1
0
mirror of https://github.com/AlexGyver/GyverCore.git synced 2025-10-29 06:49:21 +03:00
This commit is contained in:
Alex
2019-08-02 14:33:49 +03:00
parent dfd969b89b
commit fc2596ffed
40 changed files with 1224 additions and 4161 deletions

View File

@@ -1,6 +1,7 @@
# See: http://code.google.com/p/arduino/wiki/Platforms # See: http://code.google.com/p/arduino/wiki/Platforms
menu.cpu=Processor menu.cpu=CPU & BOOT
menu.timers=Timers
###################### ######################
@@ -16,26 +17,37 @@ nano.bootloader.lock_bits=0x0F
nano.build.f_cpu=16000000L nano.build.f_cpu=16000000L
nano.build.board=AVR_NANO nano.build.board=AVR_NANO
nano.build.core=arduino nano.build.core=arduino
nano.build.variant=eightanaloginputs ## почему у оптибута неправильно стоят фьюзы? https://github.com/arduino/ArduinoCore-avr/issues/10
## GyverCore w/ ATmega328P ## timer0 OVF ON/OFF
## -------------------------- ## --------------------------
nano.menu.cpu.atmega328=ATmega328P nano.menu.timers.yes_millis=yes millis
nano.menu.timers.yes_millis.build.variant=yesmillis
nano.menu.timers.no_millis=no millis
nano.menu.timers.no_millis.build.variant=nomillis
## ATmega328P - optiBoot
## --------------------------
nano.menu.cpu.atmega328=ATmega328P - optiBoot
##nano.menu.cpu.atmega328.upload.maximum_size=32256
nano.menu.cpu.atmega328.upload.maximum_size=30720 nano.menu.cpu.atmega328.upload.maximum_size=30720
nano.menu.cpu.atmega328.upload.maximum_data_size=2048 nano.menu.cpu.atmega328.upload.maximum_data_size=2048
nano.menu.cpu.atmega328.upload.speed=115200 nano.menu.cpu.atmega328.upload.speed=115200
nano.menu.cpu.atmega328.bootloader.low_fuses=0xFF nano.menu.cpu.atmega328.bootloader.low_fuses=0xFF
nano.menu.cpu.atmega328.bootloader.high_fuses=0xDA nano.menu.cpu.atmega328.bootloader.high_fuses=0xDA
##nano.menu.cpu.atmega328.bootloader.high_fuses=0xDE
nano.menu.cpu.atmega328.bootloader.extended_fuses=0xFD nano.menu.cpu.atmega328.bootloader.extended_fuses=0xFD
nano.menu.cpu.atmega328.bootloader.file=optiboot/optiboot_atmega328.hex nano.menu.cpu.atmega328.bootloader.file=optiboot/optiboot_atmega328.hex
nano.menu.cpu.atmega328.build.mcu=atmega328p nano.menu.cpu.atmega328.build.mcu=atmega328p
## GyverCore w/ ATmega328P (old bootloader) ## ATmega328P - old bootloader
## -------------------------- ## --------------------------
nano.menu.cpu.atmega328old=ATmega328P (Old Bootloader) nano.menu.cpu.atmega328old=ATmega328P - old bootloader
nano.menu.cpu.atmega328old.upload.maximum_size=30720 nano.menu.cpu.atmega328old.upload.maximum_size=30720
nano.menu.cpu.atmega328old.upload.maximum_data_size=2048 nano.menu.cpu.atmega328old.upload.maximum_data_size=2048
@@ -48,18 +60,60 @@ nano.menu.cpu.atmega328old.bootloader.file=atmega/ATmegaBOOT_168_atmega328.hex
nano.menu.cpu.atmega328old.build.mcu=atmega328p nano.menu.cpu.atmega328old.build.mcu=atmega328p
## ATmega328P - NO bootloader
## --------------------------
nano.menu.cpu.atmega328noBoot=ATmega328P - NO bootloader
## GyverCore w/ ATmega168 nano.menu.cpu.atmega328noBoot.upload.maximum_size=32768
nano.menu.cpu.atmega328noBoot.upload.maximum_data_size=2048
nano.menu.cpu.atmega328noBoot.bootloader.low_fuses=0xFF
nano.menu.cpu.atmega328noBoot.bootloader.high_fuses=0xDF
nano.menu.cpu.atmega328noBoot.bootloader.extended_fuses=0xFD
nano.menu.cpu.atmega328noBoot.build.mcu=atmega328p
## ATmega168 - optiBoot
## ------------------------- ## -------------------------
nano.menu.cpu.atmega168=ATmega168 nano.menu.cpu.atmega168=ATmega168 - optiBoot
nano.menu.cpu.atmega168.upload.maximum_size=14336 nano.menu.cpu.atmega168.upload.maximum_size=14336
##nano.menu.cpu.atmega168.upload.maximum_size=15360
nano.menu.cpu.atmega168.upload.maximum_data_size=1024 nano.menu.cpu.atmega168.upload.maximum_data_size=1024
nano.menu.cpu.atmega168.upload.speed=19200 nano.menu.cpu.atmega168.upload.speed=115200
nano.menu.cpu.atmega168.bootloader.low_fuses=0xff nano.menu.cpu.atmega168.bootloader.low_fuses=0xff
nano.menu.cpu.atmega168.bootloader.high_fuses=0xdd nano.menu.cpu.atmega168.bootloader.high_fuses=0xdd
nano.menu.cpu.atmega168.bootloader.extended_fuses=0xF8 nano.menu.cpu.atmega168.bootloader.extended_fuses=0xF8
nano.menu.cpu.atmega168.bootloader.file=atmega/ATmegaBOOT_168_diecimila.hex ##nano.menu.cpu.atmega168.bootloader.extended_fuses=0xFE
nano.menu.cpu.atmega168.bootloader.file=optiboot/optiboot_atmega168.hex
nano.menu.cpu.atmega168.build.mcu=atmega168 nano.menu.cpu.atmega168.build.mcu=atmega168
## ATmega168 - old bootloader
## -------------------------
nano.menu.cpu.atmega168old=ATmega168 - old bootloader
nano.menu.cpu.atmega168old.upload.maximum_size=14336
nano.menu.cpu.atmega168old.upload.maximum_data_size=1024
nano.menu.cpu.atmega168old.upload.speed=19200
nano.menu.cpu.atmega168old.bootloader.low_fuses=0xff
nano.menu.cpu.atmega168old.bootloader.high_fuses=0xdd
nano.menu.cpu.atmega168old.bootloader.extended_fuses=0xF8
nano.menu.cpu.atmega168old.bootloader.file=atmega/ATmegaBOOT_168_diecimila.hex
nano.menu.cpu.atmega168old.build.mcu=atmega168
## ATmega168 - NO bootloader
## -------------------------
nano.menu.cpu.atmega168noBoot=ATmega168 - NO bootloader
nano.menu.cpu.atmega168noBoot.upload.maximum_size=16144
nano.menu.cpu.atmega168noBoot.upload.maximum_data_size=1024
nano.menu.cpu.atmega168noBoot.bootloader.low_fuses=0xff
nano.menu.cpu.atmega168noBoot.bootloader.high_fuses=0xdd
nano.menu.cpu.atmega168noBoot.bootloader.extended_fuses=0xff
nano.menu.cpu.atmega168noBoot.build.mcu=atmega168

View File

@@ -1,42 +1,47 @@
/* 
Arduino.h - Main include file for the Arduino SDK
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Arduino_h #ifndef Arduino_h
#define Arduino_h #define Arduino_h
// ===== DEF LIBS =====
#include <stdlib.h> #include <stdlib.h>
#include <stdbool.h> #include <stdbool.h>
#include <string.h> #include <string.h>
#include <math.h> #include <math.h>
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#include <avr/io.h> #include <avr/io.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include "binary.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C"{ extern "C"{
#endif #endif
void yield(void); // ===== PINS =====
#define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 21) ? (&PCICR) : ((uint8_t *)0))
#define digitalPinToPCICRbit(p) (((p) <= 7) ? 2 : (((p) <= 13) ? 0 : 1))
#define digitalPinToPCMSK(p) (((p) <= 7) ? (&PCMSK2) : (((p) <= 13) ? (&PCMSK0) : (((p) <= 21) ? (&PCMSK1) : ((uint8_t *)0))))
#define digitalPinToPCMSKbit(p) (((p) <= 7) ? (p) : (((p) <= 13) ? ((p) - 8) : ((p) - 14)))
#define digitalPinToInterrupt(p) ((p) == 2 ? 0 : ((p) == 3 ? 1 : NOT_AN_INTERRUPT))
#define PIN_SPI_SS (10)
#define PIN_SPI_MOSI (11)
#define PIN_SPI_MISO (12)
#define PIN_SPI_SCK (13)
#define PIN_WIRE_SDA (18)
#define PIN_WIRE_SCL (19)
#define LED_BUILTIN 13
#define A0 (14)
#define A1 (15)
#define A2 (16)
#define A3 (17)
#define A4 (18)
#define A5 (19)
#define A6 (20)
#define A7 (21)
#define EXTERNAL_INT_0 (0)
#define EXTERNAL_INT_1 (1)
#define EXTERNAL_NUM_INTERRUPTS 2
// ===== CONSTANTS =====
#define HIGH 0x1 #define HIGH 0x1
#define LOW 0x0 #define LOW 0x0
@@ -61,30 +66,11 @@ void yield(void);
#define FALLING 2 #define FALLING 2
#define RISING 3 #define RISING 3
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) #define INTERNAL 28
#define DEFAULT 0
#define EXTERNAL 1
#define INTERNAL1V1 2
#define INTERNAL INTERNAL1V1
#elif defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
#define DEFAULT 0
#define EXTERNAL 4
#define INTERNAL1V1 8
#define INTERNAL INTERNAL1V1
#define INTERNAL2V56 9
#define INTERNAL2V56_EXTCAP 13
#else
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define INTERNAL1V1 2
#define INTERNAL2V56 3
#else
#define INTERNAL 3
#endif
#define DEFAULT 1 #define DEFAULT 1
#define EXTERNAL 0 #define EXTERNAL 0
#endif #define THERMOMETR 22
// ===== MATH MACRO =====
// undefine stdlib's abs if encountered
#ifdef abs #ifdef abs
#undef abs #undef abs
#endif #endif
@@ -112,30 +98,52 @@ void yield(void);
#define bitSet(value, bit) ((value) |= (1UL << (bit))) #define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit))) #define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit)) #define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))
#define bitToggle(value, bit) ((value) ^= (1 << bit))
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#define bit(b) (1UL << (b))
// avr-libc defines _NOP() since 1.6.2
#ifndef _NOP #ifndef _NOP
#define _NOP() do { __asm__ volatile ("nop"); } while (0) #define _NOP() do { __asm__ volatile ("nop"); } while (0)
#endif #endif
// ===== FUNCTIONS & TYPES =====
static void __empty() {
// Empty
}
void yield(void) __attribute__ ((weak, alias("__empty")));
typedef void (*voidFuncPtr)(void);
typedef unsigned int word; typedef unsigned int word;
#define bit(b) (1UL << (b))
typedef bool boolean; typedef bool boolean;
typedef uint8_t byte; typedef uint8_t byte;
void init(void); void init(void);
void initVariant(void);
int atexit(void (*func)()) __attribute__((weak));
void pinMode(uint8_t, uint8_t); /* light uart*/
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
int analogRead(uint8_t); // ===== PIN OPERATION ======
// new
void setPWM_20kHz(byte pin);
void setPWM_9_10_resolution(boolean resolution); // 0 - 8 бит, 1 - 10 бит
void setPwmFreqnuency(byte pin, byte freq); //default, 8KHZ, 31KHZ
void setPWM_default(byte pin);
void analogStartConvert(byte pin);
void analogPrescaler(uint8_t prescl);
int analogGet();
void digitalToggle(uint8_t pin);
// old
void pinMode(uint8_t pin, uint8_t mode);
void digitalWrite(uint8_t pin, uint8_t x);
int digitalRead (uint8_t pin);
int analogRead(uint8_t pin);
void analogReference(uint8_t mode); void analogReference(uint8_t mode);
void analogWrite(uint8_t, int); void analogWrite(uint8_t pin, int val);
unsigned long millis(void); unsigned long millis(void);
unsigned long micros(void); unsigned long micros(void);
@@ -147,19 +155,14 @@ unsigned long pulseInLong(uint8_t pin, uint8_t state, unsigned long timeout);
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val); void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val);
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder); uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder);
void attachInterrupt(uint8_t, void (*)(void), int mode); void attachInterrupt(uint8_t num,void (*isr)(), uint8_t type);
void detachInterrupt(uint8_t); void detachInterrupt(uint8_t);
void setup(void); void setup(void);
void loop(void); void loop(void);
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
#define analogInPinToBit(P) (P) #define analogInPinToBit(P) (P)
// On the ATmega1280, the addresses of some of the port registers are
// greater than 255, so we can't store them in uint8_t's.
extern const uint16_t PROGMEM port_to_mode_PGM[]; extern const uint16_t PROGMEM port_to_mode_PGM[];
extern const uint16_t PROGMEM port_to_input_PGM[]; extern const uint16_t PROGMEM port_to_input_PGM[];
extern const uint16_t PROGMEM port_to_output_PGM[]; extern const uint16_t PROGMEM port_to_output_PGM[];
@@ -169,11 +172,6 @@ extern const uint8_t PROGMEM digital_pin_to_port_PGM[];
extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[]; extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
extern const uint8_t PROGMEM digital_pin_to_timer_PGM[]; extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
//
// These perform slightly better as macros compared to inline functions
//
#define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) ) #define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) )
#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) ) #define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) ) #define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
@@ -187,7 +185,6 @@ extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
#define NOT_AN_INTERRUPT -1 #define NOT_AN_INTERRUPT -1
#ifdef ARDUINO_MAIN
#define PA 1 #define PA 1
#define PB 2 #define PB 2
#define PC 3 #define PC 3
@@ -199,7 +196,6 @@ extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
#define PJ 10 #define PJ 10
#define PK 11 #define PK 11
#define PL 12 #define PL 12
#endif
#define NOT_ON_TIMER 0 #define NOT_ON_TIMER 0
#define TIMER0A 1 #define TIMER0A 1
@@ -227,13 +223,13 @@ extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
#endif #endif
#ifdef __cplusplus #ifdef __cplusplus
// === FILES ===
#include "binary.h"
#include "WCharacter.h" #include "WCharacter.h"
#include "WString.h" #include "WString.h"
#include "HardwareSerial.h" #include "HardwareSerial.h"
#include "USBAPI.h" #include "uart.h"
#if defined(HAVE_HWSERIAL0) && defined(HAVE_CDCSERIAL) //#include "USBAPI.h"
#error "Targets with both UART0 and CDC serial not supported"
#endif
uint16_t makeWord(uint16_t w); uint16_t makeWord(uint16_t w);
uint16_t makeWord(byte h, byte l); uint16_t makeWord(byte h, byte l);
@@ -254,6 +250,4 @@ long map(long, long, long, long, long);
#endif #endif
#include "pins_arduino.h"
#endif #endif

