...
void poll();
};
extern USB_ USB;
extern USBDevice_ USBDevice;
//================================================================================
//================================================================================
@ -27,15 +27,20 @@ extern USB_ USB;
class Serial_ : public Stream
{
private:
ring_buffer *_cdc_rx_buffer;
public:
void begin(uint16_t baud_count);
void end(void);
virtual int available(void);
virtual void accept(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
extern Serial_ Serial;
@ -54,12 +59,14 @@ private:
uint8_t _buttons;
void buttons(uint8_t b);
public:
Mouse_();
Mouse_(void);
void begin(void);
void end(void);
void click(uint8_t b = MOUSE_LEFT);
void move(signed char x, signed char y, signed char wheel = 0);
void press(uint8_t b = MOUSE_LEFT); // press LEFT by default
void release(uint8_t b = MOUSE_LEFT); // release LEFT by default
bool isPressed(uint8_t b = MOUSE_ALL); // check all buttons by default
bool isPressed(uint8_t b = MOUSE_LEFT); // check LEFT by default
};
extern Mouse_ Mouse;
@ -67,14 +74,42 @@ extern Mouse_ Mouse;
//================================================================================
// Keyboard
#define KEY_MODIFIER_LEFT_CTRL 0x01
#define KEY_MODIFIER_LEFT_SHIFT 0x02
#define KEY_MODIFIER_LEFT_ALT 0x04
#define KEY_MODIFIER_LEFT_GUI 0x08
#define KEY_MODIFIER_RIGHT_CTRL 0x010
#define KEY_MODIFIER_RIGHT_SHIFT 0x020
#define KEY_MODIFIER_RIGHT_ALT 0x040
#define KEY_MODIFIER_RIGHT_GUI 0x080
#define KEY_LEFT_CTRL 0x80
#define KEY_LEFT_SHIFT 0x81
#define KEY_LEFT_ALT 0x82
#define KEY_LEFT_GUI 0x83
#define KEY_RIGHT_CTRL 0x84
#define KEY_RIGHT_SHIFT 0x85
#define KEY_RIGHT_ALT 0x86
#define KEY_RIGHT_GUI 0x87
#define KEY_UP_ARROW 0xDA
#define KEY_DOWN_ARROW 0xD9
#define KEY_LEFT_ARROW 0xD8
#define KEY_RIGHT_ARROW 0xD7
#define KEY_BACKSPACE 0xB2
#define KEY_TAB 0xB3
#define KEY_RETURN 0xB0
#define KEY_ESC 0xB1
#define KEY_INSERT 0xD1
#define KEY_DELETE 0xD4
#define KEY_PAGE_UP 0xD3
#define KEY_PAGE_DOWN 0xD6
#define KEY_HOME 0xD2
#define KEY_END 0xD5
#define KEY_CAPS_LOCK 0xC1
#define KEY_F1 0xC2
#define KEY_F2 0xC3
#define KEY_F3 0xC4
#define KEY_F4 0xC5
#define KEY_F5 0xC6
#define KEY_F6 0xC7
#define KEY_F7 0xC8
#define KEY_F8 0xC9
#define KEY_F9 0xCA
#define KEY_F10 0xCB
#define KEY_F11 0xCC
#define KEY_F12 0xCD
// Low level key report: up to 6 keys and shift, ctrl etc at once
typedef struct
@ -84,24 +119,19 @@ typedef struct
uint8_t keys[6];
} KeyReport;
// Map a character into a key report
// Called from Print to map text to keycodes
class KeyMap
{
public:
virtual void charToKey(int c, KeyReport* keyReport) = 0;
};
//
class Keyboard_ : public Print
{
private:
KeyMap* _keyMap;
KeyReport _keyReport;
void sendReport(KeyReport* keys);
void setKeyMap(KeyMap* keyMap);
public:
Keyboard_();
virtual size_t write(uint8_t);
Keyboard_(void);
void begin(void);
void end(void);
virtual size_t write(uint8_t k);
virtual size_t press(uint8_t k);
virtual size_t release(uint8_t k);
virtual void releaseAll(void);
};
extern Keyboard_ Keyboard;

View File

@ -51,16 +51,20 @@ const u16 STRING_LANGUAGE[2] = {
const u16 STRING_IPRODUCT[17] = {
(3<<8) | (2+2*16),
#if USB_PID == USB_PID_LEONARDO
#if USB_PID == 0x8036
'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o'
#elif USB_PID == USB_PID_MICRO
'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ',' ',' '
#else
'U','S','B',' ','I','O',' ','B','o','a','r','d',' ',' ',' ',' '
#endif
};
const u16 STRING_IMANUFACTURER[12] = {
(3<<8) | (2+2*11),
#if USB_VID == 0x2341
'A','r','d','u','i','n','o',' ','L','L','C'
#else
'U','n','k','n','o','w','n',' ',' ',' ',' '
#endif
};
#ifdef CDC_ENABLED
@ -230,7 +234,7 @@ int USB_Recv(u8 ep, void* d, int len)
n = len;
u8* dst = (u8*)d;
while (n--)
*dst++ = USBD_Recv8();
*dst++ = Recv8();
if (len && !FifoByteCount()) // release empty buffer
ReleaseRX();
@ -599,6 +603,8 @@ ISR(USB_GEN_vect)
{
#ifdef CDC_ENABLED
USB_Flush(CDC_TX); // Send a tx frame if found
while (USB_Available(CDC_RX)) // Handle received bytes (if any)
Serial.accept();
#endif
// check whether the one-shot period has elapsed. if so, turn off the LED
@ -621,13 +627,13 @@ u8 USBConnected()
//=======================================================================
//=======================================================================
USB_ USB;
USBDevice_ USBDevice;
USB_::USB_()
USBDevice_::USBDevice_()
{
}
void USB_::attach()
void USBDevice_::attach()
{
_usbConfiguration = 0;
UHWCON = 0x01; // power internal reg
@ -635,6 +641,12 @@ void USB_::attach()
PLLCSR = 0x12; // Need 16 MHz xtal
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
;
// Some tests on specific versions of macosx (10.7.3), reported some
// strange behaviuors when the board is reset using the serial
// port touch at 1200 bps. This delay fixes this behaviour.
delay(1);
USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDIEN = (1<<EORSTE)|(1<<SOFE); // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
UDCON = 0; // enable attach resistor
@ -642,19 +654,19 @@ void USB_::attach()
TX_RX_LED_INIT;
}
void USB_::detach()
void USBDevice_::detach()
{
}
// Check for interrupts
// TODO: VBUS detection
bool USB_::configured()
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USB_::poll()
void USBDevice_::poll()
{
}
#endif /* if defined(USBCON) */
#endif /* if defined(USBCON) */

View File

@ -60,8 +60,4 @@
#define IMANUFACTURER 1
#define IPRODUCT 2
#define USB_PID_LEONARDO 0x0034
#define USB_PID_MICRO 0x0035
#define USB_VID 0x2341 // arduino LLC vid
#define USB_PID ARDUINO_MODEL_USB_PID

66
hardware/arduino/avr/cores/arduino/WInterrupts.c Executable file → Normal file
View File

@ -32,7 +32,7 @@
#include "wiring_private.h"
volatile static voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS];
static volatile voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS];
// volatile static voidFuncPtr twiIntFunc;
void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
@ -47,7 +47,27 @@ void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
// Enable the interrupt.
switch (interruptNum) {
#if defined(EICRA) && defined(EICRB) && defined(EIMSK)
#if defined(__AVR_ATmega32U4__)
// I hate doing this, but the register assignment differs between the 1280/2560
// and the 32U4. Since avrlib defines registers PCMSK1 and PCMSK2 that aren't
// even present on the 32U4 this is the only way to distinguish between them.
case 0:
EICRA = (EICRA & ~((1<<ISC00) | (1<<ISC01))) | (mode << ISC00);
EIMSK |= (1<<INT0);
break;
case 1:
EICRA = (EICRA & ~((1<<ISC10) | (1<<ISC11))) | (mode << ISC10);
EIMSK |= (1<<INT1);
break;
case 2:
EICRA = (EICRA & ~((1<<ISC20) | (1<<ISC21))) | (mode << ISC20);
EIMSK |= (1<<INT2);
break;
case 3:
EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
EIMSK |= (1<<INT3);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
@ -80,7 +100,7 @@ void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
EICRB = (EICRB & ~((1 << ISC70) | (1 << ISC71))) | (mode << ISC70);
EIMSK |= (1 << INT7);
break;
#else
#else
case 0:
#if defined(EICRA) && defined(ISC00) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
@ -121,8 +141,6 @@ void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
#elif defined(MCUCR) && defined(ISC20) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GIMSK |= (1 << INT2);
#else
#warning attachInterrupt may need some more work for this cpu (case 1)
#endif
break;
#endif
@ -136,7 +154,20 @@ void detachInterrupt(uint8_t interruptNum) {
// to the number of the EIMSK bit to clear, as this isn't true on the
// ATmega8. There, INT0 is 6 and INT1 is 7.)
switch (interruptNum) {
#if defined(EICRA) && defined(EICRB) && defined(EIMSK)
#if defined(__AVR_ATmega32U4__)
case 0:
EIMSK &= ~(1<<INT0);
break;
case 1:
EIMSK &= ~(1<<INT1);
break;
case 2:
EIMSK &= ~(1<<INT2);
break;
case 3:
EIMSK &= ~(1<<INT3);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EIMSK &= ~(1 << INT0);
break;
@ -198,7 +229,28 @@ void attachInterruptTwi(void (*userFunc)(void) ) {
}
*/
#if defined(EICRA) && defined(EICRB)
#if defined(__AVR_ATmega32U4__)
SIGNAL(INT0_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
SIGNAL(INT1_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
SIGNAL(INT2_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
SIGNAL(INT3_vect) {
if(intFunc[EXTERNAL_INT_3])
intFunc[EXTERNAL_INT_3]();
}
#elif defined(EICRA) && defined(EICRB)
SIGNAL(INT0_vect) {
if(intFunc[EXTERNAL_INT_2])

View File

@ -500,7 +500,7 @@ int String::lastIndexOf( char theChar ) const
int String::lastIndexOf(char ch, unsigned int fromIndex) const
{
if (fromIndex >= len || fromIndex < 0) return -1;
if (fromIndex >= len) return -1;
char tempchar = buffer[fromIndex + 1];
buffer[fromIndex + 1] = '\0';
char* temp = strrchr( buffer, ch );
@ -516,7 +516,7 @@ int String::lastIndexOf(const String &s2) const
int String::lastIndexOf(const String &s2, unsigned int fromIndex) const
{
if (s2.len == 0 || len == 0 || s2.len > len || fromIndex < 0) return -1;
if (s2.len == 0 || len == 0 || s2.len > len) return -1;
if (fromIndex >= len) fromIndex = len - 1;
int found = -1;
for (char *p = buffer; p <= buffer + fromIndex; p++) {

2
hardware/arduino/avr/cores/arduino/main.cpp Executable file → Normal file
View File

@ -5,7 +5,7 @@ int main(void)
init();
#if defined(USBCON)
USB.attach();
USBDevice.attach();
#endif
setup();

11
hardware/arduino/avr/cores/arduino/wiring.c Executable file → Normal file
View File

@ -278,12 +278,21 @@ void init()
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
sbi(TCCR4B, CS41);
sbi(TCCR4B, CS40);
sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64

View File

@ -45,6 +45,8 @@ int analogRead(uint8_t pin)
if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#elif defined(__AVR_ATmega32U4__)
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#elif defined(__AVR_ATmega1284__)
if (pin >= 24) pin -= 24; // allow for channel or pin numbers
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif
@ -204,14 +206,17 @@ void analogWrite(uint8_t pin, int val)
break;
#endif
#if defined(TCCR4A) && defined(COM4A1)
#if defined(TCCR4A)
case TIMER4A:
// connect pwm to pin on timer 4, channel A
//connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
OCR4A = val; // set pwm duty
#if defined(COM4A0) // only used on 32U4
cbi(TCCR4A, COM4A0);
#endif
OCR4A = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B:
// connect pwm to pin on timer 4, channel B
@ -228,14 +233,18 @@ void analogWrite(uint8_t pin, int val)
break;
#endif
#if defined(TCCR4A) && defined(COM4D1)
case TIMER4D:
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D:
// connect pwm to pin on timer 4, channel D
sbi(TCCR4A, COM4D1);
OCR4D = val; // set pwm duty
sbi(TCCR4C, COM4D1);
#if defined(COM4D0) // only used on 32U4
cbi(TCCR4C, COM4D0);
#endif
OCR4D = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
// connect pwm to pin on timer 5, channel A
@ -270,3 +279,4 @@ void analogWrite(uint8_t pin, int val)
}
}
}