View File

@@ -1,302 +0,0 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "USBAPI.h"
#include <avr/wdt.h>
#include <util/atomic.h>
#if defined(USBCON)
typedef struct
{
u32 dwDTERate;
u8 bCharFormat;
u8 bParityType;
u8 bDataBits;
u8 lineState;
} LineInfo;
static volatile LineInfo _usbLineInfo = { 57600, 0x00, 0x00, 0x00, 0x00 };
static volatile int32_t breakValue = -1;
static u8 wdtcsr_save;
#define WEAK __attribute__ ((weak))
extern const CDCDescriptor _cdcInterface PROGMEM;
const CDCDescriptor _cdcInterface =
{
D_IAD(0,2,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,1),
// CDC communication interface
D_INTERFACE(CDC_ACM_INTERFACE,1,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,0),
D_CDCCS(CDC_HEADER,0x10,0x01), // Header (1.10 bcd)
D_CDCCS(CDC_CALL_MANAGEMENT,1,1), // Device handles call management (not)
D_CDCCS4(CDC_ABSTRACT_CONTROL_MANAGEMENT,6), // SET_LINE_CODING, GET_LINE_CODING, SET_CONTROL_LINE_STATE supported
D_CDCCS(CDC_UNION,CDC_ACM_INTERFACE,CDC_DATA_INTERFACE), // Communication interface is master, data interface is slave 0
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_ACM),USB_ENDPOINT_TYPE_INTERRUPT,0x10,0x40),
// CDC data interface
D_INTERFACE(CDC_DATA_INTERFACE,2,CDC_DATA_INTERFACE_CLASS,0,0),
D_ENDPOINT(USB_ENDPOINT_OUT(CDC_ENDPOINT_OUT),USB_ENDPOINT_TYPE_BULK,USB_EP_SIZE,0),
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_IN ),USB_ENDPOINT_TYPE_BULK,USB_EP_SIZE,0)
};
bool isLUFAbootloader()
{
return pgm_read_word(FLASHEND - 1) == NEW_LUFA_SIGNATURE;
}
int CDC_GetInterface(u8* interfaceNum)
{
interfaceNum[0] += 2; // uses 2
return USB_SendControl(TRANSFER_PGM,&_cdcInterface,sizeof(_cdcInterface));
}
bool CDC_Setup(USBSetup& setup)
{
u8 r = setup.bRequest;
u8 requestType = setup.bmRequestType;
if (REQUEST_DEVICETOHOST_CLASS_INTERFACE == requestType)
{
if (CDC_GET_LINE_CODING == r)
{
USB_SendControl(0,(void*)&_usbLineInfo,7);
return true;
}
}
if (REQUEST_HOSTTODEVICE_CLASS_INTERFACE == requestType)
{
if (CDC_SEND_BREAK == r)
{
breakValue = ((uint16_t)setup.wValueH << 8) | setup.wValueL;
}
if (CDC_SET_LINE_CODING == r)
{
USB_RecvControl((void*)&_usbLineInfo,7);
}
if (CDC_SET_CONTROL_LINE_STATE == r)
{
_usbLineInfo.lineState = setup.wValueL;
// auto-reset into the bootloader is triggered when the port, already
// open at 1200 bps, is closed. this is the signal to start the watchdog
// with a relatively long period so it can finish housekeeping tasks
// like servicing endpoints before the sketch ends
uint16_t magic_key_pos = MAGIC_KEY_POS;
// If we don't use the new RAMEND directly, check manually if we have a newer bootloader.
// This is used to keep compatible with the old leonardo bootloaders.
// You are still able to set the magic key position manually to RAMEND-1 to save a few bytes for this check.
#if MAGIC_KEY_POS != (RAMEND-1)
// For future boards save the key in the inproblematic RAMEND
// Which is reserved for the main() return value (which will never return)
if (isLUFAbootloader()) {
// horray, we got a new bootloader!
magic_key_pos = (RAMEND-1);
}
#endif
// We check DTR state to determine if host port is open (bit 0 of lineState).
if (1200 == _usbLineInfo.dwDTERate && (_usbLineInfo.lineState & 0x01) == 0)
{
#if MAGIC_KEY_POS != (RAMEND-1)
// Backup ram value if its not a newer bootloader and it hasn't already been saved.
// This should avoid memory corruption at least a bit, not fully
if (magic_key_pos != (RAMEND-1) && *(uint16_t *)magic_key_pos != MAGIC_KEY) {
*(uint16_t *)(RAMEND-1) = *(uint16_t *)magic_key_pos;
}
#endif
// Store boot key
*(uint16_t *)magic_key_pos = MAGIC_KEY;
// Save the watchdog state in case the reset is aborted.
wdtcsr_save = WDTCSR;
wdt_enable(WDTO_120MS);
}
else if (*(uint16_t *)magic_key_pos == MAGIC_KEY)
{
// Most OSs do some intermediate steps when configuring ports and DTR can
// twiggle more than once before stabilizing.
// To avoid spurious resets we set the watchdog to 120ms and eventually
// cancel if DTR goes back high.
// Cancellation is only done if an auto-reset was started, which is
// indicated by the magic key having been set.
wdt_reset();
// Restore the watchdog state in case the sketch was using it.
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = wdtcsr_save;
#if MAGIC_KEY_POS != (RAMEND-1)
// Restore backed up (old bootloader) magic key data
if (magic_key_pos != (RAMEND-1)) {
*(uint16_t *)magic_key_pos = *(uint16_t *)(RAMEND-1);
} else
#endif
{
// Clean up RAMEND key
*(uint16_t *)magic_key_pos = 0x0000;
}
}
}
return true;
}
return false;
}
void Serial_::begin(unsigned long /* baud_count */)
{
peek_buffer = -1;
}
void Serial_::begin(unsigned long /* baud_count */, byte /* config */)
{
peek_buffer = -1;
}
void Serial_::end(void)
{
}
int Serial_::available(void)
{
if (peek_buffer >= 0) {
return 1 + USB_Available(CDC_RX);
}
return USB_Available(CDC_RX);
}
int Serial_::peek(void)
{
if (peek_buffer < 0)
peek_buffer = USB_Recv(CDC_RX);
return peek_buffer;
}
int Serial_::read(void)
{
if (peek_buffer >= 0) {
int c = peek_buffer;
peek_buffer = -1;
return c;
}
return USB_Recv(CDC_RX);
}
int Serial_::availableForWrite(void)
{
return USB_SendSpace(CDC_TX);
}
void Serial_::flush(void)
{
USB_Flush(CDC_TX);
}
size_t Serial_::write(uint8_t c)
{
return write(&c, 1);
}
size_t Serial_::write(const uint8_t *buffer, size_t size)
{
/* only try to send bytes if the high-level CDC connection itself
is open (not just the pipe) - the OS should set lineState when the port
is opened and clear lineState when the port is closed.
bytes sent before the user opens the connection or after
the connection is closed are lost - just like with a UART. */
// TODO - ZE - check behavior on different OSes and test what happens if an
// open connection isn't broken cleanly (cable is yanked out, host dies
// or locks up, or host virtual serial port hangs)
if (_usbLineInfo.lineState > 0) {
int r = USB_Send(CDC_TX,buffer,size);
if (r > 0) {
return r;
} else {
setWriteError();
return 0;
}
}
setWriteError();
return 0;
}
// This operator is a convenient way for a sketch to check whether the
// port has actually been configured and opened by the host (as opposed
// to just being connected to the host). It can be used, for example, in
// setup() before printing to ensure that an application on the host is
// actually ready to receive and display the data.
// We add a short delay before returning to fix a bug observed by Federico
// where the port is configured (lineState != 0) but not quite opened.
Serial_::operator bool() {
bool result = false;
if (_usbLineInfo.lineState > 0)
result = true;
delay(10);
return result;
}
unsigned long Serial_::baud() {
// Disable interrupts while reading a multi-byte value
uint32_t baudrate;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
baudrate = _usbLineInfo.dwDTERate;
}
return baudrate;
}
uint8_t Serial_::stopbits() {
return _usbLineInfo.bCharFormat;
}
uint8_t Serial_::paritytype() {
return _usbLineInfo.bParityType;
}
uint8_t Serial_::numbits() {
return _usbLineInfo.bDataBits;
}
bool Serial_::dtr() {
return _usbLineInfo.lineState & 0x1;
}
bool Serial_::rts() {
return _usbLineInfo.lineState & 0x2;
}
int32_t Serial_::readBreak() {
int32_t ret;
// Disable IRQs while reading and clearing breakValue to make
// sure we don't overwrite a value just set by the ISR.
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
ret = breakValue;
breakValue = -1;
}
return ret;
}
Serial_ Serial;
#endif /* if defined(USBCON) */

View File

@@ -1,45 +0,0 @@
/*
Client.h - Base class that provides Client
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef client_h
#define client_h
#include "Print.h"
#include "Stream.h"
#include "IPAddress.h"
class Client : public Stream {
public:
virtual int connect(IPAddress ip, uint16_t port) =0;
virtual int connect(const char *host, uint16_t port) =0;
virtual size_t write(uint8_t) =0;
virtual size_t write(const uint8_t *buf, size_t size) =0;
virtual int available() = 0;
virtual int read() = 0;
virtual int read(uint8_t *buf, size_t size) = 0;
virtual int peek() = 0;
virtual void flush() = 0;
virtual void stop() = 0;
virtual uint8_t connected() = 0;
virtual operator bool() = 0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@@ -21,13 +21,13 @@
Modified 14 August 2012 by Alarus Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman Modified 3 December 2013 by Matthijs Kooijman
*/ */
#include "Arduino.h"
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <inttypes.h> #include <inttypes.h>
#include <util/atomic.h> #include <util/atomic.h>
#include "Arduino.h"
#include "HardwareSerial.h" #include "HardwareSerial.h"
#include "HardwareSerial_private.h" #include "HardwareSerial_private.h"
@@ -75,6 +75,7 @@ void serialEventRun(void)
#if defined(HAVE_HWSERIAL3) #if defined(HAVE_HWSERIAL3)
if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3(); if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif #endif
} }
// macro to guard critical sections when needed for large TX buffer sizes // macro to guard critical sections when needed for large TX buffer sizes

View File

@@ -62,6 +62,7 @@ ISR(USART_UDRE_vect)
#endif #endif
{ {
Serial._tx_udr_empty_irq(); Serial._tx_udr_empty_irq();
} }
#if defined(UBRRH) && defined(UBRRL) #if defined(UBRRH) && defined(UBRRL)

View File

@@ -1,69 +0,0 @@
/*
HardwareSerial1.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include "Arduino.h"
#include "HardwareSerial.h"
#include "HardwareSerial_private.h"
// Each HardwareSerial is defined in its own file, sine the linker pulls
// in the entire file when any element inside is used. --gc-sections can
// additionally cause unused symbols to be dropped, but ISRs have the
// "used" attribute so are never dropped and they keep the
// HardwareSerial instance in as well. Putting each instance in its own
// file prevents the linker from pulling in any unused instances in the
// first place.
#if defined(HAVE_HWSERIAL1)
#if defined(UART1_RX_vect)
ISR(UART1_RX_vect)
#elif defined(USART1_RX_vect)
ISR(USART1_RX_vect)
#else
#error "Don't know what the Data Register Empty vector is called for Serial1"
#endif
{
Serial1._rx_complete_irq();
}
#if defined(UART1_UDRE_vect)
ISR(UART1_UDRE_vect)
#elif defined(USART1_UDRE_vect)
ISR(USART1_UDRE_vect)
#else
#error "Don't know what the Data Register Empty vector is called for Serial1"
#endif
{
Serial1._tx_udr_empty_irq();
}
HardwareSerial Serial1(&UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UCSR1C, &UDR1);
// Function that can be weakly referenced by serialEventRun to prevent
// pulling in this file if it's not otherwise used.
bool Serial1_available() {
return Serial1.available();
}
#endif // HAVE_HWSERIAL1

View File

@@ -1,57 +0,0 @@
/*
HardwareSerial2.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include "Arduino.h"
#include "HardwareSerial.h"
#include "HardwareSerial_private.h"
// Each HardwareSerial is defined in its own file, sine the linker pulls
// in the entire file when any element inside is used. --gc-sections can
// additionally cause unused symbols to be dropped, but ISRs have the
// "used" attribute so are never dropped and they keep the
// HardwareSerial instance in as well. Putting each instance in its own
// file prevents the linker from pulling in any unused instances in the
// first place.
#if defined(HAVE_HWSERIAL2)
ISR(USART2_RX_vect)
{
Serial2._rx_complete_irq();
}
ISR(USART2_UDRE_vect)
{
Serial2._tx_udr_empty_irq();
}
HardwareSerial Serial2(&UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UCSR2C, &UDR2);
// Function that can be weakly referenced by serialEventRun to prevent
// pulling in this file if it's not otherwise used.
bool Serial2_available() {
return Serial2.available();
}
#endif // HAVE_HWSERIAL2

View File

@@ -1,57 +0,0 @@
/*
HardwareSerial3.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
Modified 3 December 2013 by Matthijs Kooijman
*/
#include "Arduino.h"
#include "HardwareSerial.h"
#include "HardwareSerial_private.h"
// Each HardwareSerial is defined in its own file, sine the linker pulls
// in the entire file when any element inside is used. --gc-sections can
// additionally cause unused symbols to be dropped, but ISRs have the
// "used" attribute so are never dropped and they keep the
// HardwareSerial instance in as well. Putting each instance in its own
// file prevents the linker from pulling in any unused instances in the
// first place.
#if defined(HAVE_HWSERIAL3)
ISR(USART3_RX_vect)
{
Serial3._rx_complete_irq();
}
ISR(USART3_UDRE_vect)
{
Serial3._tx_udr_empty_irq();
}
HardwareSerial Serial3(&UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3);
// Function that can be weakly referenced by serialEventRun to prevent
// pulling in this file if it's not otherwise used.
bool Serial3_available() {
return Serial3.available();
}
#endif // HAVE_HWSERIAL3

View File

@@ -1,27 +1,6 @@
/* #include <stdio.h>
HardwareSerial_private.h - Hardware serial library for Wiring #include <stdarg.h>
Copyright (c) 2006 Nicholas Zambetti. All right reserved. #include "Arduino.h"
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp, // this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart // this is so I can support Attiny series and any other chip without a uart

View File

@@ -1,114 +0,0 @@
/*
IPAddress.cpp - Base class that provides IPAddress
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <IPAddress.h>
IPAddress::IPAddress()
{
_address.dword = 0;
}
IPAddress::IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet)
{
_address.bytes[0] = first_octet;
_address.bytes[1] = second_octet;
_address.bytes[2] = third_octet;
_address.bytes[3] = fourth_octet;
}
IPAddress::IPAddress(uint32_t address)
{
_address.dword = address;
}
IPAddress::IPAddress(const uint8_t *address)
{
memcpy(_address.bytes, address, sizeof(_address.bytes));
}
bool IPAddress::fromString(const char *address)
{
uint16_t acc = 0; // Accumulator
uint8_t dots = 0;
while (*address)
{
char c = *address++;
if (c >= '0' && c <= '9')
{
acc = acc * 10 + (c - '0');
if (acc > 255) {
// Value out of [0..255] range
return false;
}
}
else if (c == '.')
{
if (dots == 3) {
// Too much dots (there must be 3 dots)
return false;
}
_address.bytes[dots++] = acc;
acc = 0;
}
else
{
// Invalid char
return false;
}
}
if (dots != 3) {
// Too few dots (there must be 3 dots)
return false;
}
_address.bytes[3] = acc;
return true;
}
IPAddress& IPAddress::operator=(const uint8_t *address)
{
memcpy(_address.bytes, address, sizeof(_address.bytes));
return *this;
}
IPAddress& IPAddress::operator=(uint32_t address)
{
_address.dword = address;
return *this;
}
bool IPAddress::operator==(const uint8_t* addr) const
{
return memcmp(addr, _address.bytes, sizeof(_address.bytes)) == 0;
}
size_t IPAddress::printTo(Print& p) const
{
size_t n = 0;
for (int i =0; i < 3; i++)
{
n += p.print(_address.bytes[i], DEC);
n += p.print('.');
}
n += p.print(_address.bytes[3], DEC);
return n;
}

View File

@@ -1,78 +0,0 @@
/*
IPAddress.h - Base class that provides IPAddress
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef IPAddress_h
#define IPAddress_h
#include <stdint.h>
#include "Printable.h"
#include "WString.h"
// A class to make it easier to handle and pass around IP addresses
class IPAddress : public Printable {
private:
union {
uint8_t bytes[4]; // IPv4 address
uint32_t dword;
} _address;
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
// be used when you know that the usage of the returned uint8_t* will be transient and not
// stored.
uint8_t* raw_address() { return _address.bytes; };
public:
// Constructors
IPAddress();
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
bool fromString(const char *address);
bool fromString(const String &address) { return fromString(address.c_str()); }
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
operator uint32_t() const { return _address.dword; };
bool operator==(const IPAddress& addr) const { return _address.dword == addr._address.dword; };
bool operator==(const uint8_t* addr) const;
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const { return _address.bytes[index]; };
uint8_t& operator[](int index) { return _address.bytes[index]; };
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
virtual size_t printTo(Print& p) const;
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
};
const IPAddress INADDR_NONE(0,0,0,0);
#endif

View File

@@ -1,115 +0,0 @@
/*
PluggableUSB.cpp
Copyright (c) 2015 Arduino LLC
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "USBAPI.h"
#include "PluggableUSB.h"
#if defined(USBCON)
#ifdef PLUGGABLE_USB_ENABLED
extern uint8_t _initEndpoints[];
int PluggableUSB_::getInterface(uint8_t* interfaceCount)
{
int sent = 0;
PluggableUSBModule* node;
for (node = rootNode; node; node = node->next) {
int res = node->getInterface(interfaceCount);
if (res < 0)
return -1;
sent += res;
}
return sent;
}
int PluggableUSB_::getDescriptor(USBSetup& setup)
{
PluggableUSBModule* node;
for (node = rootNode; node; node = node->next) {
int ret = node->getDescriptor(setup);
// ret!=0 -> request has been processed
if (ret)
return ret;
}
return 0;
}
void PluggableUSB_::getShortName(char *iSerialNum)
{
PluggableUSBModule* node;
for (node = rootNode; node; node = node->next) {
iSerialNum += node->getShortName(iSerialNum);
}
*iSerialNum = 0;
}
bool PluggableUSB_::setup(USBSetup& setup)
{
PluggableUSBModule* node;
for (node = rootNode; node; node = node->next) {
if (node->setup(setup)) {
return true;
}
}
return false;
}
bool PluggableUSB_::plug(PluggableUSBModule *node)
{
if ((lastEp + node->numEndpoints) > USB_ENDPOINTS) {
return false;
}
if (!rootNode) {
rootNode = node;
} else {
PluggableUSBModule *current = rootNode;
while (current->next) {
current = current->next;
}
current->next = node;
}
node->pluggedInterface = lastIf;
node->pluggedEndpoint = lastEp;
lastIf += node->numInterfaces;
for (uint8_t i = 0; i < node->numEndpoints; i++) {
_initEndpoints[lastEp] = node->endpointType[i];
lastEp++;
}
return true;
// restart USB layer???
}
PluggableUSB_& PluggableUSB()
{
static PluggableUSB_ obj;
return obj;
}
PluggableUSB_::PluggableUSB_() : lastIf(CDC_ACM_INTERFACE + CDC_INTERFACE_COUNT),
lastEp(CDC_FIRST_ENDPOINT + CDC_ENPOINT_COUNT),
rootNode(NULL)
{
// Empty
}
#endif
#endif /* if defined(USBCON) */

View File

@@ -1,74 +0,0 @@
/*
PluggableUSB.h
Copyright (c) 2015 Arduino LLC
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef PUSB_h
#define PUSB_h
#include "USBAPI.h"
#include <stdint.h>
#if defined(USBCON)
class PluggableUSBModule {
public:
PluggableUSBModule(uint8_t numEps, uint8_t numIfs, uint8_t *epType) :
numEndpoints(numEps), numInterfaces(numIfs), endpointType(epType)
{ }
protected:
virtual bool setup(USBSetup& setup) = 0;
virtual int getInterface(uint8_t* interfaceCount) = 0;
virtual int getDescriptor(USBSetup& setup) = 0;
virtual uint8_t getShortName(char *name) { name[0] = 'A'+pluggedInterface; return 1; }
uint8_t pluggedInterface;
uint8_t pluggedEndpoint;
const uint8_t numEndpoints;
const uint8_t numInterfaces;
const uint8_t *endpointType;
PluggableUSBModule *next = NULL;
friend class PluggableUSB_;
};
class PluggableUSB_ {
public:
PluggableUSB_();
bool plug(PluggableUSBModule *node);
int getInterface(uint8_t* interfaceCount);
int getDescriptor(USBSetup& setup);
bool setup(USBSetup& setup);
void getShortName(char *iSerialNum);
private:
uint8_t lastIf;
uint8_t lastEp;
PluggableUSBModule* rootNode;
};
// Replacement for global singleton.
// This function prevents static-initialization-order-fiasco
// https://isocpp.org/wiki/faq/ctors#static-init-order-on-first-use
PluggableUSB_& PluggableUSB();
#endif
#endif

View File

@@ -1,30 +0,0 @@
/*
Server.h - Base class that provides Server
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef server_h
#define server_h
#include "Print.h"
class Server : public Print {
public:
virtual void begin() =0;
};
#endif

View File

@@ -37,7 +37,7 @@ Version Modified By Date Comments
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#include "Arduino.h" #include "Arduino.h"
#include "pins_arduino.h" //#include "pins_arduino.h"
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__) #if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
#define TCCR2A TCCR2 #define TCCR2A TCCR2

View File

@@ -1,207 +0,0 @@
/*
USBAPI.h
Copyright (c) 2005-2014 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef __USBAPI__
#define __USBAPI__
#include <inttypes.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;
#include "Arduino.h"
// This definitions is usefull if you want to reduce the EP_SIZE to 16
// at the moment only 64 and 16 as EP_SIZE for all EPs are supported except the control endpoint
#ifndef USB_EP_SIZE
#define USB_EP_SIZE 64
#endif
#if defined(USBCON)
#include "USBDesc.h"
#include "USBCore.h"
//================================================================================
//================================================================================
// USB
#define EP_TYPE_CONTROL (0x00)
#define EP_TYPE_BULK_IN ((1<<EPTYPE1) | (1<<EPDIR))
#define EP_TYPE_BULK_OUT (1<<EPTYPE1)
#define EP_TYPE_INTERRUPT_IN ((1<<EPTYPE1) | (1<<EPTYPE0) | (1<<EPDIR))
#define EP_TYPE_INTERRUPT_OUT ((1<<EPTYPE1) | (1<<EPTYPE0))
#define EP_TYPE_ISOCHRONOUS_IN ((1<<EPTYPE0) | (1<<EPDIR))
#define EP_TYPE_ISOCHRONOUS_OUT (1<<EPTYPE0)
class USBDevice_
{
public:
USBDevice_();
bool configured();
void attach();
void detach(); // Serial port goes down too...
void poll();
bool wakeupHost(); // returns false, when wakeup cannot be processed
};
extern USBDevice_ USBDevice;
//================================================================================
//================================================================================
// Serial over CDC (Serial1 is the physical port)
struct ring_buffer;
#ifndef SERIAL_BUFFER_SIZE
#if ((RAMEND - RAMSTART) < 1023)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
#endif
#if (SERIAL_BUFFER_SIZE>256)
#error Please lower the CDC Buffer size
#endif
class Serial_ : public Stream
{
private:
int peek_buffer;
public:
Serial_() { peek_buffer = -1; };
void begin(unsigned long);
void begin(unsigned long, uint8_t);
void end(void);
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual int availableForWrite(void);
virtual void flush(void);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t*, size_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
volatile uint8_t _rx_buffer_head;
volatile uint8_t _rx_buffer_tail;
unsigned char _rx_buffer[SERIAL_BUFFER_SIZE];
// This method allows processing "SEND_BREAK" requests sent by
// the USB host. Those requests indicate that the host wants to
// send a BREAK signal and are accompanied by a single uint16_t
// value, specifying the duration of the break. The value 0
// means to end any current break, while the value 0xffff means
// to start an indefinite break.
// readBreak() will return the value of the most recent break
// request, but will return it at most once, returning -1 when
// readBreak() is called again (until another break request is
// received, which is again returned once).
// This also mean that if two break requests are received
// without readBreak() being called in between, the value of the
// first request is lost.
// Note that the value returned is a long, so it can return
// 0-0xffff as well as -1.
int32_t readBreak();
// These return the settings specified by the USB host for the
// serial port. These aren't really used, but are offered here
// in case a sketch wants to act on these settings.
uint32_t baud();
uint8_t stopbits();
uint8_t paritytype();
uint8_t numbits();
bool dtr();
bool rts();
enum {
ONE_STOP_BIT = 0,
ONE_AND_HALF_STOP_BIT = 1,
TWO_STOP_BITS = 2,
};
enum {
NO_PARITY = 0,
ODD_PARITY = 1,
EVEN_PARITY = 2,
MARK_PARITY = 3,
SPACE_PARITY = 4,
};
};
extern Serial_ Serial;
#define HAVE_CDCSERIAL
//================================================================================
//================================================================================
// Low level API
typedef struct
{
uint8_t bmRequestType;
uint8_t bRequest;
uint8_t wValueL;
uint8_t wValueH;
uint16_t wIndex;
uint16_t wLength;
} USBSetup;
//================================================================================
//================================================================================
// MSC 'Driver'
int MSC_GetInterface(uint8_t* interfaceNum);
int MSC_GetDescriptor(int i);
bool MSC_Setup(USBSetup& setup);
bool MSC_Data(uint8_t rx,uint8_t tx);
//================================================================================
//================================================================================
// CSC 'Driver'
int CDC_GetInterface(uint8_t* interfaceNum);
int CDC_GetDescriptor(int i);
bool CDC_Setup(USBSetup& setup);
//================================================================================
//================================================================================
#define TRANSFER_PGM 0x80
#define TRANSFER_RELEASE 0x40
#define TRANSFER_ZERO 0x20
int USB_SendControl(uint8_t flags, const void* d, int len);
int USB_RecvControl(void* d, int len);
int USB_RecvControlLong(void* d, int len);
uint8_t USB_Available(uint8_t ep);
uint8_t USB_SendSpace(uint8_t ep);
int USB_Send(uint8_t ep, const void* data, int len); // blocking
int USB_Recv(uint8_t ep, void* data, int len); // non-blocking
int USB_Recv(uint8_t ep); // non-blocking
void USB_Flush(uint8_t ep);
#endif
#endif /* if defined(USBCON) */