18
hardware/arduino/avr/cores/arduino/wiring_digital.c Executable file → Normal file
View File

@ -32,17 +32,25 @@ void pinMode(uint8_t pin, uint8_t mode)
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg;
volatile uint8_t *reg, *out;
if (port == NOT_A_PIN) return;
// JWS: can I let the optimizer do this?
reg = portModeRegister(port);
out = portOutputRegister(port);
if (mode == INPUT) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out &= ~bit;
SREG = oldSREG;
} else if (mode == INPUT_PULLUP) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out |= bit;
SREG = oldSREG;
} else {
uint8_t oldSREG = SREG;
@ -107,13 +115,17 @@ static void turnOffPWM(uint8_t timer)
#if defined(TCCR4A) && defined(COM4A1)
case TIMER4A: cbi(TCCR4A, COM4A1); break;
#endif
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B: cbi(TCCR4A, COM4B1); break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C: cbi(TCCR4A, COM4C1); break;
#endif
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D: cbi(TCCR4C, COM4D1); break;
#endif
#if defined(TCCR5A)
case TIMER5A: cbi(TCCR5A, COM5A1); break;
case TIMER5B: cbi(TCCR5A, COM5B1); break;

View File

@ -56,6 +56,8 @@ extern "C"{
#define EXTERNAL_NUM_INTERRUPTS 8
#elif defined(__AVR_ATmega1284P__)
#define EXTERNAL_NUM_INTERRUPTS 3
#elif defined(__AVR_ATmega32U4__)
#define EXTERNAL_NUM_INTERRUPTS 4
#else
#define EXTERNAL_NUM_INTERRUPTS 2
#endif

View File

@ -14,7 +14,11 @@ byte value;
void setup()
{
// initialize serial and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
}
void loop()

View File

@ -11,13 +11,33 @@
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
{
uint8_t dhcp_state = STATE_DHCP_START;
uint8_t messageType = 0;
// zero out _dhcpMacAddr, _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpMacAddr, 0, 26);
_dhcpLeaseTime=0;
_dhcpT1=0;
_dhcpT2=0;
_lastCheck=0;
_timeout = timeout;
_responseTimeout = responseTimeout;
// zero out _dhcpMacAddr
memset(_dhcpMacAddr, 0, 6);
reset_DHCP_lease();
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
_dhcp_state = STATE_DHCP_START;
return request_DHCP_lease();
}
void DhcpClass::reset_DHCP_lease(){
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
memset(_dhcpLocalIp, 0, 20);
}
//return:0 on error, 1 if request is sent and response is received
int DhcpClass::request_DHCP_lease(){
uint8_t messageType = 0;
// Pick an initial transaction ID
_dhcpTransactionId = random(1UL, 2000UL);
@ -35,55 +55,75 @@ int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long
unsigned long startTime = millis();
while(dhcp_state != STATE_DHCP_LEASED)
while(_dhcp_state != STATE_DHCP_LEASED)
{
if(dhcp_state == STATE_DHCP_START)
if(_dhcp_state == STATE_DHCP_START)
{
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
dhcp_state = STATE_DHCP_DISCOVER;
_dhcp_state = STATE_DHCP_DISCOVER;
}
else if(dhcp_state == STATE_DHCP_DISCOVER)
else if(_dhcp_state == STATE_DHCP_REREQUEST){
_dhcpTransactionId++;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
_dhcp_state = STATE_DHCP_REQUEST;
}
else if(_dhcp_state == STATE_DHCP_DISCOVER)
{
uint32_t respId;
messageType = parseDHCPResponse(responseTimeout, respId);
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_OFFER)
{
// We'll use the transaction ID that the offer came with,
// rather than the one we were up to
_dhcpTransactionId = respId;
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
dhcp_state = STATE_DHCP_REQUEST;
_dhcp_state = STATE_DHCP_REQUEST;
}
}
else if(dhcp_state == STATE_DHCP_REQUEST)
else if(_dhcp_state == STATE_DHCP_REQUEST)
{
uint32_t respId;
messageType = parseDHCPResponse(responseTimeout, respId);
messageType = parseDHCPResponse(_responseTimeout, respId);
if(messageType == DHCP_ACK)
{
dhcp_state = STATE_DHCP_LEASED;
_dhcp_state = STATE_DHCP_LEASED;
result = 1;
//use default lease time if we didn't get it
if(_dhcpLeaseTime == 0){
_dhcpLeaseTime = DEFAULT_LEASE;
}
//calculate T1 & T2 if we didn't get it
if(_dhcpT1 == 0){
//T1 should be 50% of _dhcpLeaseTime
_dhcpT1 = _dhcpLeaseTime >> 1;
}
if(_dhcpT2 == 0){
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
_dhcpT2 = _dhcpT1 << 1;
}
_renewInSec = _dhcpT1;
_rebindInSec = _dhcpT2;
}
else if(messageType == DHCP_NAK)
dhcp_state = STATE_DHCP_START;
_dhcp_state = STATE_DHCP_START;
}
if(messageType == 255)
{
messageType = 0;
dhcp_state = STATE_DHCP_START;
_dhcp_state = STATE_DHCP_START;
}
if(result != 1 && ((millis() - startTime) > timeout))
if(result != 1 && ((millis() - startTime) > _timeout))
break;
}
// We're done with the socket now
_dhcpUdpSocket.stop();
_dhcpTransactionId++;
return result;
}
@ -302,8 +342,26 @@ uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& tr
}
}
break;
case dhcpT1value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
_dhcpT1 = ntohl(_dhcpT1);
break;
case dhcpT2value :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
_dhcpT2 = ntohl(_dhcpT2);
break;
case dhcpIPaddrLeaseTime :
opt_len = _dhcpUdpSocket.read();
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
_renewInSec = _dhcpLeaseTime;
break;
default :
opt_len = _dhcpUdpSocket.read();
// Skip over the rest of this option
@ -322,6 +380,68 @@ uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& tr
return type;
}
/*
returns:
0/DHCP_CHECK_NONE: nothing happened
1/DHCP_CHECK_RENEW_FAIL: renew failed
2/DHCP_CHECK_RENEW_OK: renew success
3/DHCP_CHECK_REBIND_FAIL: rebind fail
4/DHCP_CHECK_REBIND_OK: rebind success
*/
int DhcpClass::checkLease(){
//this uses a signed / unsigned trick to deal with millis overflow
unsigned long now = millis();
signed long snow = (long)now;
int rc=DHCP_CHECK_NONE;
if (_lastCheck != 0){
signed long factor;
//calc how many ms past the timeout we are
factor = snow - (long)_secTimeout;
//if on or passed the timeout, reduce the counters
if ( factor >= 0 ){
//next timeout should be now plus 1000 ms minus parts of second in factor
_secTimeout = snow + 1000 - factor % 1000;
//how many seconds late are we, minimum 1
factor = factor / 1000 +1;
//reduce the counters by that mouch
//if we can assume that the cycle time (factor) is fairly constant
//and if the remainder is less than cycle time * 2
//do it early instead of late
if(_renewInSec < factor*2 )
_renewInSec = 0;
else
_renewInSec -= factor;
if(_rebindInSec < factor*2 )
_rebindInSec = 0;
else
_rebindInSec -= factor;
}
//if we have a lease but should renew, do it
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <=0){
_dhcp_state = STATE_DHCP_REREQUEST;
rc = 1 + request_DHCP_lease();
}
//if we have a lease or is renewing but should bind, do it
if( (_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <=0){
//this should basically restart completely
_dhcp_state = STATE_DHCP_START;
reset_DHCP_lease();
rc = 3 + request_DHCP_lease();
}
}
else{
_secTimeout = snow + 1000;
}
_lastCheck = now;
return rc;
}
IPAddress DhcpClass::getLocalIp()
{
return IPAddress(_dhcpLocalIp);

View File

@ -45,6 +45,13 @@
#define MAX_DHCP_OPT 16
#define HOST_NAME "WIZnet"
#define DEFAULT_LEASE (900) //default lease time in seconds
#define DHCP_CHECK_NONE (0)
#define DHCP_CHECK_RENEW_FAIL (1)
#define DHCP_CHECK_RENEW_OK (2)
#define DHCP_CHECK_REBIND_FAIL (3)
#define DHCP_CHECK_REBIND_OK (4)
enum
{
@ -139,8 +146,19 @@ private:
uint8_t _dhcpGatewayIp[4];
uint8_t _dhcpDhcpServerIp[4];
uint8_t _dhcpDnsServerIp[4];
uint32_t _dhcpLeaseTime;
uint32_t _dhcpT1, _dhcpT2;
signed long _renewInSec;
signed long _rebindInSec;
signed long _lastCheck;
unsigned long _timeout;
unsigned long _responseTimeout;
unsigned long _secTimeout;
uint8_t _dhcp_state;
EthernetUDP _dhcpUdpSocket;
int request_DHCP_lease();
void reset_DHCP_lease();
void presend_DHCP();
void send_DHCP_MESSAGE(uint8_t, uint16_t);
void printByte(char *, uint8_t);
@ -154,6 +172,7 @@ public:
IPAddress getDnsServerIp();
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
int checkLease();
};
#endif

View File

@ -10,7 +10,8 @@ uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] = {
int EthernetClass::begin(uint8_t *mac_address)
{
DhcpClass dhcp;
_dhcp = new DhcpClass();
// Initialise the basic info
W5100.init();
@ -18,15 +19,15 @@ int EthernetClass::begin(uint8_t *mac_address)
W5100.setIPAddress(IPAddress(0,0,0,0).raw_address());
// Now try to get our config info from a DHCP server
int ret = dhcp.beginWithDHCP(mac_address);
int ret = _dhcp->beginWithDHCP(mac_address);
if(ret == 1)
{
// We've successfully found a DHCP server and got our configuration info, so set things
// accordingly
W5100.setIPAddress(dhcp.getLocalIp().raw_address());
W5100.setGatewayIp(dhcp.getGatewayIp().raw_address());
W5100.setSubnetMask(dhcp.getSubnetMask().raw_address());
_dnsServerAddress = dhcp.getDnsServerIp();
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
_dnsServerAddress = _dhcp->getDnsServerIp();
}
return ret;
@ -66,6 +67,31 @@ void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server
_dnsServerAddress = dns_server;
}
int EthernetClass::maintain(){
int rc = DHCP_CHECK_NONE;
if(_dhcp != NULL){
//we have a pointer to dhcp, use it
rc = _dhcp->checkLease();
switch ( rc ){
case DHCP_CHECK_NONE:
//nothing done
break;
case DHCP_CHECK_RENEW_OK:
case DHCP_CHECK_REBIND_OK:
//we might have got a new IP.
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
_dnsServerAddress = _dhcp->getDnsServerIp();
break;
default:
//this is actually a error, it will retry though
break;
}
}
return rc;
}
IPAddress EthernetClass::localIP()
{
IPAddress ret;

View File

@ -6,12 +6,14 @@
#include "IPAddress.h"
#include "EthernetClient.h"
#include "EthernetServer.h"
#include "Dhcp.h"
#define MAX_SOCK_NUM 4
class EthernetClass {
private:
IPAddress _dnsServerAddress;
DhcpClass* _dhcp;
public:
static uint8_t _state[MAX_SOCK_NUM];
static uint16_t _server_port[MAX_SOCK_NUM];
@ -23,6 +25,7 @@ public:
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
int maintain();
IPAddress localIP();
IPAddress subnetMask();

View File

@ -41,7 +41,7 @@ int EthernetClient::connect(IPAddress ip, uint16_t port) {
for (int i = 0; i < MAX_SOCK_NUM; i++) {
uint8_t s = W5100.readSnSR(i);
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT) {
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
_sock = i;
break;
}