View File

@@ -1,858 +0,0 @@
/* Copyright (c) 2010, Peter Barrett
** Sleep/Wakeup support added by Michael Dreher
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "USBAPI.h"
#include "PluggableUSB.h"
#include <stdlib.h>
#if defined(USBCON)
/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
volatile u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
volatile u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */
//==================================================================
//==================================================================
extern const u16 STRING_LANGUAGE[] PROGMEM;
extern const u8 STRING_PRODUCT[] PROGMEM;
extern const u8 STRING_MANUFACTURER[] PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptorIAD PROGMEM;
const u16 STRING_LANGUAGE[2] = {
(3<<8) | (2+2),
0x0409 // English
};
#ifndef USB_PRODUCT
// If no product is provided, use USB IO Board
#define USB_PRODUCT "USB IO Board"
#endif
const u8 STRING_PRODUCT[] PROGMEM = USB_PRODUCT;
#if USB_VID == 0x2341
# if defined(USB_MANUFACTURER)
# undef USB_MANUFACTURER
# endif
# define USB_MANUFACTURER "Arduino LLC"
#elif USB_VID == 0x1b4f
# if defined(USB_MANUFACTURER)
# undef USB_MANUFACTURER
# endif
# define USB_MANUFACTURER "SparkFun"
#elif !defined(USB_MANUFACTURER)
// Fall through to unknown if no manufacturer name was provided in a macro
# define USB_MANUFACTURER "Unknown"
#endif
const u8 STRING_MANUFACTURER[] PROGMEM = USB_MANUFACTURER;
#define DEVICE_CLASS 0x02
// DEVICE DESCRIPTOR
const DeviceDescriptor USB_DeviceDescriptorIAD =
D_DEVICE(0xEF,0x02,0x01,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,ISERIAL,1);
//==================================================================
//==================================================================
volatile u8 _usbConfiguration = 0;
volatile u8 _usbCurrentStatus = 0; // meaning of bits see usb_20.pdf, Figure 9-4. Information Returned by a GetStatus() Request to a Device
volatile u8 _usbSuspendState = 0; // copy of UDINT to check SUSPI and WAKEUPI bits
static inline void WaitIN(void)
{
while (!(UEINTX & (1<<TXINI)))
;
}
static inline void ClearIN(void)
{
UEINTX = ~(1<<TXINI);
}
static inline void WaitOUT(void)
{
while (!(UEINTX & (1<<RXOUTI)))
;
}
static inline u8 WaitForINOrOUT()
{
while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
;
return (UEINTX & (1<<RXOUTI)) == 0;
}
static inline void ClearOUT(void)
{
UEINTX = ~(1<<RXOUTI);
}
static inline void Recv(volatile u8* data, u8 count)
{
while (count--)
*data++ = UEDATX;
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
}
static inline u8 Recv8()
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
return UEDATX;
}
static inline void Send8(u8 d)
{
UEDATX = d;
}
static inline void SetEP(u8 ep)
{
UENUM = ep;
}
static inline u8 FifoByteCount()
{
return UEBCLX;
}
static inline u8 ReceivedSetupInt()
{
return UEINTX & (1<<RXSTPI);
}
static inline void ClearSetupInt()
{
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}
static inline void Stall()
{
UECONX = (1<<STALLRQ) | (1<<EPEN);
}
static inline u8 ReadWriteAllowed()
{
return UEINTX & (1<<RWAL);
}
static inline u8 Stalled()
{
return UEINTX & (1<<STALLEDI);
}
static inline u8 FifoFree()
{
return UEINTX & (1<<FIFOCON);
}
static inline void ReleaseRX()
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
static inline void ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
static inline u8 FrameNumber()
{
return UDFNUML;
}
//==================================================================
//==================================================================
u8 USBGetConfiguration(void)
{
return _usbConfiguration;
}
#define USB_RECV_TIMEOUT
class LockEP
{
u8 _sreg;
public:
LockEP(u8 ep) : _sreg(SREG)
{
cli();
SetEP(ep & 7);
}
~LockEP()
{
SREG = _sreg;
}
};
// Number of bytes, assumes a rx endpoint
u8 USB_Available(u8 ep)
{
LockEP lock(ep);
return FifoByteCount();
}
// Non Blocking receive
// Return number of bytes read
int USB_Recv(u8 ep, void* d, int len)
{
if (!_usbConfiguration || len < 0)
return -1;
LockEP lock(ep);
u8 n = FifoByteCount();
len = min(n,len);
n = len;
u8* dst = (u8*)d;
while (n--)
*dst++ = Recv8();
if (len && !FifoByteCount()) // release empty buffer
ReleaseRX();
return len;
}
// Recv 1 byte if ready
int USB_Recv(u8 ep)
{
u8 c;
if (USB_Recv(ep,&c,1) != 1)
return -1;
return c;
}
// Space in send EP
u8 USB_SendSpace(u8 ep)
{
LockEP lock(ep);
if (!ReadWriteAllowed())
return 0;
return USB_EP_SIZE - FifoByteCount();
}
// Blocking Send of data to an endpoint
int USB_Send(u8 ep, const void* d, int len)
{
if (!_usbConfiguration)
return -1;
if (_usbSuspendState & (1<<SUSPI)) {
//send a remote wakeup
UDCON |= (1 << RMWKUP);
}
int r = len;
const u8* data = (const u8*)d;
u8 timeout = 250; // 250ms timeout on send? TODO
bool sendZlp = false;
while (len || sendZlp)
{
u8 n = USB_SendSpace(ep);
if (n == 0)
{
if (!(--timeout))
return -1;
delay(1);
continue;
}
if (n > len) {
n = len;
}
{
LockEP lock(ep);
// Frame may have been released by the SOF interrupt handler
if (!ReadWriteAllowed())
continue;
len -= n;
if (ep & TRANSFER_ZERO)
{
while (n--)
Send8(0);
}
else if (ep & TRANSFER_PGM)
{
while (n--)
Send8(pgm_read_byte(data++));
}
else
{
while (n--)
Send8(*data++);
}
if (sendZlp) {
ReleaseTX();
sendZlp = false;
} else if (!ReadWriteAllowed()) { // ...release if buffer is full...
ReleaseTX();
if (len == 0) sendZlp = true;
} else if ((len == 0) && (ep & TRANSFER_RELEASE)) { // ...or if forced with TRANSFER_RELEASE
// XXX: TRANSFER_RELEASE is never used can be removed?
ReleaseTX();
}
}
}
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
return r;
}
u8 _initEndpoints[USB_ENDPOINTS] =
{
0, // Control Endpoint
EP_TYPE_INTERRUPT_IN, // CDC_ENDPOINT_ACM
EP_TYPE_BULK_OUT, // CDC_ENDPOINT_OUT
EP_TYPE_BULK_IN, // CDC_ENDPOINT_IN
// Following endpoints are automatically initialized to 0
};
#define EP_SINGLE_64 0x32 // EP0
#define EP_DOUBLE_64 0x36 // Other endpoints
#define EP_SINGLE_16 0x12
static
void InitEP(u8 index, u8 type, u8 size)
{
UENUM = index;
UECONX = (1<<EPEN);
UECFG0X = type;
UECFG1X = size;
}
static
void InitEndpoints()
{
for (u8 i = 1; i < sizeof(_initEndpoints) && _initEndpoints[i] != 0; i++)
{
UENUM = i;
UECONX = (1<<EPEN);
UECFG0X = _initEndpoints[i];
#if USB_EP_SIZE == 16
UECFG1X = EP_SINGLE_16;
#elif USB_EP_SIZE == 64
UECFG1X = EP_DOUBLE_64;
#else
#error Unsupported value for USB_EP_SIZE
#endif
}
UERST = 0x7E; // And reset them
UERST = 0;
}
// Handle CLASS_INTERFACE requests
static
bool ClassInterfaceRequest(USBSetup& setup)
{
u8 i = setup.wIndex;
if (CDC_ACM_INTERFACE == i)
return CDC_Setup(setup);
#ifdef PLUGGABLE_USB_ENABLED
return PluggableUSB().setup(setup);
#endif
return false;
}
static int _cmark;
static int _cend;
void InitControl(int end)
{
SetEP(0);
_cmark = 0;
_cend = end;
}
static
bool SendControl(u8 d)
{
if (_cmark < _cend)
{
if (!WaitForINOrOUT())
return false;
Send8(d);
if (!((_cmark + 1) & 0x3F))
ClearIN(); // Fifo is full, release this packet
}
_cmark++;
return true;
}
// Clipped by _cmark/_cend
int USB_SendControl(u8 flags, const void* d, int len)
{
int sent = len;
const u8* data = (const u8*)d;
bool pgm = flags & TRANSFER_PGM;
while (len--)
{
u8 c = pgm ? pgm_read_byte(data++) : *data++;
if (!SendControl(c))
return -1;
}
return sent;
}
// Send a USB descriptor string. The string is stored in PROGMEM as a
// plain ASCII string but is sent out as UTF-16 with the correct 2-byte
// prefix
static bool USB_SendStringDescriptor(const u8*string_P, u8 string_len, uint8_t flags) {
SendControl(2 + string_len * 2);
SendControl(3);
bool pgm = flags & TRANSFER_PGM;
for(u8 i = 0; i < string_len; i++) {
bool r = SendControl(pgm ? pgm_read_byte(&string_P[i]) : string_P[i]);
r &= SendControl(0); // high byte
if(!r) {
return false;
}
}
return true;
}
// Does not timeout or cross fifo boundaries
int USB_RecvControl(void* d, int len)
{
auto length = len;
while(length)
{
// Dont receive more than the USB Control EP has to offer
// Use fixed 64 because control EP always have 64 bytes even on 16u2.
auto recvLength = length;
if(recvLength > 64){
recvLength = 64;
}
// Write data to fit to the end (not the beginning) of the array
WaitOUT();
Recv((u8*)d + len - length, recvLength);
ClearOUT();
length -= recvLength;
}
return len;
}
static u8 SendInterfaces()
{
u8 interfaces = 0;
CDC_GetInterface(&interfaces);
#ifdef PLUGGABLE_USB_ENABLED
PluggableUSB().getInterface(&interfaces);
#endif
return interfaces;
}
// Construct a dynamic configuration descriptor
// This really needs dynamic endpoint allocation etc
// TODO
static
bool SendConfiguration(int maxlen)
{
// Count and measure interfaces
InitControl(0);
u8 interfaces = SendInterfaces();
ConfigDescriptor config = D_CONFIG(_cmark + sizeof(ConfigDescriptor),interfaces);
// Now send them
InitControl(maxlen);
USB_SendControl(0,&config,sizeof(ConfigDescriptor));
SendInterfaces();
return true;
}
static
bool SendDescriptor(USBSetup& setup)
{
int ret;
u8 t = setup.wValueH;
if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
return SendConfiguration(setup.wLength);
InitControl(setup.wLength);
#ifdef PLUGGABLE_USB_ENABLED
ret = PluggableUSB().getDescriptor(setup);
if (ret != 0) {
return (ret > 0 ? true : false);
}
#endif
const u8* desc_addr = 0;
if (USB_DEVICE_DESCRIPTOR_TYPE == t)
{
desc_addr = (const u8*)&USB_DeviceDescriptorIAD;
}
else if (USB_STRING_DESCRIPTOR_TYPE == t)
{
if (setup.wValueL == 0) {
desc_addr = (const u8*)&STRING_LANGUAGE;
}
else if (setup.wValueL == IPRODUCT) {
return USB_SendStringDescriptor(STRING_PRODUCT, strlen(USB_PRODUCT), TRANSFER_PGM);
}
else if (setup.wValueL == IMANUFACTURER) {
return USB_SendStringDescriptor(STRING_MANUFACTURER, strlen(USB_MANUFACTURER), TRANSFER_PGM);
}
else if (setup.wValueL == ISERIAL) {
#ifdef PLUGGABLE_USB_ENABLED
char name[ISERIAL_MAX_LEN];
PluggableUSB().getShortName(name);
return USB_SendStringDescriptor((uint8_t*)name, strlen(name), 0);
#endif
}
else
return false;
}
if (desc_addr == 0)
return false;
u8 desc_length = pgm_read_byte(desc_addr);
USB_SendControl(TRANSFER_PGM,desc_addr,desc_length);
return true;
}
// Endpoint 0 interrupt
ISR(USB_COM_vect)
{
SetEP(0);
if (!ReceivedSetupInt())
return;
USBSetup setup;
Recv((u8*)&setup,8);
ClearSetupInt();
u8 requestType = setup.bmRequestType;
if (requestType & REQUEST_DEVICETOHOST)
WaitIN();
else
ClearIN();
bool ok = true;
if (REQUEST_STANDARD == (requestType & REQUEST_TYPE))
{
// Standard Requests
u8 r = setup.bRequest;
u16 wValue = setup.wValueL | (setup.wValueH << 8);
if (GET_STATUS == r)
{
if (requestType == (REQUEST_DEVICETOHOST | REQUEST_STANDARD | REQUEST_DEVICE))
{
Send8(_usbCurrentStatus);
Send8(0);
}
else
{
// TODO: handle the HALT state of an endpoint here
// see "Figure 9-6. Information Returned by a GetStatus() Request to an Endpoint" in usb_20.pdf for more information
Send8(0);
Send8(0);
}
}
else if (CLEAR_FEATURE == r)
{
if((requestType == (REQUEST_HOSTTODEVICE | REQUEST_STANDARD | REQUEST_DEVICE))
&& (wValue == DEVICE_REMOTE_WAKEUP))
{
_usbCurrentStatus &= ~FEATURE_REMOTE_WAKEUP_ENABLED;
}
}
else if (SET_FEATURE == r)
{
if((requestType == (REQUEST_HOSTTODEVICE | REQUEST_STANDARD | REQUEST_DEVICE))
&& (wValue == DEVICE_REMOTE_WAKEUP))
{
_usbCurrentStatus |= FEATURE_REMOTE_WAKEUP_ENABLED;
}
}
else if (SET_ADDRESS == r)
{
WaitIN();
UDADDR = setup.wValueL | (1<<ADDEN);
}
else if (GET_DESCRIPTOR == r)
{
ok = SendDescriptor(setup);
}
else if (SET_DESCRIPTOR == r)
{
ok = false;
}
else if (GET_CONFIGURATION == r)
{
Send8(1);
}
else if (SET_CONFIGURATION == r)
{
if (REQUEST_DEVICE == (requestType & REQUEST_RECIPIENT))
{
InitEndpoints();
_usbConfiguration = setup.wValueL;
} else
ok = false;
}
else if (GET_INTERFACE == r)
{
}
else if (SET_INTERFACE == r)
{
}
}
else
{
InitControl(setup.wLength); // Max length of transfer
ok = ClassInterfaceRequest(setup);
}
if (ok)
ClearIN();
else
{
Stall();
}
}
void USB_Flush(u8 ep)
{
SetEP(ep);
if (FifoByteCount())
ReleaseTX();
}
static inline void USB_ClockDisable()
{
#if defined(OTGPADE)
USBCON = (USBCON & ~(1<<OTGPADE)) | (1<<FRZCLK); // freeze clock and disable VBUS Pad
#else // u2 Series
USBCON = (1 << FRZCLK); // freeze clock
#endif
PLLCSR &= ~(1<<PLLE); // stop PLL
}
static inline void USB_ClockEnable()
{
#if defined(UHWCON)
UHWCON |= (1<<UVREGE); // power internal reg
#endif
USBCON = (1<<USBE) | (1<<FRZCLK); // clock frozen, usb enabled
// ATmega32U4
#if defined(PINDIV)
#if F_CPU == 16000000UL
PLLCSR |= (1<<PINDIV); // Need 16 MHz xtal
#elif F_CPU == 8000000UL
PLLCSR &= ~(1<<PINDIV); // Need 8 MHz xtal
#else
#error "Clock rate of F_CPU not supported"
#endif
#elif defined(__AVR_AT90USB82__) || defined(__AVR_AT90USB162__) || defined(__AVR_ATmega32U2__) || defined(__AVR_ATmega16U2__) || defined(__AVR_ATmega8U2__)
// for the u2 Series the datasheet is confusing. On page 40 its called PINDIV and on page 290 its called PLLP0
#if F_CPU == 16000000UL
// Need 16 MHz xtal
PLLCSR |= (1 << PLLP0);
#elif F_CPU == 8000000UL
// Need 8 MHz xtal
PLLCSR &= ~(1 << PLLP0);
#endif
// AT90USB646, AT90USB647, AT90USB1286, AT90USB1287
#elif defined(PLLP2)
#if F_CPU == 16000000UL
#if defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__)
// For Atmel AT90USB128x only. Do not use with Atmel AT90USB64x.
PLLCSR = (PLLCSR & ~(1<<PLLP1)) | ((1<<PLLP2) | (1<<PLLP0)); // Need 16 MHz xtal
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__)
// For AT90USB64x only. Do not use with AT90USB128x.
PLLCSR = (PLLCSR & ~(1<<PLLP0)) | ((1<<PLLP2) | (1<<PLLP1)); // Need 16 MHz xtal
#else
#error "USB Chip not supported, please defined method of USB PLL initialization"
#endif
#elif F_CPU == 8000000UL
// for Atmel AT90USB128x and AT90USB64x
PLLCSR = (PLLCSR & ~(1<<PLLP2)) | ((1<<PLLP1) | (1<<PLLP0)); // Need 8 MHz xtal
#else
#error "Clock rate of F_CPU not supported"
#endif
#else
#error "USB Chip not supported, please defined method of USB PLL initialization"
#endif
PLLCSR |= (1<<PLLE);
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
{
}
// Some tests on specific versions of macosx (10.7.3), reported some
// strange behaviors when the board is reset using the serial
// port touch at 1200 bps. This delay fixes this behavior.
delay(1);
#if defined(OTGPADE)
USBCON = (USBCON & ~(1<<FRZCLK)) | (1<<OTGPADE); // start USB clock, enable VBUS Pad
#else
USBCON &= ~(1 << FRZCLK); // start USB clock
#endif
#if defined(RSTCPU)
#if defined(LSM)
UDCON &= ~((1<<RSTCPU) | (1<<LSM) | (1<<RMWKUP) | (1<<DETACH)); // enable attach resistor, set full speed mode
#else // u2 Series
UDCON &= ~((1 << RSTCPU) | (1 << RMWKUP) | (1 << DETACH)); // enable attach resistor, set full speed mode
#endif
#else
// AT90USB64x and AT90USB128x don't have RSTCPU
UDCON &= ~((1<<LSM) | (1<<RMWKUP) | (1<<DETACH)); // enable attach resistor, set full speed mode
#endif
}
// General interrupt
ISR(USB_GEN_vect)
{
u8 udint = UDINT;
UDINT &= ~((1<<EORSTI) | (1<<SOFI)); // clear the IRQ flags for the IRQs which are handled here, except WAKEUPI and SUSPI (see below)
// End of Reset
if (udint & (1<<EORSTI))
{
InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
_usbConfiguration = 0; // not configured yet
UEIENX = 1 << RXSTPE; // Enable interrupts for ep0
}
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if (udint & (1<<SOFI))
{
USB_Flush(CDC_TX); // Send a tx frame if found
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
}
// the WAKEUPI interrupt is triggered as soon as there are non-idle patterns on the data
// lines. Thus, the WAKEUPI interrupt can occur even if the controller is not in the "suspend" mode.
// Therefore the we enable it only when USB is suspended
if (udint & (1<<WAKEUPI))
{
UDIEN = (UDIEN & ~(1<<WAKEUPE)) | (1<<SUSPE); // Disable interrupts for WAKEUP and enable interrupts for SUSPEND
//TODO
// WAKEUPI shall be cleared by software (USB clock inputs must be enabled before).
//USB_ClockEnable();
UDINT &= ~(1<<WAKEUPI);
_usbSuspendState = (_usbSuspendState & ~(1<<SUSPI)) | (1<<WAKEUPI);
}
else if (udint & (1<<SUSPI)) // only one of the WAKEUPI / SUSPI bits can be active at time
{
UDIEN = (UDIEN & ~(1<<SUSPE)) | (1<<WAKEUPE); // Disable interrupts for SUSPEND and enable interrupts for WAKEUP
//TODO
//USB_ClockDisable();
UDINT &= ~((1<<WAKEUPI) | (1<<SUSPI)); // clear any already pending WAKEUP IRQs and the SUSPI request
_usbSuspendState = (_usbSuspendState & ~(1<<WAKEUPI)) | (1<<SUSPI);
}
}
// VBUS or counting frames
// Any frame counting?
u8 USBConnected()
{
u8 f = UDFNUML;
delay(3);
return f != UDFNUML;
}
//=======================================================================
//=======================================================================
USBDevice_ USBDevice;
USBDevice_::USBDevice_()
{
}
void USBDevice_::attach()
{
_usbConfiguration = 0;
_usbCurrentStatus = 0;
_usbSuspendState = 0;
USB_ClockEnable();
UDINT &= ~((1<<WAKEUPI) | (1<<SUSPI)); // clear already pending WAKEUP / SUSPEND requests
UDIEN = (1<<EORSTE) | (1<<SOFE) | (1<<SUSPE); // Enable interrupts for EOR (End of Reset), SOF (start of frame) and SUSPEND
TX_RX_LED_INIT;
}
void USBDevice_::detach()
{
}
// Check for interrupts
// TODO: VBUS detection
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USBDevice_::poll()
{
}
bool USBDevice_::wakeupHost()
{
// clear any previous wakeup request which might have been set but could be processed at that time
// e.g. because the host was not suspended at that time
UDCON &= ~(1 << RMWKUP);
if(!(UDCON & (1 << RMWKUP))
&& (_usbSuspendState & (1<<SUSPI))
&& (_usbCurrentStatus & FEATURE_REMOTE_WAKEUP_ENABLED))
{
// This short version will only work, when the device has not been suspended. Currently the
// Arduino core doesn't handle SUSPEND at all, so this is ok.
USB_ClockEnable();
UDCON |= (1 << RMWKUP); // send the wakeup request
return true;
}
return false;
}
#endif /* if defined(USBCON) */

View File

@@ -1,301 +0,0 @@
// Copyright (c) 2010, Peter Barrett
/*
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#ifndef __USBCORE_H__
#define __USBCORE_H__
#include "USBAPI.h"
// Standard requests
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
// bmRequestType
#define REQUEST_HOSTTODEVICE 0x00
#define REQUEST_DEVICETOHOST 0x80
#define REQUEST_DIRECTION 0x80
#define REQUEST_STANDARD 0x00
#define REQUEST_CLASS 0x20
#define REQUEST_VENDOR 0x40
#define REQUEST_TYPE 0x60
#define REQUEST_DEVICE 0x00
#define REQUEST_INTERFACE 0x01
#define REQUEST_ENDPOINT 0x02
#define REQUEST_OTHER 0x03
#define REQUEST_RECIPIENT 0x03
#define REQUEST_DEVICETOHOST_CLASS_INTERFACE (REQUEST_DEVICETOHOST | REQUEST_CLASS | REQUEST_INTERFACE)
#define REQUEST_HOSTTODEVICE_CLASS_INTERFACE (REQUEST_HOSTTODEVICE | REQUEST_CLASS | REQUEST_INTERFACE)
#define REQUEST_DEVICETOHOST_STANDARD_INTERFACE (REQUEST_DEVICETOHOST | REQUEST_STANDARD | REQUEST_INTERFACE)
// Class requests
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define CDC_SEND_BREAK 0x23
#define MSC_RESET 0xFF
#define MSC_GET_MAX_LUN 0xFE
// Descriptors
#define USB_DEVICE_DESC_SIZE 18
#define USB_CONFIGUARTION_DESC_SIZE 9
#define USB_INTERFACE_DESC_SIZE 9
#define USB_ENDPOINT_DESC_SIZE 7
#define USB_DEVICE_DESCRIPTOR_TYPE 1
#define USB_CONFIGURATION_DESCRIPTOR_TYPE 2
#define USB_STRING_DESCRIPTOR_TYPE 3
#define USB_INTERFACE_DESCRIPTOR_TYPE 4
#define USB_ENDPOINT_DESCRIPTOR_TYPE 5
// usb_20.pdf Table 9.6 Standard Feature Selectors
#define DEVICE_REMOTE_WAKEUP 1
#define ENDPOINT_HALT 2
#define TEST_MODE 3
// usb_20.pdf Figure 9-4. Information Returned by a GetStatus() Request to a Device
#define FEATURE_SELFPOWERED_ENABLED (1 << 0)
#define FEATURE_REMOTE_WAKEUP_ENABLED (1 << 1)
#define USB_DEVICE_CLASS_COMMUNICATIONS 0x02
#define USB_DEVICE_CLASS_HUMAN_INTERFACE 0x03
#define USB_DEVICE_CLASS_STORAGE 0x08
#define USB_DEVICE_CLASS_VENDOR_SPECIFIC 0xFF
#define USB_CONFIG_POWERED_MASK 0x40
#define USB_CONFIG_BUS_POWERED 0x80
#define USB_CONFIG_SELF_POWERED 0xC0
#define USB_CONFIG_REMOTE_WAKEUP 0x20
// bMaxPower in Configuration Descriptor
#define USB_CONFIG_POWER_MA(mA) ((mA)/2)
// bEndpointAddress in Endpoint Descriptor
#define USB_ENDPOINT_DIRECTION_MASK 0x80
#define USB_ENDPOINT_OUT(addr) (lowByte((addr) | 0x00))
#define USB_ENDPOINT_IN(addr) (lowByte((addr) | 0x80))
#define USB_ENDPOINT_TYPE_MASK 0x03
#define USB_ENDPOINT_TYPE_CONTROL 0x00
#define USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01
#define USB_ENDPOINT_TYPE_BULK 0x02
#define USB_ENDPOINT_TYPE_INTERRUPT 0x03
#define TOBYTES(x) ((x) & 0xFF),(((x) >> 8) & 0xFF)
#define CDC_V1_10 0x0110
#define CDC_COMMUNICATION_INTERFACE_CLASS 0x02
#define CDC_CALL_MANAGEMENT 0x01
#define CDC_ABSTRACT_CONTROL_MODEL 0x02
#define CDC_HEADER 0x00
#define CDC_ABSTRACT_CONTROL_MANAGEMENT 0x02
#define CDC_UNION 0x06
#define CDC_CS_INTERFACE 0x24
#define CDC_CS_ENDPOINT 0x25
#define CDC_DATA_INTERFACE_CLASS 0x0A
#define MSC_SUBCLASS_SCSI 0x06
#define MSC_PROTOCOL_BULK_ONLY 0x50
#ifndef USB_VERSION
#define USB_VERSION 0x200
#endif
// Device
typedef struct {
u8 len; // 18
u8 dtype; // 1 USB_DEVICE_DESCRIPTOR_TYPE
u16 usbVersion; // 0x200 or 0x210
u8 deviceClass;
u8 deviceSubClass;
u8 deviceProtocol;
u8 packetSize0; // Packet 0
u16 idVendor;
u16 idProduct;
u16 deviceVersion; // 0x100
u8 iManufacturer;
u8 iProduct;
u8 iSerialNumber;
u8 bNumConfigurations;
} DeviceDescriptor;
// Config
typedef struct {
u8 len; // 9
u8 dtype; // 2
u16 clen; // total length
u8 numInterfaces;
u8 config;
u8 iconfig;
u8 attributes;
u8 maxPower;
} ConfigDescriptor;
// String
// Interface
typedef struct
{
u8 len; // 9
u8 dtype; // 4
u8 number;
u8 alternate;
u8 numEndpoints;
u8 interfaceClass;
u8 interfaceSubClass;
u8 protocol;
u8 iInterface;
} InterfaceDescriptor;
// Endpoint
typedef struct
{
u8 len; // 7
u8 dtype; // 5
u8 addr;
u8 attr;
u16 packetSize;
u8 interval;
} EndpointDescriptor;
// Interface Association Descriptor
// Used to bind 2 interfaces together in CDC compostite device
typedef struct
{
u8 len; // 8
u8 dtype; // 11
u8 firstInterface;
u8 interfaceCount;
u8 functionClass;
u8 funtionSubClass;
u8 functionProtocol;
u8 iInterface;
} IADDescriptor;
// CDC CS interface descriptor
typedef struct
{
u8 len; // 5
u8 dtype; // 0x24
u8 subtype;
u8 d0;
u8 d1;
} CDCCSInterfaceDescriptor;
typedef struct
{
u8 len; // 4
u8 dtype; // 0x24
u8 subtype;
u8 d0;
} CDCCSInterfaceDescriptor4;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
u8 bDataInterface;
} CMFunctionalDescriptor;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
} ACMFunctionalDescriptor;
typedef struct
{
// IAD
IADDescriptor iad; // Only needed on compound device
// Control
InterfaceDescriptor cif; //
CDCCSInterfaceDescriptor header;
CMFunctionalDescriptor callManagement; // Call Management
ACMFunctionalDescriptor controlManagement; // ACM
CDCCSInterfaceDescriptor functionalDescriptor; // CDC_UNION
EndpointDescriptor cifin;
// Data
InterfaceDescriptor dif;
EndpointDescriptor in;
EndpointDescriptor out;
} CDCDescriptor;
typedef struct
{
InterfaceDescriptor msc;
EndpointDescriptor in;
EndpointDescriptor out;
} MSCDescriptor;
#define D_DEVICE(_class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs) \
{ 18, 1, USB_VERSION, _class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs }
#define D_CONFIG(_totalLength,_interfaces) \
{ 9, 2, _totalLength,_interfaces, 1, 0, USB_CONFIG_BUS_POWERED | USB_CONFIG_REMOTE_WAKEUP, USB_CONFIG_POWER_MA(500) }
#define D_INTERFACE(_n,_numEndpoints,_class,_subClass,_protocol) \
{ 9, 4, _n, 0, _numEndpoints, _class,_subClass, _protocol, 0 }
#define D_ENDPOINT(_addr,_attr,_packetSize, _interval) \
{ 7, 5, _addr,_attr,_packetSize, _interval }
#define D_IAD(_firstInterface, _count, _class, _subClass, _protocol) \
{ 8, 11, _firstInterface, _count, _class, _subClass, _protocol, 0 }
#define D_CDCCS(_subtype,_d0,_d1) { 5, 0x24, _subtype, _d0, _d1 }
#define D_CDCCS4(_subtype,_d0) { 4, 0x24, _subtype, _d0 }
// Bootloader related fields
// Old Caterina bootloader places the MAGIC key into unsafe RAM locations (it can be rewritten
// by the running sketch before to actual reboot).
// Newer bootloaders, recognizable by the LUFA "signature" at the end of the flash, can handle both
// the usafe and the safe location.
#ifndef MAGIC_KEY
#define MAGIC_KEY 0x7777
#endif
#ifndef MAGIC_KEY_POS
#define MAGIC_KEY_POS 0x0800
#endif
#ifndef NEW_LUFA_SIGNATURE
#define NEW_LUFA_SIGNATURE 0xDCFB
#endif
#endif

View File

@@ -1,46 +0,0 @@
/*
Copyright (c) 2011, Peter Barrett
Copyright (c) 2015, Arduino LLC
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.
*/
#define PLUGGABLE_USB_ENABLED
#if defined(EPRST6)
#define USB_ENDPOINTS 7 // AtMegaxxU4
#else
#define USB_ENDPOINTS 5 // AtMegaxxU2
#endif
#define ISERIAL_MAX_LEN 20
#define CDC_INTERFACE_COUNT 2
#define CDC_ENPOINT_COUNT 3
#define CDC_ACM_INTERFACE 0 // CDC ACM
#define CDC_DATA_INTERFACE 1 // CDC Data
#define CDC_FIRST_ENDPOINT 1
#define CDC_ENDPOINT_ACM (CDC_FIRST_ENDPOINT) // CDC First
#define CDC_ENDPOINT_OUT (CDC_FIRST_ENDPOINT+1)
#define CDC_ENDPOINT_IN (CDC_FIRST_ENDPOINT+2)
#define INTERFACE_COUNT (MSC_INTERFACE + MSC_INTERFACE_COUNT)
#define CDC_RX CDC_ENDPOINT_OUT
#define CDC_TX CDC_ENDPOINT_IN
#define IMANUFACTURER 1
#define IPRODUCT 2
#define ISERIAL 3