View File

@ -52,15 +52,16 @@ uint8_t EthernetUDP::begin(uint16_t port) {
return 0;
_port = port;
_remaining = 0;
socket(_sock, SnMR::UDP, _port, 0);
return 1;
}
/* Is data available in rx buffer? Returns 0 if no, number of available bytes if yes.
* returned value includes 8 byte UDP header!*/
/* return number of bytes available in the current packet,
will return zero if parsePacket hasn't been called yet */
int EthernetUDP::available() {
return W5100.getRXReceivedSize(_sock);
return _remaining;
}
/* Release any resources being used by this EthernetUDP instance */
@ -116,11 +117,14 @@ size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
int EthernetUDP::parsePacket()
{
if (available() > 0)
// discard any remaining bytes in the last packet
flush();
if (W5100.getRXReceivedSize(_sock) > 0)
{
//HACK - hand-parse the UDP packet using TCP recv method
uint8_t tmpBuf[8];
int ret =0;
int ret =0;
//read 8 header bytes and get IP and port from it
ret = recv(_sock,tmpBuf,8);
if (ret > 0)
@ -128,8 +132,11 @@ int EthernetUDP::parsePacket()
_remoteIP = tmpBuf;
_remotePort = tmpBuf[4];
_remotePort = (_remotePort << 8) + tmpBuf[5];
_remaining = tmpBuf[6];
_remaining = (_remaining << 8) + tmpBuf[7];
// When we get here, any remaining bytes are the data
ret = available();
ret = _remaining;
}
return ret;
}
@ -140,34 +147,58 @@ int EthernetUDP::parsePacket()
int EthernetUDP::read()
{
uint8_t byte;
if (recv(_sock, &byte, 1) > 0)
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
{
// We read things without any problems
_remaining--;
return byte;
}
// If we get here, there's no data available
return -1;
}
int EthernetUDP::read(unsigned char* buffer, size_t len)
{
/* In the readPacket that copes with truncating packets, the buffer was
filled with this code. Not sure why it loops round reading out a byte
at a time.
int i;
for(i=0;i<(int)bufLen;i++) {
recv(_sock,tmpBuf,1);
buf[i]=tmpBuf[0];
if (_remaining > 0)
{
int got;
if (_remaining <= len)
{
// data should fit in the buffer
got = recv(_sock, buffer, _remaining);
}
else
{
// too much data for the buffer,
// grab as much as will fit
got = recv(_sock, buffer, len);
}
if (got > 0)
{
_remaining -= got;
return got;
}
}
*/
return recv(_sock, buffer, len);
// If we get here, there's no data available or recv failed
return -1;
}
int EthernetUDP::peek()
{
uint8_t b;
// Unlike recv, peek doesn't check to see if there's any data available, so we must
if (!available())
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
// If the user hasn't called parsePacket yet then return nothing otherwise they
// may get the UDP header
if (!_remaining)
return -1;
::peek(_sock, &b);
return b;
@ -175,7 +206,11 @@ int EthernetUDP::peek()
void EthernetUDP::flush()
{
while (available())
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
// should only occur if recv fails after telling us the data is there, lets
// hope the w5100 always behaves :)
while (_remaining)
{
read();
}

View File

@ -48,6 +48,7 @@ private:
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
uint16_t _offset; // offset into the packet being sent
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
public:
EthernetUDP(); // Constructor

View File

@ -12,7 +12,7 @@
created 18 Dec 2009
by David A. Mellis
modified 10 August 2010
modified 9 Apr 2012
by Tom Igoe
*/
@ -23,41 +23,57 @@
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network.
// gateway and subnet are optional:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192,168,1, 177);
IPAddress gateway(192,168,1, 1);
IPAddress subnet(255, 255, 0, 0);
// telnet defaults to port 23
EthernetServer server(23);
boolean gotAMessage = false; // whether or not you got a message from the client yet
boolean alreadyConnected = false; // whether or not the client was connected previously
void setup() {
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);
// start listening for clients
server.begin();
// open the serial port
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Chat server address:");
Serial.println(Ethernet.localIP());
}
void loop() {
// wait for a new client:
EthernetClient client = server.available();
// when the client sends the first byte, say hello:
if (client) {
if (!gotAMessage) {
if (!alreadyConnected) {
// clead out the input buffer:
client.flush();
Serial.println("We have a new client");
client.println("Hello, client!");
gotAMessage = true;
alreadyConnected = true;
}
if (client.available() > 0) {
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.write(thisChar);
}
// read the bytes incoming from the client:
char thisChar = client.read();
// echo the bytes back to the client:
server.write(thisChar);
// echo the bytes to the server as well:
Serial.print(thisChar);
}
}

View File

@ -0,0 +1,159 @@
/*
Cosm sensor client
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example has been updated to use version 2.0 of the cosm.com API.
To make it work, create a feed with a datastream, and give it the ID
sensor1. Or change the code below to match your feed.
Circuit:
* Analog sensor attached to analog in 0
* Ethernet shield attached to pins 10, 11, 12, 13
created 15 March 2010
updated 14 May 2012
by Tom Igoe with input from Usman Haque and Joe Saavedra
http://arduino.cc/en/Tutorial/CosmClient
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Project" // user agent is the project name
// assign a MAC address for the ethernet controller.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(10,0,1,20);
// initialize the library instance:
EthernetClient client;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
char server[] = "api.cosm.com"; // name address for cosm API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to cosm.com
void setup() {
// start serial port:
Serial.begin(9600);
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// DHCP failed, so use a fixed IP address:
Ethernet.begin(mac, ip);
}
}
void loop() {
// read the analog sensor:
int sensorReading = analogRead(A0);
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
sendData(sensorReading);
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void sendData(int thisData) {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.cosm.com");
client.print("X-ApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
// calculate the length of the sensor reading in bytes:
// 8 bytes for "sensor1," + number of digits of the data:
int thisLength = 8 + getLength(thisData);
client.println(thisLength);
// last pieces of the HTTP PUT request:
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.print("sensor1,");
client.println(thisData);
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}
// This method calculates the number of digits in the
// sensor reading. Since each digit of the ASCII decimal
// representation is a byte, the number of digits equals
// the number of bytes:
int getLength(int someValue) {
// there's at least one byte:
int digits = 1;
// continually divide the value by ten,
// adding one to the digit count for each
// time you divide, until you're at 0:
int dividend = someValue /10;
while (dividend > 0) {
dividend = dividend /10;
digits++;
}
// return the number of digits:
return digits;
}

View File

@ -0,0 +1,146 @@
/*
Cosm sensor client with Strings
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example has been updated to use version 2.0 of the Cosm.com API.
To make it work, create a feed with two datastreams, and give them the IDs
sensor1 and sensor2. Or change the code below to match your feed.
This example uses the String library, which is part of the Arduino core from
version 0019.
Circuit:
* Analog sensor attached to analog in 0
* Ethernet shield attached to pins 10, 11, 12, 13
created 15 March 2010
updated 14 May 2012
by Tom Igoe with input from Usman Haque and Joe Saavedra
http://arduino.cc/en/Tutorial/CosmClientString
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Project" // user agent is the project name
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(10,0,1,20);
// initialize the library instance:
EthernetClient client;
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
//IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
char server[] = "api.cosm.com"; // name address for Cosm API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to Cosm.com
void setup() {
// start serial port:
Serial.begin(9600);
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// DHCP failed, so use a fixed IP address:
Ethernet.begin(mac, ip);
}
}
void loop() {
// read the analog sensor:
int sensorReading = analogRead(A0);
// convert the data to a String to send it:
String dataString = "sensor1,";
dataString += sensorReading;
// you can append multiple readings to this String if your
// Cosm feed is set up to handle multiple values:
int otherSensorReading = analogRead(A1);
dataString += "\nsensor2,";
dataString += otherSensorReading;
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
sendData(dataString);
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void sendData(String thisData) {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.cosm.com");
client.print("X-ApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
client.println(thisData.length());
// last pieces of the HTTP PUT request:
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.println(thisData);
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}

View File

@ -9,6 +9,7 @@
* Ethernet shield attached to pins 10, 11, 12, 13
created 12 April 2011
modified 9 Apr 2012
by Tom Igoe
*/
@ -27,8 +28,13 @@ byte mac[] = {
EthernetClient client;
void setup() {
// start the serial library:
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");

View File

@ -12,6 +12,7 @@
* Ethernet shield attached to pins 10, 11, 12, 13
created 21 May 2011
modified 9 Apr 2012
by Tom Igoe
Based on ChatServer example by David A. Mellis
@ -34,8 +35,14 @@ EthernetServer server(23);
boolean gotAMessage = false; // whether or not you got a message from the client yet
void setup() {
// open the serial port
// Open serial communications and wait for port to open:
Serial.begin(9600);
// this check is only needed on the Leonardo:
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
Serial.println("Trying to get an IP address using DHCP");
if (Ethernet.begin(mac) == 0) {

View File

@ -9,7 +9,7 @@
created 18 Dec 2009
by David A. Mellis
modified 12 April 2011
modified 9 Apr 2012
by Tom Igoe, based on work by Adrian McEwen
*/
@ -28,8 +28,13 @@ char serverName[] = "www.google.com";
EthernetClient client;
void setup() {
// start the serial library:
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");

View File

@ -6,15 +6,20 @@
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example has been updated to use version 2.0 of the Pachube.com API.
To make it work, create a feed with a datastream, and give it the ID
sensor1. Or change the code below to match your feed.
Circuit:
* Analog sensor attached to analog in 0
* Ethernet shield attached to pins 10, 11, 12, 13
created 15 March 2010
updated 26 Oct 2011
by Tom Igoe
modified 9 Apr 2012
by Tom Igoe with input from Usman Haque and Joe Saavedra
http://www.tigoe.net/pcomp/code/category/arduinowiring/873
http://arduino.cc/en/Tutorial/PachubeClient
This code is in the public domain.
*/
@ -22,6 +27,10 @@
#include <SPI.h>
#include <Ethernet.h>
#define APIKEY "YOUR API KEY GOES HERE" // replace your pachube api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Project" // user agent is the project name
// assign a MAC address for the ethernet controller.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
// fill in your address here:
@ -34,26 +43,27 @@ IPAddress ip(10,0,1,20);
// initialize the library instance:
EthernetClient client;
long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const int postingInterval = 10000; //delay between updates to Pachube.com
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
IPAddress server(216,52,233,122); // numeric IP for api.pachube.com
//char server[] = "api.pachube.com"; // name address for pachube API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to Pachube.com
void setup() {
// start serial port:
// Open serial communications and wait for port to open:
Serial.begin(9600);
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// no point in carrying on, so do nothing forevermore:
for(;;)
;
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection:
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Configure manually:
// DHCP failed, so use a fixed IP address:
Ethernet.begin(mac, ip);
}
}
@ -91,34 +101,43 @@ void loop() {
// this method makes a HTTP connection to the server:
void sendData(int thisData) {
// if there's a successful connection:
if (client.connect("www.pachube.com", 80)) {
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request.
// fill in your feed address here:
client.print("PUT /api/YOUR_FEED_HERE.csv HTTP/1.1\n");
client.print("Host: www.pachube.com\n");
// fill in your Pachube API key here:
client.print("X-PachubeApiKey: YOUR_KEY_HERE\n");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.pachube.com");
client.print("X-PachubeApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
// calculate the length of the sensor reading in bytes:
int thisLength = getLength(thisData);
client.println(thisLength, DEC);
// 8 bytes for "sensor1," + number of digits of the data:
int thisLength = 8 + getLength(thisData);
client.println(thisLength);
// last pieces of the HTTP PUT request:
client.print("Content-Type: text/csv\n");
client.println("Connection: close\n");
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.println(thisData, DEC);
// note the time that the connection was made:
lastConnectionTime = millis();
client.print("sensor1,");
client.println(thisData);
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}