View File

@@ -1,89 +0,0 @@
/*
* Udp.cpp: Library to send/receive UDP packets.
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef udp_h
#define udp_h
#include <Stream.h>
#include <IPAddress.h>
class UDP : public Stream {
public:
virtual uint8_t begin(uint16_t) =0; // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual uint8_t beginMulticast(IPAddress, uint16_t) { return 0; } // initialize, start listening on specified multicast IP address and port. Returns 1 if successful, 0 on failure
virtual void stop() =0; // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port) =0;
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port) =0;
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket() =0;
// Write a single byte into the packet
virtual size_t write(uint8_t) =0;
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size) =0;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket() =0;
// Number of bytes remaining in the current packet
virtual int available() =0;
// Read a single byte from the current packet
virtual int read() =0;
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len) =0;
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) =0;
// Return the next byte from the current packet without moving on to the next byte
virtual int peek() =0;
virtual void flush() =0; // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() =0;
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() =0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@@ -1,324 +1,47 @@
/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */ /* внешние прерывания*/
/*
Part of the Wiring project - http://wiring.uniandes.edu.co
Copyright (c) 2004-05 Hernando Barragan
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 24 November 2006 by David A. Mellis
Modified 1 August 2010 by Mark Sproul
*/
#include <inttypes.h> #include <inttypes.h>
#include <avr/io.h> #include <avr/io.h>
#include <avr/interrupt.h> #include <avr/interrupt.h>
#include <avr/pgmspace.h> #include <avr/pgmspace.h>
#include <stdio.h> #include <stdio.h>
#include "Arduino.h"
#include "wiring_private.h" extern void (*ext_isr0)();
extern void (*ext_isr1)();
void (*ext_isr0)();
void (*ext_isr1)();
static void nothing(void) { ISR(INT0_vect){
(*ext_isr0)();
}
ISR(INT1_vect){
(*ext_isr1)();
} }
static volatile voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS] = {
#if EXTERNAL_NUM_INTERRUPTS > 8
#warning There are more than 8 external interrupts. Some callbacks may not be initialized.
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 7
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 6
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 5
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 4
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 3
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 2
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 1
nothing,
#endif
#if EXTERNAL_NUM_INTERRUPTS > 0
nothing,
#endif
};
// volatile static voidFuncPtr twiIntFunc;
void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) { void attachInterrupt(uint8_t num,void (*isr)(), uint8_t type){
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) { switch(num){
intFunc[interruptNum] = userFunc; case 0:
ext_isr0 = *isr;
// Configure the interrupt mode (trigger on low input, any change, rising EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (type << ISC00);
// edge, or falling edge). The mode constants were chosen to correspond EIMSK |= (1 << INT0);
// to the configuration bits in the hardware register, so we simply shift break;
// the mode into place. case 1:
ext_isr1 = *isr;
// Enable the interrupt. EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (type << ISC10);
EIMSK |= (1 << INT1);
switch (interruptNum) { break;
#if defined(__AVR_ATmega32U4__) }
// I hate doing this, but the register assignment differs between the 1280/2560
// and the 32U4. Since avrlib defines registers PCMSK1 and PCMSK2 that aren't
// even present on the 32U4 this is the only way to distinguish between them.
case 0:
EICRA = (EICRA & ~((1<<ISC00) | (1<<ISC01))) | (mode << ISC00);
EIMSK |= (1<<INT0);
break;
case 1:
EICRA = (EICRA & ~((1<<ISC10) | (1<<ISC11))) | (mode << ISC10);
EIMSK |= (1<<INT1);
break;
case 2:
EICRA = (EICRA & ~((1<<ISC20) | (1<<ISC21))) | (mode << ISC20);
EIMSK |= (1<<INT2);
break;
case 3:
EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
EIMSK |= (1<<INT3);
break;
case 4:
EICRB = (EICRB & ~((1<<ISC60) | (1<<ISC61))) | (mode << ISC60);
EIMSK |= (1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
break;
case 3:
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
break;
case 4:
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
break;
case 5:
EICRA = (EICRA & ~((1 << ISC30) | (1 << ISC31))) | (mode << ISC30);
EIMSK |= (1 << INT3);
break;
case 0:
EICRB = (EICRB & ~((1 << ISC40) | (1 << ISC41))) | (mode << ISC40);
EIMSK |= (1 << INT4);
break;
case 1:
EICRB = (EICRB & ~((1 << ISC50) | (1 << ISC51))) | (mode << ISC50);
EIMSK |= (1 << INT5);
break;
case 6:
EICRB = (EICRB & ~((1 << ISC60) | (1 << ISC61))) | (mode << ISC60);
EIMSK |= (1 << INT6);
break;
case 7:
EICRB = (EICRB & ~((1 << ISC70) | (1 << ISC71))) | (mode << ISC70);
EIMSK |= (1 << INT7);
break;
#else
case 0:
#if defined(EICRA) && defined(ISC00) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GICR |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GIMSK |= (1 << INT0);
#else
#error attachInterrupt not finished for this CPU (case 0)
#endif
break;
case 1:
#if defined(EICRA) && defined(ISC10) && defined(ISC11) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(ISC11) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GICR |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GIMSK |= (1 << INT1);
#else
#warning attachInterrupt may need some more work for this cpu (case 1)
#endif
break;
case 2:
#if defined(EICRA) && defined(ISC20) && defined(ISC21) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(ISC21) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GICR |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GIMSK |= (1 << INT2);
#endif
break;
#endif
}
}
} }
void detachInterrupt(uint8_t interruptNum) {
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
// Disable the interrupt. (We can't assume that interruptNum is equal
// to the number of the EIMSK bit to clear, as this isn't true on the
// ATmega8. There, INT0 is 6 and INT1 is 7.)
switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
case 0:
EIMSK &= ~(1<<INT0);
break;
case 1:
EIMSK &= ~(1<<INT1);
break;
case 2:
EIMSK &= ~(1<<INT2);
break;
case 3:
EIMSK &= ~(1<<INT3);
break;
case 4:
EIMSK &= ~(1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EIMSK &= ~(1 << INT0);
break;
case 3:
EIMSK &= ~(1 << INT1);
break;
case 4:
EIMSK &= ~(1 << INT2);
break;
case 5:
EIMSK &= ~(1 << INT3);
break;
case 0:
EIMSK &= ~(1 << INT4);
break;
case 1:
EIMSK &= ~(1 << INT5);
break;
case 6:
EIMSK &= ~(1 << INT6);
break;
case 7:
EIMSK &= ~(1 << INT7);
break;
#else
case 0:
#if defined(EIMSK) && defined(INT0)
EIMSK &= ~(1 << INT0);
#elif defined(GICR) && defined(ISC00)
GICR &= ~(1 << INT0); // atmega32
#elif defined(GIMSK) && defined(INT0)
GIMSK &= ~(1 << INT0);
#else
#error detachInterrupt not finished for this cpu
#endif
break;
case 1: void detachInterrupt(uint8_t num){
#if defined(EIMSK) && defined(INT1) switch(num){
EIMSK &= ~(1 << INT1); case 0:
#elif defined(GICR) && defined(INT1) EIMSK &=~ (1<<INT0);
GICR &= ~(1 << INT1); // atmega32 break;
#elif defined(GIMSK) && defined(INT1) case 1:
GIMSK &= ~(1 << INT1); EIMSK &=~ (1<<INT1);
#else break;
#warning detachInterrupt may need some more work for this cpu (case 1)
#endif
break;
case 2:
#if defined(EIMSK) && defined(INT2)
EIMSK &= ~(1 << INT2);
#elif defined(GICR) && defined(INT2)
GICR &= ~(1 << INT2); // atmega32
#elif defined(GIMSK) && defined(INT2)
GIMSK &= ~(1 << INT2);
#elif defined(INT2)
#warning detachInterrupt may need some more work for this cpu (case 2)
#endif
break;
#endif
}
intFunc[interruptNum] = nothing;
}
} }
}
/*
void attachInterruptTwi(void (*userFunc)(void) ) {
twiIntFunc = userFunc;
}
*/
#define IMPLEMENT_ISR(vect, interrupt) \
ISR(vect) { \
intFunc[interrupt](); \
}
#if defined(__AVR_ATmega32U4__)
IMPLEMENT_ISR(INT0_vect, EXTERNAL_INT_0)
IMPLEMENT_ISR(INT1_vect, EXTERNAL_INT_1)
IMPLEMENT_ISR(INT2_vect, EXTERNAL_INT_2)
IMPLEMENT_ISR(INT3_vect, EXTERNAL_INT_3)
IMPLEMENT_ISR(INT6_vect, EXTERNAL_INT_4)
#elif defined(EICRA) && defined(EICRB)
IMPLEMENT_ISR(INT0_vect, EXTERNAL_INT_2)
IMPLEMENT_ISR(INT1_vect, EXTERNAL_INT_3)
IMPLEMENT_ISR(INT2_vect, EXTERNAL_INT_4)
IMPLEMENT_ISR(INT3_vect, EXTERNAL_INT_5)
IMPLEMENT_ISR(INT4_vect, EXTERNAL_INT_0)
IMPLEMENT_ISR(INT5_vect, EXTERNAL_INT_1)
IMPLEMENT_ISR(INT6_vect, EXTERNAL_INT_6)
IMPLEMENT_ISR(INT7_vect, EXTERNAL_INT_7)
#else
IMPLEMENT_ISR(INT0_vect, EXTERNAL_INT_0)
IMPLEMENT_ISR(INT1_vect, EXTERNAL_INT_1)
#if defined(EICRA) && defined(ISC20)
IMPLEMENT_ISR(INT2_vect, EXTERNAL_INT_2)
#endif
#endif
/*
ISR(TWI_vect) {
if(twiIntFunc)
twiIntFunc();
}
*/

View File

@@ -1,31 +0,0 @@
/*
Copyright (c) 2012 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Empty yield() hook.
*
* This function is intended to be used by library writers to build
* libraries or sketches that supports cooperative threads.
*
* Its defined as a weak symbol and it can be redefined to implement a
* real cooperative scheduler.
*/
static void __empty() {
// Empty
}
void yield(void) __attribute__ ((weak, alias("__empty")));

View File

@@ -1,52 +1,13 @@
/*
main.cpp - Main loop for Arduino sketches
Copyright (c) 2005-2013 Arduino Team. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h> #include <Arduino.h>
// Declared weak in Arduino.h to allow user redefinitions.
int atexit(void (* /*func*/ )()) { return 0; }
// Weak empty variant initialization function.
// May be redefined by variant files.
void initVariant() __attribute__((weak));
void initVariant() { }
void setupUSB() __attribute__((weak));
void setupUSB() { }
int main(void) int main(void)
{ {
init(); WDTCSR = 0; // wdt disable
init();
initVariant();
#if defined(USBCON)
USBDevice.attach();
#endif
setup(); setup();
while (1) {
for (;;) {
loop(); loop();
if (serialEventRun) serialEventRun(); if (serialEventRun) serialEventRun();
} }
return 0; return 0;
} }