View File

@ -1,11 +1,15 @@
/*
Pachube sensor client with Strings
Cosm sensor client with Strings
This sketch connects an analog sensor to Pachube (http://www.pachube.com)
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example has been updated to use version 2.0 of the Cosm.com API.
To make it work, create a feed with two datastreams, and give them the IDs
sensor1 and sensor2. Or change the code below to match your feed.
This example uses the String library, which is part of the Arduino core from
version 0019.
@ -14,9 +18,10 @@
* Ethernet shield attached to pins 10, 11, 12, 13
created 15 March 2010
updated 26 Oct 2011
by Tom Igoe
modified 9 Apr 2012
by Tom Igoe with input from Usman Haque and Joe Saavedra
http://arduino.cc/en/Tutorial/CosmClientString
This code is in the public domain.
*/
@ -24,10 +29,17 @@
#include <SPI.h>
#include <Ethernet.h>
/#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
#define FEEDID 00000 // replace your feed ID
#define USERAGENT "My Project" // user agent is the project name
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(10,0,1,20);
@ -35,19 +47,29 @@ IPAddress ip(10,0,1,20);
// initialize the library instance:
EthernetClient client;
long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const int postingInterval = 10000; //delay between updates to Pachube.com
// if you don't want to use DNS (and reduce your sketch size)
// use the numeric IP instead of the name for the server:
IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
//char server[] = "api.cosm.com"; // name address for Cosm API
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 10*1000; //delay between updates to Cosm.com
void setup() {
// start serial port:
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");
// Configure manually:
// DHCP failed, so use a fixed IP address:
Ethernet.begin(mac, ip);
}
}
@ -56,13 +78,15 @@ void loop() {
// read the analog sensor:
int sensorReading = analogRead(A0);
// convert the data to a String to send it:
String dataString = String(sensorReading);
String dataString = "sensor1,";
dataString += sensorReading;
// you can append multiple readings to this String if your
// pachube feed is set up to handle multiple values:
// Cosm feed is set up to handle multiple values:
int otherSensorReading = analogRead(A1);
dataString += ",";
dataString += String(otherSensorReading);
dataString += "\nsensor2,";
dataString += otherSensorReading;
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
@ -81,7 +105,7 @@ void loop() {
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
sendData(dataString);
}
@ -93,29 +117,36 @@ void loop() {
// this method makes a HTTP connection to the server:
void sendData(String thisData) {
// if there's a successful connection:
if (client.connect("www.pachube.com", 80)) {
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request.
// fill in your feed address here:
client.print("PUT /api/YOUR_FEED_HERE.csv HTTP/1.1\n");
client.print("Host: www.pachube.com\n");
// fill in your Pachube API key here:
client.print("X-PachubeApiKey: YOUR_KEY_HERE\n");
// send the HTTP PUT request:
client.print("PUT /v2/feeds/");
client.print(FEEDID);
client.println(".csv HTTP/1.1");
client.println("Host: api.cosm.com");
client.print("X-CosmApiKey: ");
client.println(APIKEY);
client.print("User-Agent: ");
client.println(USERAGENT);
client.print("Content-Length: ");
client.println(thisData.length(), DEC);
client.println(thisData.length());
// last pieces of the HTTP PUT request:
client.print("Content-Type: text/csv\n");
client.println("Connection: close\n");
client.println("Content-Type: text/csv");
client.println("Connection: close");
client.println();
// here's the actual content of the PUT request:
client.println(thisData);
// note the time that the connection was made:
lastConnectionTime = millis();
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// note the time that the connection was made or attempted:
lastConnectionTime = millis();
}

View File

@ -13,6 +13,7 @@
* Ethernet shield attached to pins 10, 11, 12, 13
created 14 Sep 2010
modified 9 Apr 2012
by Tom Igoe
*/
@ -38,8 +39,13 @@ EthernetClient client;
void setup() {
// start the Ethernet connection:
Ethernet.begin(mac, ip);
// start the serial library:
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// give the Ethernet shield a second to initialize:
delay(1000);
Serial.println("connecting...");

View File

@ -14,9 +14,10 @@
version 0019.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
* Ethernet shield attached to pins 10, 11, 12, 13
created 21 May 2011
modified 9 Apr 2012
by Tom Igoe
This code is in the public domain.
@ -35,12 +36,12 @@ IPAddress ip(192,168,1,20);
// initialize the library instance:
EthernetClient client;
const int requestInterval = 60000; // delay between requests
const unsigned long requestInterval = 60000; // delay between requests
char serverName[] = "api.twitter.com"; // twitter URL
boolean requested; // whether you've made a request since connecting
long lastAttemptTime = 0; // last time you connected to the server, in milliseconds
unsigned long lastAttemptTime = 0; // last time you connected to the server, in milliseconds
String currentLine = ""; // string to hold the text from server
String tweet = ""; // string to hold the tweet
@ -51,13 +52,22 @@ void setup() {
currentLine.reserve(256);
tweet.reserve(150);
// initialize serial:
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// attempt a DHCP connection:
Serial.println("Attempting to get an IP address using DHCP:");
if (!Ethernet.begin(mac)) {
// if DHCP fails, start with a hard-coded address:
Serial.println("failed to get an IP address using DHCP, trying manually");
Ethernet.begin(mac, ip);
}
Serial.print("My address:");
Serial.println(Ethernet.localIP());
// connect to Twitter:
connectToServer();
}
@ -114,7 +124,7 @@ void connectToServer() {
Serial.println("connecting to server...");
if (client.connect(serverName, 80)) {
Serial.println("making HTTP request...");
// make HTTP GET request to twitter:
// make HTTP GET request to twitter:
client.println("GET /1/statuses/user_timeline.xml?screen_name=arduino&count=1 HTTP/1.1");
client.println("HOST: api.twitter.com");
client.println();
@ -122,3 +132,4 @@ void connectToServer() {
// note the time of this connect attempt:
lastAttemptTime = millis();
}

View File

@ -9,7 +9,7 @@
created 4 Sep 2010
by Michael Margolis
modified 17 Sep 2010
modified 9 Apr 2012
by Tom Igoe
This code is in the public domain.
@ -38,7 +38,12 @@ EthernetUDP Udp;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start Ethernet and UDP
if (Ethernet.begin(mac) == 0) {

View File

@ -8,6 +8,7 @@
* Ethernet shield attached to pins 10, 11, 12, 13
created 18 Dec 2009
modified 9 Apr 2012
by David A. Mellis
*/
@ -26,8 +27,12 @@ IPAddress server(173,194,33,104); // Google
EthernetClient client;
void setup() {
// start the serial library:
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection:
if (Ethernet.begin(mac) == 0) {
Serial.println("Failed to configure Ethernet using DHCP");

View File

@ -0,0 +1,110 @@
/*
Repeating Web client
This sketch connects to a a web server and makes a request
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
the Adafruit Ethernet shield, either one will work, as long as it's got
a Wiznet Ethernet module on board.
This example uses DNS, by assigning the Ethernet client with a MAC address,
IP address, and DNS address.
Circuit:
* Ethernet shield attached to pins 10, 11, 12, 13
created 19 Apr 2012
by Tom Igoe
http://arduino.cc/en/Tutorial/WebClientRepeating
This code is in the public domain.
*/
#include <SPI.h>
#include <Ethernet.h>
// assign a MAC address for the ethernet controller.
// fill in your address here:
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
// fill in an available IP address on your network here,
// for manual configuration:
IPAddress ip(10,0,0,20);
// fill in your Domain Name Server address here:
IPAddress myDns(1,1,1,1);
// initialize the library instance:
EthernetClient client;
char server[] = "www.arduino.cc";
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
boolean lastConnected = false; // state of the connection last time through the main loop
const unsigned long postingInterval = 60*1000; // delay between updates, in milliseconds
void setup() {
// start serial port:
Serial.begin(9600);
// give the ethernet module time to boot up:
delay(1000);
// start the Ethernet connection using a fixed IP address and DNS server:
Ethernet.begin(mac, ip, myDns);
// print the Ethernet board/shield's IP address:
Serial.print("My IP address: ");
Serial.println(Ethernet.localIP());
}
void loop() {
// if there's incoming data from the net connection.
// send it out the serial port. This is for debugging
// purposes only:
if (client.available()) {
char c = client.read();
Serial.print(c);
}
// if there's no net connection, but there was one last time
// through the loop, then stop the client:
if (!client.connected() && lastConnected) {
Serial.println();
Serial.println("disconnecting.");
client.stop();
}
// if you're not connected, and ten seconds have passed since
// your last connection, then connect again and send data:
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
httpRequest();
}
// store the state of the connection for next time through
// the loop:
lastConnected = client.connected();
}
// this method makes a HTTP connection to the server:
void httpRequest() {
// if there's a successful connection:
if (client.connect(server, 80)) {
Serial.println("connecting...");
// send the HTTP PUT request:
client.println("GET /latest.txt HTTP/1.1");
client.println("Host: www.arduino.cc");
client.println("User-Agent: arduino-ethernet");
client.println("Connection: close");
client.println();
// note the time that the connection was made:
lastConnectionTime = millis();
}
else {
// if you couldn't make a connection:
Serial.println("connection failed");
Serial.println("disconnecting.");
client.stop();
}
}

View File

@ -10,7 +10,7 @@
created 18 Dec 2009
by David A. Mellis
modified 4 Sep 2010
modified 9 Apr 2012
by Tom Igoe
*/
@ -20,7 +20,8 @@
// Enter a MAC address and IP address for your controller below.
// The IP address will be dependent on your local network:
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte mac[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192,168,1, 177);
// Initialize the Ethernet server library
@ -28,23 +29,33 @@ IPAddress ip(192,168,1, 177);
// (port 80 is default for HTTP):
EthernetServer server(80);
void setup()
{
void setup() {
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// start the Ethernet connection and the server:
Ethernet.begin(mac, ip);
server.begin();
Serial.print("server is at ");
Serial.println(Ethernet.localIP());
}
void loop()
{
void loop() {
// listen for incoming clients
EthernetClient client = server.available();
if (client) {
Serial.println("new client");
// an http request ends with a blank line
boolean currentLineIsBlank = true;
while (client.connected()) {
if (client.available()) {
char c = client.read();
Serial.write(c);
// if you've gotten to the end of the line (received a newline
// character) and the line is blank, the http request has ended,
// so you can send a reply
@ -52,16 +63,22 @@ void loop()
// send a standard http response header
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("Connnection: close");
client.println();
client.println("<!DOCTYPE HTML>");
client.println("<html>");
// add a meta refresh tag, so the browser pulls again every 5 seconds:
client.println("<meta http-equiv=\"refresh\" content=\"5\">");
// output the value of each analog input pin
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
int sensorReading = analogRead(analogChannel);
client.print("analog input ");
client.print(analogChannel);
client.print(" is ");
client.print(analogRead(analogChannel));
client.println("<br />");
client.print(sensorReading);
client.println("<br />");
}
client.println("</html>");
break;
}
if (c == '\n') {
@ -78,5 +95,7 @@ void loop()
delay(1);
// close the connection:
client.stop();
Serial.println("client disonnected");
}
}

View File

@ -327,7 +327,11 @@ private:
inline static void initSS() { DDRB |= _BV(4); };
inline static void setSS() { PORTB &= ~_BV(4); };
inline static void resetSS() { PORTB |= _BV(4); };
#elif defined(__AVR_ATmega32U4__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB162__)
#elif defined(__AVR_ATmega32U4__)
inline static void initSS() { DDRB |= _BV(6); };
inline static void setSS() { PORTB &= ~_BV(6); };
inline static void resetSS() { PORTB |= _BV(6); };
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB162__)
inline static void initSS() { DDRB |= _BV(0); };
inline static void setSS() { PORTB &= ~_BV(0); };
inline static void resetSS() { PORTB |= _BV(0); };

View File

@ -32,7 +32,8 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalAutoscroll
*/
// include the library code:

View File

@ -32,7 +32,7 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalBlink
*/

View File

@ -33,7 +33,8 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalCursor
*/
// include the library code:

View File

@ -33,7 +33,8 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalDisplay
*/
// include the library code:

View File

@ -33,7 +33,8 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalScroll
*/
// include the library code:

View File

@ -32,7 +32,7 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalSerial
*/
// include the library code:

View File

@ -32,7 +32,7 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalTextDirection
*/
@ -49,7 +49,6 @@ void setup() {
lcd.begin(16, 2);
// turn on the cursor:
lcd.cursor();
Serial.begin(9600);
}
void loop() {

View File

@ -32,7 +32,8 @@
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystal
http://arduino.cc/en/Tutorial/LiquidCrystalSetCursor
*/
// include the library code:

View File

@ -16,7 +16,7 @@
created 28 Mar 2011
by Limor Fried
modified 16 Mar 2011
modified 9 Apr 2012
by Tom Igoe
*/
// include the SD library:
@ -35,7 +35,13 @@ const int chipSelect = 4;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("\nInitializing SD card...");
// On the Ethernet Shield, CS is pin 4. It's set as an output by default.
// Note that even if it's not used as the CS pin, the hardware SS pin

View File

@ -13,7 +13,7 @@
** CS - pin 4
created 24 Nov 2010
updated 2 Dec 2010
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
@ -30,7 +30,13 @@ const int chipSelect = 4;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Initializing SD card...");
// make sure that the default chip select pin is set to
// output, even if you don't use it:

View File

@ -12,6 +12,9 @@
** CS - pin 4
created 22 December 2010
by Limor Fried
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
@ -27,7 +30,13 @@ const int chipSelect = 4;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Initializing SD card...");
// make sure that the default chip select pin is set to
// output, even if you don't use it:

View File

@ -11,7 +11,7 @@
created Nov 2010
by David A. Mellis
updated 2 Dec 2010
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
@ -23,7 +23,13 @@ File myFile;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Initializing SD card...");
// On the Ethernet Shield, CS is pin 4. It's set as an output by default.
// Note that even if it's not used as the CS pin, the hardware SS pin

View File

@ -11,7 +11,7 @@
created Nov 2010
by David A. Mellis
updated 2 Dec 2010
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
@ -24,7 +24,13 @@ File myFile;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Initializing SD card...");
// On the Ethernet Shield, CS is pin 4. It's set as an output by default.
// Note that even if it's not used as the CS pin, the hardware SS pin

View File

@ -11,7 +11,7 @@
created Nov 2010
by David A. Mellis
updated 2 Dec 2010
modified 9 Apr 2012
by Tom Igoe
This example code is in the public domain.
@ -23,7 +23,13 @@ File root;
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.print("Initializing SD card...");
// On the Ethernet Shield, CS is pin 4. It's set as an output by default.
// Note that even if it's not used as the CS pin, the hardware SS pin

View File

@ -166,44 +166,43 @@ static const pin_map_t digitalPinMap[] = {
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// Teensy 2.0
// Leonardo
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 6;
uint8_t const SCL_PIN = 5;
uint8_t const SDA_PIN = 2;
uint8_t const SCL_PIN = 3;
// SPI port
uint8_t const SS_PIN = 0;
uint8_t const MOSI_PIN = 2;
uint8_t const MISO_PIN = 3;
uint8_t const SCK_PIN = 1;
uint8_t const SS_PIN = 17;
uint8_t const MOSI_PIN = 16;
uint8_t const MISO_PIN = 14;
uint8_t const SCK_PIN = 15;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 7}, // B7 4
{&DDRD, &PIND, &PORTD, 0}, // D0 5
{&DDRD, &PIND, &PORTD, 1}, // D1 6
{&DDRD, &PIND, &PORTD, 2}, // D2 7
{&DDRD, &PIND, &PORTD, 3}, // D3 8
{&DDRC, &PINC, &PORTC, 6}, // C6 9
{&DDRC, &PINC, &PORTC, 7}, // C7 10
{&DDRD, &PIND, &PORTD, 6}, // D6 11
{&DDRD, &PIND, &PORTD, 7}, // D7 12
{&DDRB, &PINB, &PORTB, 4}, // B4 13
{&DDRB, &PINB, &PORTB, 5}, // B5 14
{&DDRB, &PINB, &PORTB, 6}, // B6 15
{&DDRF, &PINF, &PORTF, 7}, // F7 16
{&DDRF, &PINF, &PORTF, 6}, // F6 17
{&DDRF, &PINF, &PORTF, 5}, // F5 18
{&DDRF, &PINF, &PORTF, 4}, // F4 19
{&DDRF, &PINF, &PORTF, 1}, // F1 20
{&DDRF, &PINF, &PORTF, 0}, // F0 21
{&DDRD, &PIND, &PORTD, 4}, // D4 22
{&DDRD, &PIND, &PORTD, 5}, // D5 23
{&DDRE, &PINE, &PORTE, 6} // E6 24
{&DDRD, &PIND, &PORTD, 2}, // D2 0
{&DDRD, &PIND, &PORTD, 3}, // D3 1
{&DDRD, &PIND, &PORTD, 1}, // D1 2
{&DDRD, &PIND, &PORTD, 0}, // D0 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRC, &PINC, &PORTC, 6}, // C6 5
{&DDRD, &PIND, &PORTD, 7}, // D7 6
{&DDRE, &PINE, &PORTE, 6}, // E6 7
{&DDRB, &PINB, &PORTB, 4}, // B4 8
{&DDRB, &PINB, &PORTB, 5}, // B5 9
{&DDRB, &PINB, &PORTB, 6}, // B6 10
{&DDRB, &PINB, &PORTB, 7}, // B7 11
{&DDRD, &PIND, &PORTD, 6}, // D6 12
{&DDRC, &PINC, &PORTC, 7}, // C7 13
{&DDRB, &PINB, &PORTB, 3}, // B3 14
{&DDRB, &PINB, &PORTB, 1}, // B1 15
{&DDRB, &PINB, &PORTB, 2}, // B2 16
{&DDRB, &PINB, &PORTB, 0}, // B0 17
{&DDRF, &PINF, &PORTF, 7}, // F7 18
{&DDRF, &PINF, &PORTF, 6}, // F6 19
{&DDRF, &PINF, &PORTF, 5}, // F5 20
{&DDRF, &PINF, &PORTF, 4}, // F4 21
{&DDRF, &PINF, &PORTF, 1}, // F1 22
{&DDRF, &PINF, &PORTF, 0}, // F0 23
};
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)

View File

@ -56,7 +56,7 @@ static UNUSEDOK int FreeRam(void) {
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.print(c);
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.write(c);
}
//------------------------------------------------------------------------------
/**

View File

@ -14,27 +14,32 @@
SPIClass SPI;
void SPIClass::begin() {
// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// Set SS to high so a connected chip will be "deselected" by default
digitalWrite(SS, HIGH);
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
pinMode(SS, OUTPUT);
digitalWrite(SCK, LOW);
digitalWrite(MOSI, LOW);
digitalWrite(SS, HIGH);
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// By doing this AFTER enabling SPI, we avoid accidentally
// clocking in a single bit since the lines go directly
// from "input" to SPI control.
// http://code.google.com/p/arduino/issues/detail?id=888
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
}
void SPIClass::end() {
SPCR &= ~_BV(SPE);
}

View File

@ -89,7 +89,7 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( (unsigned)*TCNTn < (usToTicks(REFRESH_INTERVAL) + 4) ) // allow a few ticks to ensure the next OCR1A not missed
if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) ) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
@ -298,7 +298,7 @@ void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel >= 0) && (channel < MAX_SERVOS) ) // ensure channel is valid
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if( value < SERVO_MIN() ) // ensure pulse width is valid
value = SERVO_MIN();

View File

@ -1,10 +1,43 @@
/*
Software serial multple serial test
Receives from the hardware serial, sends to software serial.
Receives from software serial, sends to hardware serial.
The circuit:
* RX is digital pin 10 (connect to TX of other device)
* TX is digital pin 11 (connect to RX of other device)
Note:
Not all pins on the Mega and Mega 2560 support change interrupts,
so only the following can be used for RX:
10, 11, 12, 13, 50, 51, 52, 53, 62, 63, 64, 65, 66, 67, 68, 69
Not all pins on the Leonardo support change interrupts,
so only the following can be used for RX:
8, 9, 10, 11, 14 (MISO), 15 (SCK), 16 (MOSI).
created back in the mists of time
modified 25 May 2012
by Tom Igoe
based on Mikal Hart's example
This example code is in the public domain.
*/
#include <SoftwareSerial.h>
SoftwareSerial mySerial(2, 3);
SoftwareSerial mySerial(10, 11); // RX, TX
void setup()
{
// Open serial communications and wait for port to open:
Serial.begin(57600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
Serial.println("Goodnight moon!");
// set the data rate for the SoftwareSerial port
@ -19,3 +52,4 @@ void loop() // run over and over
if (Serial.available())
mySerial.write(Serial.read());
}

View File

@ -16,7 +16,17 @@
* First serial device's TX attached to digital pin 2, RX to pin 3
* Second serial device's TX attached to digital pin 4, RX to pin 5
Note:
Not all pins on the Mega and Mega 2560 support change interrupts,
so only the following can be used for RX:
10, 11, 12, 13, 50, 51, 52, 53, 62, 63, 64, 65, 66, 67, 68, 69
Not all pins on the Leonardo support change interrupts,
so only the following can be used for RX:
8, 9, 10, 11, 14 (MISO), 15 (SCK), 16 (MOSI).
created 18 Apr. 2011
modified 25 May 2012
by Tom Igoe
based on Mikal Hart's twoPortRXExample
@ -25,16 +35,21 @@
*/
#include <SoftwareSerial.h>
// software serial #1: TX = digital pin 2, RX = digital pin 3
SoftwareSerial portOne(2, 3);
// software serial #1: TX = digital pin 10, RX = digital pin 11
SoftwareSerial portOne(10,11);
// software serial #2: TX = digital pin 4, RX = digital pin 5
SoftwareSerial portTwo(4, 5);
// software serial #2: TX = digital pin 8, RX = digital pin 9
// on the Mega, use other pins instead, since 8 and 9 don't work on the Mega
SoftwareSerial portTwo(8,9);
void setup()
{
// Start the hardware serial port
// Open serial communications and wait for port to open:
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for Leonardo only
}
// Start each software serial port
portOne.begin(9600);

View File

@ -26,11 +26,10 @@ const int stepsPerRevolution = 200; // change this to fit the number of steps p
// initialize the stepper library on pins 8 through 11:
Stepper myStepper(stepsPerRevolution, 8,9,10,11);
int stepCount = 0; // number of steps the motor has taken
int stepCount = 0; // number of steps the motor has taken
void setup() {
// initialize the serial port:
Serial.begin(9600);
// nothing to do inside the setup
}
void loop() {

View File

@ -15,6 +15,8 @@
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
extern "C" {
@ -73,14 +75,14 @@ void TwoWire::begin(int address)
begin((uint8_t)address);
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
{
// clamp to buffer length
if(quantity > BUFFER_LENGTH){
quantity = BUFFER_LENGTH;
}
// perform blocking read into buffer
uint8_t read = twi_readFrom(address, rxBuffer, quantity);
uint8_t read = twi_readFrom(address, rxBuffer, quantity, sendStop);
// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = read;
@ -88,9 +90,19 @@ uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
return read;
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity);
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop);
}
void TwoWire::beginTransmission(uint8_t address)
@ -109,10 +121,23 @@ void TwoWire::beginTransmission(int address)
beginTransmission((uint8_t)address);
}
uint8_t TwoWire::endTransmission(void)
//
// Originally, 'endTransmission' was an f(void) function.
// It has been modified to take one parameter indicating
// whether or not a STOP should be performed on the bus.
// Calling endTransmission(false) allows a sketch to
// perform a repeated start.
//
// WARNING: Nothing in the library keeps track of whether
// the bus tenure has been properly ended with a STOP. It
// is very possible to leave the bus in a hung state if
// no call to endTransmission(true) is made. Some I2C
// devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop)
{
// transmit buffer (blocking)
int8_t ret = twi_writeTo(txAddress, txBuffer, txBufferLength, 1);
int8_t ret = twi_writeTo(txAddress, txBuffer, txBufferLength, 1, sendStop);
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
@ -121,6 +146,14 @@ uint8_t TwoWire::endTransmission(void)
return ret;
}
// This provides backwards compatibility with the original
// definition, and expected behaviour, of endTransmission
//
uint8_t TwoWire::endTransmission(void)
{
return endTransmission(true);
}
// must be called in:
// slave tx event callback
// or after beginTransmission(address)

View File

@ -15,6 +15,8 @@
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#ifndef TwoWire_h
@ -50,8 +52,11 @@ class TwoWire : public Stream
void beginTransmission(uint8_t);
void beginTransmission(int);
uint8_t endTransmission(void);
uint8_t endTransmission(uint8_t);
uint8_t requestFrom(uint8_t, uint8_t);
uint8_t requestFrom(uint8_t, uint8_t, uint8_t);
uint8_t requestFrom(int, int);
uint8_t requestFrom(int, int, int);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *, size_t);
virtual int available(void);