View File

@@ -0,0 +1,391 @@
/*
Нормальный ввод/вывод
*/
#include "Arduino.h"
#include <avr/io.h>
// ============= DIGITAL =============
void pinMode(uint8_t pin, uint8_t mode)
{
switch (mode) {
case 0: // input
if (pin < 8) bitWrite(DDRD, pin, 0); // расставляем нули в DDRn
else if (pin < 14) bitWrite(DDRB, (pin - 8), 0);
else if (pin < 20) bitWrite(DDRC, (pin - 14), 0);
break;
case 1: // output
if (pin < 8) bitWrite(DDRD, pin, 1); // расставляем еденицы в DDRn
else if (pin < 14) bitWrite(DDRB, (pin - 8), 1);
else if (pin < 20) bitWrite(DDRC, (pin - 14), 1);
break;
case 2: // in_pullup
if (pin < 8) {
bitWrite(DDRD, pin, 0); // настраиваем как вх
bitWrite(PORTD, pin, 0); // вкл подтяжку
}
else if (pin < 14) {
bitWrite(DDRB, (pin - 8), 0);
bitWrite(PORTB, (pin - 8), 1);
}
else if (pin < 20) {
bitWrite(DDRC, (pin - 14), 0);
bitWrite(PORTC, (pin - 14), 1);
}
break;
}
}
void digitalWrite(uint8_t pin, uint8_t x) {
switch (pin) { // откл pwm
case 3: // 2B
TCCR2A &= ~(1 << COM2B1);
break;
case 5: // 0B
TCCR0A &= ~(1 << COM0B1);
break;
case 6: // 0A
TCCR0A &= ~(1 << COM0A1);
break;
case 9: // 1A
TCCR1A &= ~(1 << COM1A1);
break;
case 10: // 1B
TCCR1A &= ~(1 << COM1B1);
break;
case 11: // 2A
TCCR2A &= ~(1 << COM2A1);
break;
}
if (pin < 8) bitWrite(PORTD, pin, x);
else if (pin < 14) bitWrite(PORTB, (pin - 8), x);
else if (pin < 20) bitWrite(PORTC, (pin - 14), x);
}
int digitalRead (uint8_t pin) {
if (pin < 8) return bitRead(PIND, pin);
else if (pin < 14) return bitRead(PINB, pin - 8);
else if (pin < 20) return bitRead(PINC, pin - 14);
}
void digitalToggle(uint8_t pin){
if (pin < 8) bitToggle(PORTD, pin);
else if (pin < 14) bitToggle(PORTB, pin - 8);
else if (pin < 20) bitToggle(PORTC, pin - 14);
/*
if (pin < 8) {
bitWrite(PORTD, pin, !bitRead(PORTD,pin));
}
else if (pin < 14){
bitWrite(PORTB, (pin - 8),!bitRead(PORTB,(pin-8)));
}
else if (pin < 20){
bitWrite(PORTC, (pin - 14), !bitRead(PORTC,(pin-14)));
}
*/
}
// ============= ANALOG =============
void analogPrescaler (uint8_t prescl) {
cli();
switch (prescl) {
case 2:
ADCSRA &= ~((1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0));
break;
case 4: // (defalut)
ADCSRA &= ~((1 << ADPS2) | (1 << ADPS0));
ADCSRA |= (1 << ADPS1);
break;
case 8:
ADCSRA &= ~ (1 << ADPS2);
ADCSRA |= ((1 << ADPS1) | (1 << ADPS0));
break;
case 16:
ADCSRA &= ~((1 << ADPS1) | (1 << ADPS0));
ADCSRA |= (1 << ADPS2);
break;
case 32:
ADCSRA &= ~ (1 << ADPS1);
ADCSRA |= ((1 << ADPS2) | (1 << ADPS0));
break;
case 64:
ADCSRA &= ~ (1 << ADPS0);
ADCSRA |= ((1 << ADPS2) | (1 << ADPS1));
break;
case 128:
ADCSRA |= ((1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0));
break;
}
sei();
}
void analogReference(uint8_t mode)
{
switch (mode) {
case 0: //ext
ADMUX &= ~ ((1 << REFS1) | (1 << REFS0));
break;
case 1: //def
ADMUX &= ~ (1 << REFS1);
ADMUX |= (1 << REFS0);
break;
case 28: // interal
ADMUX |= ((1 << REFS1) | (1 << REFS0));
break;
}
}
int analogRead(uint8_t pin)
{
cli();
pin = pin - 14;
ADMUX &= ~((1 << MUX3) | (1 << MUX2) | (1 << MUX1) | (1 << MUX0)); // обнуляем мультиплексор
ADMUX = ADMUX | pin; // задвигаем номер входа
sei();
ADCSRA |= (1 << ADSC); // начинаем преобразование
while (ADCSRA & (1 << ADSC)); // ждем окончания
return ADCL | (ADCH << 8); // склеить и вернуть результат
}
void analogStartConvert(byte pin) {
cli();
pin = pin - 14;
ADMUX &= ~((1 << MUX3) | (1 << MUX2) | (1 << MUX1) | (1 << MUX0)); // обнуляем мультиплексор
ADMUX = ADMUX | pin; // задвигаем номер входа
sei();
ADCSRA |= (1 << ADSC); // начинаем преобразование
}
int analogGet() {
while (ADCSRA & (1 << ADSC)); // ждем окончания
return ADCL | (ADCH << 8); // склеить и вернуть результат
}
// ============= PWM =============
boolean _TMR0_HF_PWM = false;
boolean _TMR1_HF_PWM = false;
boolean _TMR2_HF_PWM = false;
boolean _TMR1_HR_PWM = false;
void analogWrite(uint8_t pin, int val)
{
cli();
switch (val) {
case 0:
digitalWrite(pin, 0);
break;
/*case 255:
digitalWrite(pin, 1);
break;*/
default:
switch (pin) { // вкл pwm
case 3: // 2B
if (!_TMR2_HF_PWM) {
TCCR2A |= (1 << COM2B1);
OCR2A = val;
} else {
if (val == 0) {
bitClear(TCCR2A, COM2B1);
bitClear(PORTD, 3);
} else {
bitSet(TCCR2A, COM2B1);
OCR2B = map(val, 0, 255, 0, 99);
}
}
break;
case 5: // 0B
if (!_TMR0_HF_PWM) {
TCCR0A |= (1 << COM0B1);
OCR0B = val;
} else {
if (val == 0) {
bitClear(TCCR0A, COM0B1);
bitClear(PORTD, 5);
} else {
bitSet(TCCR0A, COM0B1);
OCR0B = map(val, 0, 255, 0, 99);
}
}
break;
case 6: // 0A
TCCR0A |= (1 << COM0A1);
OCR0A = val;
break;
case 9: // 1A
if (!_TMR1_HF_PWM) {
TCCR1A |= (1 << COM1A1);
OCR1A = val;
} else {
if (!_TMR1_HR_PWM) val *= 3.13;
else val *= 0.78;
OCR1AH = highByte(val);
OCR1AL = lowByte(val);
}
break;
case 10: // 1B
if (!_TMR1_HF_PWM) {
TCCR1A |= (1 << COM1B1);
OCR1B = val;
} else {
if (!_TMR1_HR_PWM) val *= 3.13;
else val *= 0.78;
OCR1BH = highByte(val);
OCR1BL = lowByte(val);
}
break;
case 11: // 2A
TCCR2A |= (1 << COM2A1);
OCR2A = val;
break;
}
break;
}
sei();
}
/*
void setPWM_20kHz(byte pin); // установить частоту ШИМ 20 кГц (8 бит) на 3, 5, 9, 10
void setPWM_9_10_resolution(boolean resolution); // разрешение ШИМ на пинах 9 и 10 для 20 кГц: 0 - 8 бит, 1 - 10 бит
void setPwmFreqnuency(pin, freq); // установить частоту ШИМ (8 бит) на 3, 5, 6, 9, 10, 11: default, 8KHZ, 31KHZ
void setPWM_default(byte pin); // настроить ШИМ по умолчанию
*/
void setPWM_20kHz(byte pin) {
cli();
switch (pin) { // вкл pwm
case 3: // 2B
TCCR2A = 0b10100011;
TCCR2B = 0b00001010;
OCR2A = 99;
_TMR2_HF_PWM = true;
break;
case 5: // 0B
TCCR0A = 0b10100011;
TCCR0B = 0b00001010;
OCR0A = 99;
_TMR0_HF_PWM = true;
break;
case 9: // 1A
TCCR1A = 0b10100010;
TCCR1B = 0b00011001;
ICR1H = 3; // highByte(799)
ICR1L = 31; // lowByte(799)
_TMR1_HF_PWM = true;
break;
case 10: // 1B
TCCR1A = 0b10100010;
TCCR1B = 0b00011001;
ICR1H = 3; // highByte(799)
ICR1L = 31; // lowByte(799)
_TMR1_HF_PWM = true;
break;
}
sei();
}
// 0 - 8 бит, 1 - 10 бит
void setPWM_9_10_resolution(boolean resolution) {
if (resolution) _TMR1_HR_PWM = true;
else _TMR1_HR_PWM = false;
}
void setPwmFreqnuency(byte pin, byte freq) { //default, 8KHZ, 31KHZ
cli();
switch (pin) {
case 5:
case 6: //Timer0
switch (freq) {
case 0:
TCCR0B = 0b00000011; // x64
TCCR0A = 0b00000011; // fast pwm
break;
case 1:
TCCR0B = 0b00000010; // x8
TCCR0A = 0b00000011; // fast pwm
break;
case 2:
TCCR0B = 0b00000001; // x1
TCCR0A = 0b00000001; // phase correct
break;
}
break;
case 9:
case 10: //Timer1
_TMR1_HR_PWM = false;
switch (freq) {
case 0:
TCCR1A = 0b00000001; // 8bit
TCCR1B = 0b00000011; // x64 phase correct
break;
case 1:
TCCR1A = 0b00000001; // 8bit
TCCR1B = 0b00001010; // x8 fast pwm
break;
case 2:
TCCR1A = 0b00000001; // 8bit
TCCR1B = 0b00000001; // x1 phase correct
break;
}
break;
case 3:
case 11: //Timer2
switch (freq) {
case 0:
TCCR2B = 0b00000100; // x64
TCCR2A = 0b00000001; // phase correct
break;
case 1:
// Пины D3 и D11 - 8 кГц
TCCR2B = 0b00000010; // x8
TCCR2A = 0b00000011; // fast pwm
break;
case 2:
TCCR2B = 0b00000001; // x1
TCCR2A = 0b00000001; // phase correct
break;
}
break;
}
sei();
}
void setPWM_default(byte pin) {
cli();
switch (pin) {
case 3: //Timer2_B // не хочешь /64 можешь сделать /1
TCCR2A = 0b10100001; //default pwm 8 bit phaseCorrect
TCCR2B = 0b00000100; // prescaler /64 // крайние левые 3 бита поменять на 001 для делителя 1
_TMR2_HF_PWM = false;
break;
case 5: //Timer0_B
TCCR0A = 0b10100011; //default pwm 8 bit FastPWM
TCCR0B = 0b00000011; // prescaler /64
_TMR0_HF_PWM = false;
break;
case 6: //Timer0_A
TCCR0A = 0b10100011; //default pwm 8 bit FastPWM
TCCR0B = 0b00000011; // prescaler /64
_TMR0_HF_PWM = false;
break;
case 9: //Timer1_A
TCCR1A = 0b10100001; // default pwm 8 bit phaseCorrect
TCCR1B = 0b00000011; // prescaler /64 // крайние левые 3 бита в 001 для делителя 1
_TMR1_HF_PWM = false;
break;
case 10: //Timer1_B
TCCR1A = 0b10100001; // default pwm 8 bit phaseCorrect
TCCR1B = 0b00000011; // prescaler /64
_TMR1_HF_PWM = false;
break;
case 11: //Timer2_A
TCCR2A = 0b10100011; //default pwm 8 bit FastPWM
TCCR2B = 0b00000011; // prescaler /64
_TMR2_HF_PWM = false;
break;
}
sei();
}

View File

@@ -0,0 +1,132 @@
#include "Arduino.h"
#include "timeControl.h"
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) // 1024
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) // 1
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) // 3
#define FRACT_MAX (1000 >> 3) // 125
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
#ifdef MILLIS_TMRS
ISR(TIMER0_OVF_vect)
{
timer0_millis++;
timer0_fract += 3;
if (timer0_fract >= 128) {
timer0_fract -= 125;
timer0_millis++;
}
timer0_overflow_count++;
}
#endif
unsigned long millis() {
cli();
unsigned long m = timer0_millis;
sei();
return m;
}
unsigned long micros() {
cli();
unsigned long m = timer0_overflow_count;
uint8_t t = TCNT0;
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
sei();
return (long)(((m << 8) + t) * 4);
}
/*
void delayMicroseconds(unsigned int us)
{
us *= 4; //1us = 4 цикла
__asm__ volatile
(
"1: sbiw %0,1" "\n\t" //; вычесть из регистра значение N
"brne 1b"
: "=w" (us)
: "0" (us)
);
}
void delay(unsigned long ms)
{
while(ms)
{
delayMicroseconds(999);
ms--;
}
}
*/
/*
#include <util/delay.h>
void delay(unsigned long ms)
{
_delay_ms(ms);
}
void delayMicroseconds(unsigned int us)
{
_delay_us(us);
}
*/
void delay(unsigned long ms)
{
uint32_t start = micros();
while (ms > 0) {
yield();
while ( ms > 0 && (micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
void delayMicroseconds(unsigned int us)
{
#if F_CPU >= 16000000L
if (us <= 1) return; // = 3 cycles, (4 when true)
us <<= 2; // x4 us, = 4 cycles
us -= 5;
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
// return = 4 cycles
}
void init()
{
cli();
/* timer 0 */
TCCR0A = 0b00000011; // fast pwm 8 bit
TCCR0B = 0b00000011; // prescaler 64
TIMSK0 |= (1<<TOIE0); // ovf interrupt enable
/* timer 1 */
TCCR1A = 0b00000001; // fast pwm 8 bit
TCCR1B = 0b00001011; // prescaler 64
/* timer 2 */
TCCR2A = 0b00000011; // fast pwm 8 bit
TCCR2B = 0b00000100; // prescaler 64
/* adc */
ADMUX = 0b01001111; // reference - vcc , adc parked to gnd
ADCSRA = 0b10000010; // prescaler - 4 [0,1,2 bits - prescaler]
/* ADC prescalers: 001 >> /2 010 >> /4 011 >> /8 100 >> /16 101 >> /32 110 >> /64 111 >> /128*/
/* UART */
UCSR0B = 0;
sei();
}

View File

@@ -0,0 +1,286 @@
#include "uart.h"
// ===== INIT =====
void uartBegin(uint32_t baudrate){
uint16_t speed = (2000000/baudrate)-1;
UBRR0H = highByte(speed);
UBRR0L = lowByte(speed);
UCSR0A = (1 << U2X0);
UCSR0B = ((1<<TXEN0) | (1<<RXEN0) | (1<<RXCIE0));
UCSR0C = ((1<<UCSZ01) | (1<<UCSZ00));
}
void uartBegin(void) {
uartBegin(9600);
}
void uartEnd(){
UCSR0B = 0;
}
// ===== READ =====
volatile char _UART_RX_BUFFER[64];
volatile int8_t _UART_RX_COUNTER;
ISR(USART_RX_vect) {
_UART_RX_BUFFER[_UART_RX_COUNTER] = UDR0;
_UART_RX_COUNTER++;
}
char uartRead() {
char thisChar = _UART_RX_BUFFER[0];
for (byte i = 0; i < _UART_RX_COUNTER; i++) _UART_RX_BUFFER[i] = _UART_RX_BUFFER[i + 1];
if (--_UART_RX_COUNTER < 0) _UART_RX_COUNTER = 0;
return thisChar;
}
char uartPeek() {
return _UART_RX_BUFFER[0];
}
boolean uartAvailable() {
return _UART_RX_COUNTER;
}
void uartClear() {
_UART_RX_COUNTER = 0;
}
/*
byte uartRead(){
if (UCSR0A & (1<<RXC0))
{
return UDR0;
} else return false;
}*/
uint32_t _UART_TIMEOUT = 100;
void uartSetTimeout(int timeout) {
_UART_TIMEOUT = timeout;
}
int32_t uartParseInt() {
uint32_t timeoutTime = millis();
uint32_t value = 0;
boolean negative = false;
while (millis() - timeoutTime < _UART_TIMEOUT) {
if (uartAvailable()) {
timeoutTime = millis();
char newByte = uartRead();
if (newByte == '-') negative = true;
else {
value += (newByte - '0');
value *= 10L;
}
}
}
value /= 10L;
return (!negative) ? value : -value;
}
boolean uartParsePacket(int *intArray) {
if (uartAvailable()) {
uint32_t timeoutTime = millis();
int value = 0;
byte index = 0;
boolean parseStart = 0;
while (millis() - timeoutTime < 100) {
if (uartAvailable()) {
timeoutTime = millis();
if (uartPeek() == '$') {
parseStart = true;
uartRead();
uartPrintln("start");
continue;
}
if (parseStart) {
if (uartPeek() == ' ') {
intArray[index] = value / 10;
value = 0;
index++;
uartRead();
continue;
}
if (uartPeek() == ';') {
intArray[index] = value / 10;
uartRead();
return true;
}
value += uartRead() - '0';
value *= 10;
}
}
}
}
return false;
}
float uartParseFloat() {
uint32_t timeoutTime = millis();
float whole = 0.0;
float fract = 0.0;
boolean negative = false;
boolean decimal = false;
byte fractSize = 0;
while (millis() - timeoutTime < 100) {
if (uartAvailable()) {
timeoutTime = millis();
char newByte = uartRead();
if (newByte == '-') {
negative = true;
continue;
}
if (newByte == '.') {
decimal = true;
continue;
}
if (!decimal) {
whole += (newByte - '0');
whole *= 10L;
} else {
fract += (newByte - '0');
fract *= 10L;
fractSize++;
}
}
}
whole /= 10L;
for (byte i = 0; i <= fractSize; i++) fract /= 10;
whole += fract;
return (!negative) ? whole : -whole;
}
String uartReadString() {
uint32_t timeoutTime = millis();
String buf = "";
while (millis() - timeoutTime < _UART_TIMEOUT) {
if (uartAvailable()) {
timeoutTime = millis();
buf += uartRead();
}
}
return buf;
}
// ===== WRITE =====
void uartWrite(byte data){
while (!(UCSR0A & (1<<UDRE0)));
UDR0 = data;
}
void uartPrintln(void) {
uartWrite('\r');
uartWrite('\n');
}
void uartPrint(int8_t data) {printHelper( (long) data);}
void uartPrint(uint8_t data) {printHelper( (long) data);}
void uartPrint(int16_t data) {printHelper( (long) data);}
void uartPrint(uint16_t data) {printHelper( (long) data);}
void uartPrint(int32_t data) {printHelper( (long) data);}
void uartPrint(uint32_t data) {printHelper( (uint32_t) data);}
void uartPrintln(int8_t data) {printHelper( (long) data); uartPrintln();}
void uartPrintln(uint8_t data) {printHelper( (long) data); uartPrintln();}
void uartPrintln(int16_t data) {printHelper( (long) data); uartPrintln();}
void uartPrintln(uint16_t data) {printHelper( (long) data); uartPrintln();}
void uartPrintln(int32_t data) {printHelper( (long) data); uartPrintln();}
void uartPrintln(uint32_t data) {printHelper( (uint32_t) data); uartPrintln();}
void printHelper(int32_t data) {
if (data < 0) {
uartWrite(45);
data = -data;
}
printBytes(data);
}
void printHelper(uint32_t data) {
if (data < 0) {
uartWrite(45);
data = -data;
}
printBytes(data);
}
void printBytes(uint32_t data) {
int8_t bytes[10];
byte amount;
for (byte i = 0; i < 10; i++) {
bytes[i] = data % 10;
data /= 10;
if (data == 0) {
amount = i;
break;
}
}
for (int8_t i = amount; i >= 0; i--) {
uartWrite(bytes[i] + '0');
}
}
void printBytes(uint32_t data, byte decimals) {
int8_t bytes[10];
byte amount;
for (byte i = 0; i < 10; i++) {
bytes[i] = data % 10;
data /= 10;
if (data == 0) {
amount = i;
break;
}
}
for (int8_t i = amount; i >= amount - decimals + 1; i--) {
uartWrite(bytes[i] + '0');
}
}
void uartPrint(double data, byte decimals) {
if (data < 0) {
uartWrite(45);
data = -data;
}
uint32_t integer = data;
uint32_t fract = ((float)data - integer) * 1000000000;
printBytes(integer);
uartWrite(46);
printBytes(fract, decimals);
}
void uartPrint(double data) {
uartPrint(data, 2);
}
void uartPrintln(double data, byte decimals) {
uartPrint(data, decimals);
uartPrintln();
}
void uartPrintln(double data) {
uartPrint(data, 2);
uartPrintln();
}
void uartPrint(String data) {
byte stringSize = data.length();
for (byte i = 0; i < stringSize; i++) {
uartWrite(data[i]);
}
}
void uartPrintln(String data) {
uartPrint(data);
uartPrintln();
}
void uartPrint(char data[]) {
byte i = 0;
while (data[i] != '\0') {
uartWrite(data[i]);
i++;
}
}
void uartPrintln(char data[]) {
uartPrint(data);
uartPrintln();
}