View File

@ -15,6 +15,8 @@
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#include <math.h>
@ -37,14 +39,16 @@
#include "twi.h"
static volatile uint8_t twi_state;
static uint8_t twi_slarw;
static volatile uint8_t twi_slarw;
static volatile uint8_t twi_sendStop; // should the transaction end with a stop
static volatile uint8_t twi_inRepStart; // in the middle of a repeated start
static void (*twi_onSlaveTransmit)(void);
static void (*twi_onSlaveReceive)(uint8_t*, int);
static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_masterBufferIndex;
static uint8_t twi_masterBufferLength;
static volatile uint8_t twi_masterBufferLength;
static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_txBufferIndex;
@ -65,6 +69,8 @@ void twi_init(void)
{
// initialize state
twi_state = TWI_READY;
twi_sendStop = true; // default value
twi_inRepStart = false;
// activate internal pullups for twi.
digitalWrite(SDA, 1);
@ -103,9 +109,10 @@ void twi_setAddress(uint8_t address)
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes to read into array
* sendStop: Boolean indicating whether to send a stop at the end
* Output number of bytes read
*/
uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length)
uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)
{
uint8_t i;
@ -119,6 +126,7 @@ uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length)
continue;
}
twi_state = TWI_MRX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
@ -135,8 +143,20 @@ uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length)
twi_slarw = TW_READ;
twi_slarw |= address << 1;
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
TWDR = twi_slarw;
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
}
else
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
// wait for read operation to complete
while(TWI_MRX == twi_state){
@ -162,13 +182,14 @@ uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length)
* data: pointer to byte array
* length: number of bytes in array
* wait: boolean indicating to wait for write or not
* sendStop: boolean indicating whether or not to send a stop at the end
* Output 0 .. success
* 1 .. length to long for buffer
* 2 .. address send, NACK received
* 3 .. data send, NACK received
* 4 .. other twi error (lost bus arbitration, bus error, ..)
*/
uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait)
uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)
{
uint8_t i;
@ -182,6 +203,7 @@ uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait
continue;
}
twi_state = TWI_MTX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
@ -198,8 +220,23 @@ uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait
twi_slarw = TW_WRITE;
twi_slarw |= address << 1;
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
// if we're in a repeated start, then we've already sent the START
// in the ISR. Don't do it again.
//
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
TWDR = twi_slarw;
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
}
else
// send start condition
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs
// wait for write operation to complete
while(wait && (TWI_MTX == twi_state)){
@ -343,7 +380,16 @@ SIGNAL(TWI_vect)
TWDR = twi_masterBuffer[twi_masterBufferIndex++];
twi_reply(1);
}else{
twi_stop();
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;
twi_state = TWI_READY;
}
}
break;
case TW_MT_SLA_NACK: // address sent, nack received
@ -374,6 +420,17 @@ SIGNAL(TWI_vect)
case TW_MR_DATA_NACK: // data received, nack sent
// put final byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;
twi_state = TWI_READY;
}
break;
case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;

View File

@ -40,8 +40,8 @@
void twi_init(void);
void twi_setAddress(uint8_t);
uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t);
uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t);
uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
uint8_t twi_transmit(const uint8_t*, uint8_t);
void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
void twi_attachSlaveTxEvent( void (*)(void) );

View File

@ -6,12 +6,12 @@ name=Arduino
# Default "compiler.path" is correct, change only if you want to overidde the initial value
#compiler.path={ide.path}/tools/avr/bin/..
compiler.c.cmd=avr-gcc
compiler.c.flags=-c -g -Os -w -ffunction-sections -fdata-sections
compiler.c.flags=-c -g -Os -w -ffunction-sections -fdata-sections -MMD
compiler.c.elf.flags=-Os -Wl,--gc-sections
compiler.c.elf.cmd=avr-gcc
compiler.S.flags=-c -g -assembler-with-cpp
compiler.cpp.cmd=avr-g++
compiler.cpp.flags=-c -g -Os -w -fno-exceptions -ffunction-sections -fdata-sections
compiler.cpp.flags=-c -g -Os -w -fno-exceptions -ffunction-sections -fdata-sections -MMD
compiler.ar.cmd=avr-ar
compiler.ar.flags=rcs
compiler.objcopy.cmd=avr-objcopy
@ -20,48 +20,56 @@ compiler.elf2hex.flags=-O ihex -R .eeprom
compiler.elf2hex.cmd=avr-objcopy
compiler.ldflags=
compiler.size.cmd=avr-size
# this can be overriden in boards.txt
build.extra_flags=
# AVR compile patterns
# --------------------
## Compile c files
recipe.c.o.pattern={compiler.path}{compiler.c.cmd} {compiler.c.flags} -mmcu={build.mcu} -DF_CPU={build.f_cpu} -D{software}={runtime.ide.version} {includes} {source_file} -o {object_file}
recipe.c.o.pattern="{compiler.path}{compiler.c.cmd}" {compiler.c.flags} -mmcu={build.mcu} -DF_CPU={build.f_cpu} -D{software}={runtime.ide.version} {build.extra_flags} {includes} "{source_file}" -o "{object_file}"
## Compile c++ files
recipe.cpp.o.pattern={compiler.path}{compiler.cpp.cmd} {compiler.cpp.flags} -mmcu={build.mcu} -DF_CPU={build.f_cpu} -D{software}={runtime.ide.version} {includes} {source_file} -o {object_file}
recipe.cpp.o.pattern="{compiler.path}{compiler.cpp.cmd}" {compiler.cpp.flags} -mmcu={build.mcu} -DF_CPU={build.f_cpu} -D{software}={runtime.ide.version} {build.extra_flags} {includes} "{source_file}" -o "{object_file}"
## Create archives
recipe.ar.pattern={compiler.path}{compiler.ar.cmd} {compiler.ar.flags} {build.path}/{archive_file} {object_file}
recipe.ar.pattern="{compiler.path}{compiler.ar.cmd}" {compiler.ar.flags} "{build.path}/{archive_file}" "{object_file}"
## Combine gc-sections, archives, and objects
recipe.c.combine.pattern={compiler.path}{compiler.c.elf.cmd} {compiler.c.elf.flags} -mmcu={build.mcu} -o {build.path}/{build.project_name}.elf {object_files} {build.path}/{archive_file} -L{build.path} -lm
recipe.c.combine.pattern="{compiler.path}{compiler.c.elf.cmd}" {compiler.c.elf.flags} -mmcu={build.mcu} -o "{build.path}/{build.project_name}.elf" {object_files} "{build.path}/{archive_file}" "-L{build.path}" -lm
## Create eeprom
recipe.objcopy.eep.pattern={compiler.path}{compiler.objcopy.cmd} {compiler.objcopy.eep.flags} {build.path}/{build.project_name}.elf {build.path}/{build.project_name}.eep
recipe.objcopy.eep.pattern="{compiler.path}{compiler.objcopy.cmd}" {compiler.objcopy.eep.flags} "{build.path}/{build.project_name}.elf" "{build.path}/{build.project_name}.eep"
## Create hex
recipe.objcopy.hex.pattern={compiler.path}{compiler.elf2hex.cmd} {compiler.elf2hex.flags} {build.path}/{build.project_name}.elf {build.path}/{build.project_name}.hex
recipe.objcopy.hex.pattern="{compiler.path}{compiler.elf2hex.cmd}" {compiler.elf2hex.flags} "{build.path}/{build.project_name}.elf" "{build.path}/{build.project_name}.hex"
## Compute size
recipe.size.pattern={compiler.path}{compiler.size.cmd} -A {build.path}/{build.project_name}.hex
recipe.size.pattern="{compiler.path}{compiler.size.cmd}" -A "{build.path}/{build.project_name}.hex"
recipe.size.regex=Total\s+([0-9]+).*
# AVR Uploader/Programmers tools
# -------------------
tools.avrdude.cmd=avrdude
tools.avrdude.path={runtime.ide.path}/hardware/tools
tools.avrdude.config.path={path}/avrdude.conf
tools.avrdude.cmd.path={runtime.ide.path}/hardware/tools/avr/bin/avrdude
tools.avrdude.config.path={runtime.ide.path}/hardware/tools/avr/etc/avrdude.conf
tools.avrdude.cmd.path.linux={runtime.ide.path}/hardware/tools/avrdude
tools.avrdude.config.path.linux={runtime.ide.path}/hardware/tools/avrdude.conf
tools.avrdude.upload.params.verbose=-v -v -v -v
tools.avrdude.upload.params.quiet=-q -q
tools.avrdude.upload.pattern={path}/{cmd} -C{config.path} {upload.verbose} -p{build.mcu} -c{upload.protocol} -P{serial.port} -b{upload.speed} -D -Uflash:w:{build.path}/{build.project_name}.hex:i
tools.avrdude.upload.pattern="{cmd.path}" "-C{config.path}" {upload.verbose} -p{build.mcu} -c{upload.protocol} -P{serial.port} -b{upload.speed} -D "-Uflash:w:{build.path}/{build.project_name}.hex:i"
tools.avrdude.program.params.verbose=-v -v -v -v
tools.avrdude.program.params.quiet=-q -q
tools.avrdude.program.pattern={path}/{cmd} -C{config.path} {program.verbose} -p{build.mcu} -c{protocol} {program.extra_params} -Uflash:w:{build.path}/{build.project_name}.hex:i
tools.avrdude.program.pattern="{cmd.path}" "-C{config.path}" {program.verbose} -p{build.mcu} -c{protocol} {program.extra_params} "-Uflash:w:{build.path}/{build.project_name}.hex:i"
tools.avrdude.erase.params.verbose=-v -v -v -v
tools.avrdude.erase.params.quiet=-q -q
tools.avrdude.erase.pattern="{cmd.path}" "-C{config.path}" {erase.verbose} -p{build.mcu} -c{protocol} {program.extra_params} -e -Ulock:w:{bootloader.unlock_bits}:m -Uefuse:w:{bootloader.extended_fuses}:m -Uhfuse:w:{bootloader.high_fuses}:m -Ulfuse:w:{bootloader.low_fuses}:m
tools.avrdude.bootloader.params.verbose=-v -v -v -v
tools.avrdude.bootloader.params.quiet=-q -q
tools.avrdude.bootloader.pattern={path}/{cmd} -C{config.path} {bootloader.verbose} -p{build.mcu} -c{protocol} {program.extra_params} {bootloader.params}
tools.avrdude.bootloader.pattern="{cmd.path}" "-C{config.path}" {bootloader.verbose} -p{build.mcu} -c{protocol} {program.extra_params} "-Uflash:w:{runtime.ide.path}/hardware/arduino/avr/bootloaders/{bootloader.file}:i" -Ulock:w:{bootloader.lock_bits}:m

View File

@ -27,37 +27,40 @@
#include <avr/pgmspace.h>
#define ARDUINO_MODEL_USB_PID 0x0034
#define TX_RX_LED_INIT DDRD |= (1<<5), DDRB |= (1<<0)
#define TXLED0 PORTD |= (1<<5)
#define TXLED1 PORTD &= ~(1<<5)
#define RXLED0 PORTB |= (1<<0)
#define RXLED1 PORTB &= ~(1<<0)
const static uint8_t SDA = 2;
const static uint8_t SCL = 3;
static const uint8_t SDA = 2;
static const uint8_t SCL = 3;
// Map SPI port to 'new' pins D14..D17
const static uint8_t SS = 17;
const static uint8_t MOSI = 16;
const static uint8_t MISO = 14;
const static uint8_t SCK = 15;
static const uint8_t SS = 17;
static const uint8_t MOSI = 16;
static const uint8_t MISO = 14;
static const uint8_t SCK = 15;
// Mapping of analog pins as digital I/O
// A6-A11 share with digital pins
const static uint8_t A0 = 18;
const static uint8_t A1 = 19;
const static uint8_t A2 = 20;
const static uint8_t A3 = 21;
const static uint8_t A4 = 22;
const static uint8_t A5 = 23;
const static uint8_t A6 = 24; // D4
const static uint8_t A7 = 25; // D6
const static uint8_t A8 = 26; // D8
const static uint8_t A9 = 27; // D9
const static uint8_t A10 = 28; // D10
const static uint8_t A11 = 29; // D12
static const uint8_t A0 = 18;
static const uint8_t A1 = 19;
static const uint8_t A2 = 20;
static const uint8_t A3 = 21;
static const uint8_t A4 = 22;
static const uint8_t A5 = 23;
static const uint8_t A6 = 24; // D4
static const uint8_t A7 = 25; // D6
static const uint8_t A8 = 26; // D8
static const uint8_t A9 = 27; // D9
static const uint8_t A10 = 28; // D10
static const uint8_t A11 = 29; // D12
#define digitalPinToPCICR(p) ((((p) >= 8 && (p) <= 11) || ((p) >= 14 && (p) <= 17) || ((p) >= A8 && (p) <= A10)) ? (&PCICR) : ((uint8_t *)0))
#define digitalPinToPCICRbit(p) 0
#define digitalPinToPCMSK(p) ((((p) >= 8 && (p) <= 11) || ((p) >= 14 && (p) <= 17) || ((p) >= A8 && (p) <= A10)) ? (&PCMSK0) : ((uint8_t *)0))
#define digitalPinToPCMSKbit(p) ( ((p) >= 8 && (p) <= 11) ? (p) - 4 : ((p) == 14 ? 3 : ((p) == 15 ? 1 : ((p) == 16 ? 2 : ((p) == 17 ? 0 : (p - A8 + 4))))))
// __AVR_ATmega32U4__ has an unusual mapping of pins to channels
extern const uint8_t PROGMEM analog_pin_to_channel_PGM[];
@ -212,7 +215,7 @@ const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[30] = {
_BV(6), // D29 / D12 - A11 - PD6
};
const uint8_t PROGMEM digital_pin_to_timer_PGM[18] = {
const uint8_t PROGMEM digital_pin_to_timer_PGM[16] = {
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,

View File

@ -32,31 +32,31 @@
#define analogInputToDigitalPin(p) ((p < 16) ? (p) + 54 : -1)
#define digitalPinHasPWM(p) (((p) >= 2 && (p) <= 13) || ((p) >= 44 && (p)<= 46))
const static uint8_t SS = 53;
const static uint8_t MOSI = 51;
const static uint8_t MISO = 50;
const static uint8_t SCK = 52;
static const uint8_t SS = 53;
static const uint8_t MOSI = 51;
static const uint8_t MISO = 50;
static const uint8_t SCK = 52;
const static uint8_t SDA = 20;
const static uint8_t SCL = 21;
const static uint8_t LED_BUILTIN = 13;
static const uint8_t SDA = 20;
static const uint8_t SCL = 21;
static const uint8_t LED_BUILTIN = 13;
const static uint8_t A0 = 54;
const static uint8_t A1 = 55;
const static uint8_t A2 = 56;
const static uint8_t A3 = 57;
const static uint8_t A4 = 58;
const static uint8_t A5 = 59;
const static uint8_t A6 = 60;
const static uint8_t A7 = 61;
const static uint8_t A8 = 62;
const static uint8_t A9 = 63;
const static uint8_t A10 = 64;
const static uint8_t A11 = 65;
const static uint8_t A12 = 66;
const static uint8_t A13 = 67;
const static uint8_t A14 = 68;
const static uint8_t A15 = 69;
static const uint8_t A0 = 54;
static const uint8_t A1 = 55;
static const uint8_t A2 = 56;
static const uint8_t A3 = 57;
static const uint8_t A4 = 58;
static const uint8_t A5 = 59;
static const uint8_t A6 = 60;
static const uint8_t A7 = 61;
static const uint8_t A8 = 62;
static const uint8_t A9 = 63;
static const uint8_t A10 = 64;
static const uint8_t A11 = 65;
static const uint8_t A12 = 66;
static const uint8_t A13 = 67;
static const uint8_t A14 = 68;
static const uint8_t A15 = 69;
// A majority of the pins are NOT PCINTs, SO BE WARNED (i.e. you cannot use them as receive pins)
// Only pins available for RECEIVE (TRANSMIT can be on any pin):

View File

@ -1,27 +0,0 @@
/*
pins_arduino.h - Pin definition functions for Arduino
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2007 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.h 249 2007-02-03 16:52:51Z mellis $
*/
#include "../leonardo/pins_arduino.h"
#undef ARDUINO_MODEL_USB_PID
#define ARDUINO_MODEL_USB_PID 0x0035

View File

@ -37,23 +37,23 @@
#define digitalPinHasPWM(p) ((p) == 3 || (p) == 5 || (p) == 6 || (p) == 9 || (p) == 10 || (p) == 11)
#endif
const static uint8_t SS = 10;
const static uint8_t MOSI = 11;
const static uint8_t MISO = 12;
const static uint8_t SCK = 13;
static const uint8_t SS = 10;
static const uint8_t MOSI = 11;
static const uint8_t MISO = 12;
static const uint8_t SCK = 13;
const static uint8_t SDA = 18;
const static uint8_t SCL = 19;
const static uint8_t LED_BUILTIN = 13;
static const uint8_t SDA = 18;
static const uint8_t SCL = 19;
static const uint8_t LED_BUILTIN = 13;
const static uint8_t A0 = 14;
const static uint8_t A1 = 15;
const static uint8_t A2 = 16;
const static uint8_t A3 = 17;
const static uint8_t A4 = 18;
const static uint8_t A5 = 19;
const static uint8_t A6 = 20;
const static uint8_t A7 = 21;
static const uint8_t A0 = 14;
static const uint8_t A1 = 15;
static const uint8_t A2 = 16;
static const uint8_t A3 = 17;
static const uint8_t A4 = 18;
static const uint8_t A5 = 19;
static const uint8_t A6 = 20;
static const uint8_t A7 = 21;
#define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 21) ? (&PCICR) : ((uint8_t *)0))
#define digitalPinToPCICRbit(p) (((p) <= 7) ? 2 : (((p) <= 13) ? 0 : 1))
@ -215,4 +215,4 @@ const uint8_t PROGMEM digital_pin_to_timer_PGM[] = {
#endif
#endif
#endif

View File

@ -0,0 +1,26 @@
#ifndef client_h
#define client_h
#include "Print.h"
#include "Stream.h"
#include "IPAddress.h"
class Client : public Stream {
public:
virtual int connect(IPAddress ip, uint16_t port) =0;
virtual int connect(const char *host, uint16_t port) =0;
virtual size_t write(uint8_t) =0;
virtual size_t write(const uint8_t *buf, size_t size) =0;
virtual int available() = 0;
virtual int read() = 0;
virtual int read(uint8_t *buf, size_t size) = 0;
virtual int peek() = 0;
virtual void flush() = 0;
virtual void stop() = 0;
virtual uint8_t connected() = 0;
virtual operator bool() = 0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@ -0,0 +1,56 @@
#include <Arduino.h>
#include <IPAddress.h>
IPAddress::IPAddress()
{
memset(_address, 0, sizeof(_address));
}
IPAddress::IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet)
{
_address[0] = first_octet;
_address[1] = second_octet;
_address[2] = third_octet;
_address[3] = fourth_octet;
}
IPAddress::IPAddress(uint32_t address)
{
memcpy(_address, &address, sizeof(_address));
}
IPAddress::IPAddress(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
}
IPAddress& IPAddress::operator=(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
return *this;
}
IPAddress& IPAddress::operator=(uint32_t address)
{
memcpy(_address, (const uint8_t *)&address, sizeof(_address));
return *this;
}
bool IPAddress::operator==(const uint8_t* addr)
{
return memcmp(addr, _address, sizeof(_address)) == 0;
}
size_t IPAddress::printTo(Print& p) const
{
size_t n = 0;
for (int i =0; i < 3; i++)
{
n += p.print(_address[i], DEC);
n += p.print('.');
}
n += p.print(_address[3], DEC);
return n;
}

View File

@ -0,0 +1,76 @@
/*
*
* MIT License:
* Copyright (c) 2011 Adrian McEwen
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* adrianm@mcqn.com 1/1/2011
*/
#ifndef IPAddress_h
#define IPAddress_h
#include <Printable.h>
// A class to make it easier to handle and pass around IP addresses
class IPAddress : public Printable {
private:
uint8_t _address[4]; // IPv4 address
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
// be used when you know that the usage of the returned uint8_t* will be transient and not
// stored.
uint8_t* raw_address() { return _address; };
public:
// Constructors
IPAddress();
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
operator uint32_t() { return *((uint32_t*)_address); };
bool operator==(const IPAddress& addr) { return (*((uint32_t*)_address)) == (*((uint32_t*)addr._address)); };
bool operator==(const uint8_t* addr);
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const { return _address[index]; };
uint8_t& operator[](int index) { return _address[index]; };
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
virtual size_t printTo(Print& p) const;
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
};
const IPAddress INADDR_NONE(0,0,0,0);
#endif

View File

@ -219,6 +219,9 @@ size_t Print::printFloat(double number, uint8_t digits)
{
size_t n = 0;
if (isnan(number)) return print("nan");
if (isinf(number)) return print("inf");
// Handle negative numbers
if (number < 0.0)
{

View File

@ -46,7 +46,10 @@ class Print
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) { return write((const uint8_t *)str, strlen(str)); }
size_t write(const char *str) {
if (str == NULL) return 0;
return write((const uint8_t *)str, strlen(str));
}
virtual size_t write(const uint8_t *buffer, size_t size);
size_t print(const __FlashStringHelper *);

View File

@ -0,0 +1,9 @@
#ifndef server_h
#define server_h
class Server : public Print {
public:
virtual void begin() =0;
};
#endif

View File

@ -0,0 +1,270 @@
/*
Stream.cpp - adds parsing methods to Stream class
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Created July 2011
parsing functions based on TextFinder library by Michael Margolis
*/
#include "Arduino.h"
#include "Stream.h"
#define PARSE_TIMEOUT 1000 // default number of milli-seconds to wait
#define NO_SKIP_CHAR 1 // a magic char not found in a valid ASCII numeric field
// private method to read stream with timeout
int Stream::timedRead()
{
int c;
_startMillis = millis();
do {
c = read();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// private method to peek stream with timeout
int Stream::timedPeek()
{
int c;
_startMillis = millis();
do {
c = peek();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// returns peek of the next digit in the stream or -1 if timeout
// discards non-numeric characters
int Stream::peekNextDigit()
{
int c;
while (1) {
c = timedPeek();
if (c < 0) return c; // timeout
if (c == '-') return c;
if (c >= '0' && c <= '9') return c;
read(); // discard non-numeric
}
}
// Public Methods
//////////////////////////////////////////////////////////////
void Stream::setTimeout(unsigned long timeout) // sets the maximum number of milliseconds to wait
{
_timeout = timeout;
}
// find returns true if the target string is found
bool Stream::find(char *target)
{
return findUntil(target, NULL);
}
// reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool Stream::find(char *target, size_t length)
{
return findUntil(target, length, NULL, 0);
}
// as find but search ends if the terminator string is found
bool Stream::findUntil(char *target, char *terminator)
{
return findUntil(target, strlen(target), terminator, strlen(terminator));
}
// reads data from the stream until the target string of the given length is found
// search terminated if the terminator string is found
// returns true if target string is found, false if terminated or timed out
bool Stream::findUntil(char *target, size_t targetLen, char *terminator, size_t termLen)
{
size_t index = 0; // maximum target string length is 64k bytes!
size_t termIndex = 0;
int c;
if( *target == 0)
return true; // return true if target is a null string
while( (c = timedRead()) > 0){
if(c != target[index])
index = 0; // reset index if any char does not match
if( c == target[index]){
//////Serial.print("found "); Serial.write(c); Serial.print("index now"); Serial.println(index+1);
if(++index >= targetLen){ // return true if all chars in the target match
return true;
}
}
if(termLen > 0 && c == terminator[termIndex]){
if(++termIndex >= termLen)
return false; // return false if terminate string found before target string
}
else
termIndex = 0;
}
return false;
}
// returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// function is terminated by the first character that is not a digit.
long Stream::parseInt()
{
return parseInt(NO_SKIP_CHAR); // terminate on first non-digit character (or timeout)
}
// as above but a given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
long Stream::parseInt(char skipChar)
{
boolean isNegative = false;
long value = 0;
int c;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore this charactor
else if(c == '-')
isNegative = true;
else if(c >= '0' && c <= '9') // is c a digit?
value = value * 10 + c - '0';
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == skipChar );
if(isNegative)
value = -value;
return value;
}
// as parseInt but returns a floating point value
float Stream::parseFloat()
{
return parseFloat(NO_SKIP_CHAR);
}
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float Stream::parseFloat(char skipChar){
boolean isNegative = false;
boolean isFraction = false;
long value = 0;
char c;
float fraction = 1.0;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore
else if(c == '-')
isNegative = true;
else if (c == '.')
isFraction = true;
else if(c >= '0' && c <= '9') { // is c a digit?
value = value * 10 + c - '0';
if(isFraction)
fraction *= 0.1;
}
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == '.' || c == skipChar );
if(isNegative)
value = -value;
if(isFraction)
return value * fraction;
else
return value;
}
// read characters from stream into buffer
// terminates if length characters have been read, or timeout (see setTimeout)
// returns the number of characters placed in the buffer
// the buffer is NOT null terminated.
//
size_t Stream::readBytes(char *buffer, size_t length)
{
size_t count = 0;
while (count < length) {
int c = timedRead();
if (c < 0) break;
*buffer++ = (char)c;
count++;
}
return count;
}
// as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t Stream::readBytesUntil(char terminator, char *buffer, size_t length)
{
if (length < 1) return 0;
size_t index = 0;
while (index < length) {
int c = timedRead();
if (c < 0 || c == terminator) break;
*buffer++ = (char)c;
index++;
}
return index; // return number of characters, not including null terminator
}
String Stream::readString()
{
String ret;
int c = timedRead();
while (c >= 0)
{
ret += (char)c;
c = timedRead();
}
return ret;
}
String Stream::readStringUntil(char terminator)
{
String ret;
int c = timedRead();
while (c >= 0 && c != terminator)
{
ret += (char)c;
c = timedRead();
}
return ret;
}

View File

@ -15,21 +15,82 @@
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
parsing functions based on TextFinder library by Michael Margolis
*/
#ifndef Stream_h
#define Stream_h
#include <stdint.h>
#include <inttypes.h>
#include "Print.h"
// compatability macros for testing
/*
#define getInt() parseInt()
#define getInt(skipChar) parseInt(skipchar)
#define getFloat() parseFloat()
#define getFloat(skipChar) parseFloat(skipChar)
#define getString( pre_string, post_string, buffer, length)
readBytesBetween( pre_string, terminator, buffer, length)
*/
class Stream : public Print
{
private:
unsigned long _timeout; // number of milliseconds to wait for the next char before aborting timed read
unsigned long _startMillis; // used for timeout measurement
int timedRead(); // private method to read stream with timeout
int timedPeek(); // private method to peek stream with timeout
int peekNextDigit(); // returns the next numeric digit in the stream or -1 if timeout
public:
virtual int available() = 0;
virtual int read() = 0;
virtual int peek() = 0;
virtual void flush() = 0;
Stream() {_timeout=1000;}
// parsing methods
void setTimeout(unsigned long timeout); // sets maximum milliseconds to wait for stream data, default is 1 second
bool find(char *target); // reads data from the stream until the target string is found
// returns true if target string is found, false if timed out (see setTimeout)
bool find(char *target, size_t length); // reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool findUntil(char *target, char *terminator); // as find but search ends if the terminator string is found
bool findUntil(char *target, size_t targetLen, char *terminate, size_t termLen); // as above but search ends if the terminate string is found
long parseInt(); // returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// integer is terminated by the first character that is not a digit.
float parseFloat(); // float version of parseInt
size_t readBytes( char *buffer, size_t length); // read chars from stream into buffer
// terminates if length characters have been read or timeout (see setTimeout)
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t readBytesUntil( char terminator, char *buffer, size_t length); // as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
// Arduino String functions to be added here
String readString();
String readStringUntil(char terminator);
protected:
long parseInt(char skipChar); // as above but the given skipChar is ignored
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float parseFloat(char skipChar); // as above but the given skipChar is ignored
};
#endif

View File

@ -27,17 +27,17 @@
//================================================================================
// USB
class USB_
class USBDevice_
{
public:
USB_();
USBDevice_();
bool configured();
bool attach();
bool detach(); // Serial port goes down too...
void poll();
};
extern USB_ USB;
extern USBDevice_ USBDevice;
//================================================================================
//================================================================================
@ -57,6 +57,7 @@ public:
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
extern Serial_ Serial;

View File

@ -536,9 +536,9 @@ uint32_t USBD_Connected(void)
//=======================================================================
//=======================================================================
USB_ USB;
USBDevice_ USBDevice;
USB_::USB_()
USBDevice_::USBDevice_()
{
UDD_SetStack(&USB_ISR);
@ -548,7 +548,7 @@ USB_::USB_()
}
}
bool USB_::attach(void)
bool USBDevice_::attach(void)
{
if (_usbInitialized != 0UL)
{
@ -562,7 +562,7 @@ bool USB_::attach(void)
}
}
bool USB_::detach(void)
bool USBDevice_::detach(void)
{
if (_usbInitialized != 0UL)
{
@ -577,11 +577,11 @@ bool USB_::detach(void)
// Check for interrupts
// TODO: VBUS detection
bool USB_::configured()
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USB_::poll()
void USBDevice_::poll()
{
}

View File

@ -0,0 +1,88 @@
/*
* Udp.cpp: Library to send/receive UDP packets.
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef udp_h
#define udp_h
#include <Stream.h>
#include <IPAddress.h>
class UDP : public Stream {
public:
virtual uint8_t begin(uint16_t) =0; // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop() =0; // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port) =0;
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port) =0;
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket() =0;
// Write a single byte into the packet
virtual size_t write(uint8_t) =0;
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size) =0;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket() =0;
// Number of bytes remaining in the current packet
virtual int available() =0;
// Read a single byte from the current packet
virtual int read() =0;
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len) =0;
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) =0;
// Return the next byte from the current packet without moving on to the next byte
virtual int peek() =0;
virtual void flush() =0; // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() =0;
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() =0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@ -39,13 +39,16 @@ int main( void )
delay(1);
USB.attach();
#if defined(USBCON)
USBDevice.attach();
#endif
setup();
for (;;)
{
loop();
if (serialEventRun) serialEventRun();
}
return 0;

View File

@ -91,7 +91,7 @@ uint32_t analogRead(uint32_t ulPin)
;
// Read the value
ulValue = adc12b_get_latest_value(ADC12B);
ulValue = adc12b_get_latest_value(ADC12B) >> 2;
// Stop the ADC12B
// adc12_stop( ADC12B ) ; // never do adc12_stop() else we have to reconfigure the ADC12B each time
@ -135,7 +135,7 @@ uint32_t analogRead(uint32_t ulPin)
;
// Read the value
ulValue = adc_get_latest_value(ADC);
ulValue = adc_get_latest_value(ADC) >> 2;
// Disable the corresponding channel
adc_disable_channel(ADC, ulChannel);
@ -151,24 +151,34 @@ uint32_t analogRead(uint32_t ulPin)
return ulValue;
}
static void TC_SetRA(Tc *tc, uint32_t chan, uint32_t v )
static void TC_SetRA(Tc *tc, uint32_t chan, uint32_t v)
{
tc->TC_CHANNEL[chan].TC_RA = v;
}
static void TC_SetRB(Tc *tc, uint32_t chan, uint32_t v )
static void TC_SetRB(Tc *tc, uint32_t chan, uint32_t v)
{
tc->TC_CHANNEL[chan].TC_RB = v;
}
static void TC_SetRC(Tc *tc, uint32_t chan, uint32_t v )
static void TC_SetRC(Tc *tc, uint32_t chan, uint32_t v)
{
tc->TC_CHANNEL[chan].TC_RC = v;
}
static void TC_SetCMR_ChannelA(Tc *tc, uint32_t chan, uint32_t v)
{
tc->TC_CHANNEL[chan].TC_CMR = (tc->TC_CHANNEL[chan].TC_CMR & 0xFFF0FFFF) | v;
}
static void TC_SetCMR_ChannelB(Tc *tc, uint32_t chan, uint32_t v)
{
tc->TC_CHANNEL[chan].TC_CMR = (tc->TC_CHANNEL[chan].TC_CMR & 0xF0FFFFFF) | v;
}
static uint8_t PWMEnabled = 0;
static uint8_t pinEnabled[PINS_COUNT];
static uint8_t TCChanEnabled[] = {0, 0, 0};
static uint8_t TCChanEnabled[] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
void analogOutputInit(void) {
uint8_t i;
@ -254,38 +264,52 @@ void analogWrite(uint32_t ulPin, uint32_t ulValue) {
}
if ((attr & PIN_ATTR_TIMER) == PIN_ATTR_TIMER) {
// We use MCLK/2 => 96Mhz/2 => 48Mhz as clock.
// To get 1KHz we should use 48000 as TC
// 48Mhz/48000 = 1KHz
// We use MCLK/2 as clock.
const uint32_t TC = VARIANT_MCK / 2 / TC_FREQUENCY;
// Map value to Timer ranges 0..255=>0..48000
// Map value to Timer ranges 0..255 => 0..TC
ulValue = ulValue * TC;
ulValue = ulValue / TC_MAX_DUTY_CYCLE;
// Setup Timer for this pin
ETCChannel channel = g_APinDescription[ulPin].ulTCChannel;
static const uint32_t channelToChNo[] = { 0, 0, 1, 1, 2, 2 };
static const uint32_t channelToAB[] = { 1, 0, 1, 0, 1, 0 };
static const uint32_t channelToChNo[] = { 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2, 0, 0, 1, 1, 2, 2 };
static const uint32_t channelToAB[] = { 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 };
static const Tc *channelToTC[] = {
TC0, TC0, TC0, TC0, TC0, TC0,
TC1, TC1, TC1, TC1, TC1, TC1,
TC2, TC2, TC2, TC2, TC2, TC2 };
static const uint32_t channelToId[] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8 };
uint32_t chNo = channelToChNo[channel];
uint32_t chA = channelToAB[channel];
uint32_t chA = channelToAB[channel];
Tc *chTC = channelToTC[channel];
uint32_t interfaceID = channelToId[channel];
if (!TCChanEnabled[chNo]) {
pmc_enable_periph_clk(TC_INTERFACE_ID + chNo);
TC_Configure(TC_INTERFACE, chNo,
TC_CMR_TCCLKS_TIMER_CLOCK1 |
TC_CMR_WAVE |
TC_CMR_WAVSEL_UP_RC |
TC_CMR_ACPA_CLEAR | // RA Compare Effect on OA: clear
TC_CMR_ACPC_SET | // RC Compare Effect on OA: set
TC_CMR_BCPB_CLEAR | // RB Compare Effect on OB: clear
TC_CMR_BCPC_SET); // RC Compare Effect on OB: set
TC_SetRC(TC_INTERFACE, chNo, TC);
if (!TCChanEnabled[interfaceID]) {
pmc_enable_periph_clk(TC_INTERFACE_ID + interfaceID);
TC_Configure(chTC, chNo,
TC_CMR_TCCLKS_TIMER_CLOCK1 |
TC_CMR_WAVE | // Waveform mode
TC_CMR_WAVSEL_UP_RC | // Counter running up and reset when equals to RC
TC_CMR_EEVT_XC0 | // Set external events from XC0 (this setup TIOB as output)
TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_CLEAR |
TC_CMR_BCPB_CLEAR | TC_CMR_BCPC_CLEAR);
TC_SetRC(chTC, chNo, TC);
}
if (ulValue == 0) {
if (chA)
TC_SetCMR_ChannelA(chTC, chNo, TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_CLEAR);
else
TC_SetCMR_ChannelB(chTC, chNo, TC_CMR_BCPB_CLEAR | TC_CMR_BCPC_CLEAR);
} else {
if (chA) {
TC_SetRA(chTC, chNo, ulValue);
TC_SetCMR_ChannelA(chTC, chNo, TC_CMR_ACPA_CLEAR | TC_CMR_ACPC_SET);
} else {
TC_SetRB(chTC, chNo, ulValue);
TC_SetCMR_ChannelB(chTC, chNo, TC_CMR_BCPB_CLEAR | TC_CMR_BCPC_SET);
}
}
if (chA)
TC_SetRA(TC_INTERFACE, chNo, ulValue);
else
TC_SetRB(TC_INTERFACE, chNo, ulValue);
if (!pinEnabled[ulPin]) {
PIO_Configure(g_APinDescription[ulPin].pPort,
g_APinDescription[ulPin].ulPinType,
@ -293,14 +317,14 @@ void analogWrite(uint32_t ulPin, uint32_t ulValue) {
g_APinDescription[ulPin].ulPinConfiguration);
pinEnabled[ulPin] = 1;
}
if (!TCChanEnabled[chNo]) {
TC_Start(TC_INTERFACE, chNo);
TCChanEnabled[chNo] = 1;
if (!TCChanEnabled[interfaceID]) {
TC_Start(chTC, chNo);
TCChanEnabled[interfaceID] = 1;
}
return;
}
// Default to digital write
// Defaults to digital write
pinMode(ulPin, OUTPUT);
if (ulValue < 128)
digitalWrite(ulPin, LOW);

Some files were not shown because too many files have changed in this diff Show More