View File

@@ -0,0 +1,52 @@
#ifndef uart_h
#define uart_h
#include "Arduino.h"
#include <avr/io.h>
void uartBegin(void);
void uartBegin(uint32_t baudrate);
void uartEnd();
boolean uartAvailable();
char uartRead();
char uartPeek();
void uartClear();
void uartSetTimeout(int timeout);
int32_t uartParseInt();
float uartParseFloat();
String uartReadString();
boolean uartParsePacket(int *intArray);
void uartWrite(byte data);
void uartPrintln(void);
void uartPrint(int8_t data);
void uartPrint(uint8_t data);
void uartPrint(int16_t data);
void uartPrint(uint16_t data);
void uartPrint(int32_t data);
void uartPrint(uint32_t data);
void uartPrint(double data);
void uartPrint(double data, byte decimals);
void uartPrint(String data);
void uartPrint(char data[]);
void uartPrintln(int8_t data);
void uartPrintln(uint8_t data);
void uartPrintln(int16_t data);
void uartPrintln(uint16_t data);
void uartPrintln(int32_t data);
void uartPrintln(uint32_t data);
void uartPrintln(double data);
void uartPrintln(double data, byte decimals);
void uartPrintln(String data);
void uartPrintln(char data[]);
void printHelper(int32_t data);
void printHelper(uint32_t data);
void printBytes(uint32_t data);
void printBytes(uint32_t data, byte amount);
#endif

View File

@@ -1,392 +0,0 @@
/*
wiring.c - Partial implementation of the Wiring API for the ATmega8.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
#include "wiring_private.h"
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
#if defined(TIM0_OVF_vect)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros() {
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
#if defined(TCNT0)
t = TCNT0;
#elif defined(TCNT0L)
t = TCNT0L;
#else
#error TIMER 0 not defined
#endif
#ifdef TIFR0
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
#else
if ((TIFR & _BV(TOV0)) && (t < 255))
m++;
#endif
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delay(unsigned long ms)
{
uint32_t start = micros();
while (ms > 0) {
yield();
while ( ms > 0 && (micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable)
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 24000000L
// for the 24 MHz clock for the aventurous ones, trying to overclock
// zero delay fix
if (!us) return; // = 3 cycles, (4 when true)
// the following loop takes a 1/6 of a microsecond (4 cycles)
// per iteration, so execute it six times for each microsecond of
// delay requested.
us *= 6; // x6 us, = 7 cycles
// account for the time taken in the preceeding commands.
// we just burned 22 (24) cycles above, remove 5, (5*4=20)
// us is at least 6 so we can substract 5
us -= 5; //=2 cycles
#elif F_CPU >= 20000000L
// for the 20 MHz clock on rare Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call takes 18 (20) cycles, which is 1us
__asm__ __volatile__ (
"nop" "\n\t"
"nop" "\n\t"
"nop" "\n\t"
"nop"); //just waiting 4 cycles
if (us <= 1) return; // = 3 cycles, (4 when true)
// the following loop takes a 1/5 of a microsecond (4 cycles)
// per iteration, so execute it five times for each microsecond of
// delay requested.
us = (us << 2) + us; // x5 us, = 7 cycles
// account for the time taken in the preceeding commands.
// we just burned 26 (28) cycles above, remove 7, (7*4=28)
// us is at least 10 so we can substract 7
us -= 7; // 2 cycles
#elif F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call takes 14 (16) cycles, which is 1us
if (us <= 1) return; // = 3 cycles, (4 when true)
// the following loop takes 1/4 of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2; // x4 us, = 4 cycles
// account for the time taken in the preceeding commands.
// we just burned 19 (21) cycles above, remove 5, (5*4=20)
// us is at least 8 so we can substract 5
us -= 5; // = 2 cycles,
#elif F_CPU >= 12000000L
// for the 12 MHz clock if somebody is working with USB
// for a 1 microsecond delay, simply return. the overhead
// of the function call takes 14 (16) cycles, which is 1.5us
if (us <= 1) return; // = 3 cycles, (4 when true)
// the following loop takes 1/3 of a microsecond (4 cycles)
// per iteration, so execute it three times for each microsecond of
// delay requested.
us = (us << 1) + us; // x3 us, = 5 cycles
// account for the time taken in the preceeding commands.
// we just burned 20 (22) cycles above, remove 5, (5*4=20)
// us is at least 6 so we can substract 5
us -= 5; //2 cycles
#elif F_CPU >= 8000000L
// for the 8 MHz internal clock
// for a 1 and 2 microsecond delay, simply return. the overhead
// of the function call takes 14 (16) cycles, which is 2us
if (us <= 2) return; // = 3 cycles, (4 when true)
// the following loop takes 1/2 of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1; //x2 us, = 2 cycles
// account for the time taken in the preceeding commands.
// we just burned 17 (19) cycles above, remove 4, (4*4=16)
// us is at least 6 so we can substract 4
us -= 4; // = 2 cycles
#else
// for the 1 MHz internal clock (default settings for common Atmega microcontrollers)
// the overhead of the function calls is 14 (16) cycles
if (us <= 16) return; //= 3 cycles, (4 when true)
if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to substract 22)
// compensate for the time taken by the preceeding and next commands (about 22 cycles)
us -= 22; // = 2 cycles
// the following loop takes 4 microseconds (4 cycles)
// per iteration, so execute it us/4 times
// us is at least 4, divided by 4 gives us 1 (no zero delay bug)
us >>= 2; // us div 4, = 4 cycles
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
// return = 4 cycles
}
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00);
#endif
// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
// CPU specific: different values for the ATmega128
sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
// this combination is for the __AVR_ATmega645__ series
sbi(TCCR0A, CS01);
sbi(TCCR0A, CS00);
#else
#error Timer 0 prescale factor 64 not set correctly
#endif
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
#else
#error Timer 0 overflow interrupt not set correctly
#endif
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
#endif
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
//#else
// Timer 2 not finished (may not be present on this CPU)
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
//#else
// Timer 2 not finished (may not be present on this CPU)
#endif
#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
sbi(TCCR4B, CS41);
sbi(TCCR4B, CS40);
sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
#endif
#if defined(ADCSRA)
// set a2d prescaler so we are inside the desired 50-200 KHz range.
#if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
#elif F_CPU >= 8000000 // 8 MHz / 64 = 125 KHz
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
cbi(ADCSRA, ADPS0);
#elif F_CPU >= 4000000 // 4 MHz / 32 = 125 KHz
sbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
#elif F_CPU >= 2000000 // 2 MHz / 16 = 125 KHz
sbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
cbi(ADCSRA, ADPS0);
#elif F_CPU >= 1000000 // 1 MHz / 8 = 125 KHz
cbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
#else // 128 kHz / 2 = 64 KHz -> This is the closest you can get, the prescaler is 2
cbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
#endif
// enable a2d conversions
sbi(ADCSRA, ADEN);
#endif
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
#endif
}

View File

@@ -1,294 +0,0 @@
/*
wiring_analog.c - analog input and output
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
*/
#include "wiring_private.h"
#include "pins_arduino.h"
uint8_t analog_reference = DEFAULT;
void analogReference(uint8_t mode)
{
// can't actually set the register here because the default setting
// will connect AVCC and the AREF pin, which would cause a short if
// there's something connected to AREF.
analog_reference = mode;
}
int analogRead(uint8_t pin)
{
uint8_t low, high;
#if defined(analogPinToChannel)
#if defined(__AVR_ATmega32U4__)
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#endif
pin = analogPinToChannel(pin);
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#elif defined(__AVR_ATmega32U4__)
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
if (pin >= 24) pin -= 24; // allow for channel or pin numbers
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif
#if defined(ADCSRB) && defined(MUX5)
// the MUX5 bit of ADCSRB selects whether we're reading from channels
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#endif
// set the analog reference (high two bits of ADMUX) and select the
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default).
#if defined(ADMUX)
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = (analog_reference << 4) | (pin & 0x07);
#else
ADMUX = (analog_reference << 6) | (pin & 0x07);
#endif
#endif
// without a delay, we seem to read from the wrong channel
//delay(1);
#if defined(ADCSRA) && defined(ADCL)
// start the conversion
sbi(ADCSRA, ADSC);
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
// we have to read ADCL first; doing so locks both ADCL
// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.
low = ADCL;
high = ADCH;
#else
// we dont have an ADC, return 0
low = 0;
high = 0;
#endif
// combine the two bytes
return (high << 8) | low;
}
// Right now, PWM output only works on the pins with
// hardware support. These are defined in the appropriate
// pins_*.c file. For the rest of the pins, we default
// to digital output.
void analogWrite(uint8_t pin, int val)
{
// We need to make sure the PWM output is enabled for those pins
// that support it, as we turn it off when digitally reading or
// writing with them. Also, make sure the pin is in output mode
// for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins.
pinMode(pin, OUTPUT);
if (val == 0)
{
digitalWrite(pin, LOW);
}
else if (val == 255)
{
digitalWrite(pin, HIGH);
}
else
{
switch(digitalPinToTimer(pin))
{
// XXX fix needed for atmega8
#if defined(TCCR0) && defined(COM00) && !defined(__AVR_ATmega8__)
case TIMER0A:
// connect pwm to pin on timer 0
sbi(TCCR0, COM00);
OCR0 = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
OCR0A = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B:
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
OCR0B = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
OCR1A = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B:
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
OCR1B = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1C1)
case TIMER1C:
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1C1);
OCR1C = val; // set pwm duty
break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2:
// connect pwm to pin on timer 2
sbi(TCCR2, COM21);
OCR2 = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
OCR2A = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B:
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
OCR2B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
OCR3A = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B:
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
OCR3B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C:
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
OCR3C = val; // set pwm duty
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
//connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
#if defined(COM4A0) // only used on 32U4
cbi(TCCR4A, COM4A0);
#endif
OCR4A = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B:
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
OCR4B = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C:
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
OCR4C = val; // set pwm duty
break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D:
// connect pwm to pin on timer 4, channel D
sbi(TCCR4C, COM4D1);
#if defined(COM4D0) // only used on 32U4
cbi(TCCR4C, COM4D0);
#endif
OCR4D = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
OCR5A = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5B1)
case TIMER5B:
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
OCR5B = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5C1)
case TIMER5C:
// connect pwm to pin on timer 5, channel C
sbi(TCCR5A, COM5C1);
OCR5C = val; // set pwm duty
break;
#endif
case NOT_ON_TIMER:
default:
if (val < 128) {
digitalWrite(pin, LOW);
} else {
digitalWrite(pin, HIGH);
}
}
}
}

View File

@@ -1,179 +0,0 @@
/*
wiring_digital.c - digital input and output functions
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
*/
#define ARDUINO_MAIN
#include "wiring_private.h"
#include "pins_arduino.h"
void pinMode(uint8_t pin, uint8_t mode)
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg, *out;
if (port == NOT_A_PIN) return;
// JWS: can I let the optimizer do this?
reg = portModeRegister(port);
out = portOutputRegister(port);
if (mode == INPUT) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out &= ~bit;
SREG = oldSREG;
} else if (mode == INPUT_PULLUP) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out |= bit;
SREG = oldSREG;
} else {
uint8_t oldSREG = SREG;
cli();
*reg |= bit;
SREG = oldSREG;
}
}
// Forcing this inline keeps the callers from having to push their own stuff
// on the stack. It is a good performance win and only takes 1 more byte per
// user than calling. (It will take more bytes on the 168.)
//
// But shouldn't this be moved into pinMode? Seems silly to check and do on
// each digitalread or write.
//
// Mark Sproul:
// - Removed inline. Save 170 bytes on atmega1280
// - changed to a switch statment; added 32 bytes but much easier to read and maintain.
// - Added more #ifdefs, now compiles for atmega645
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
switch (timer)
{
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
#endif
#if defined(TCCR1A) && defined(COM1C1)
case TIMER1C: cbi(TCCR1A, COM1C1); break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2: cbi(TCCR2, COM21); break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A: cbi(TCCR0A, COM0A1); break;
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B: cbi(TCCR0A, COM0B1); break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: cbi(TCCR2A, COM2A1); break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B: cbi(TCCR2A, COM2B1); break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A: cbi(TCCR3A, COM3A1); break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B: cbi(TCCR3A, COM3B1); break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C: cbi(TCCR3A, COM3C1); break;
#endif
#if defined(TCCR4A) && defined(COM4A1)
case TIMER4A: cbi(TCCR4A, COM4A1); break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B: cbi(TCCR4A, COM4B1); break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C: cbi(TCCR4A, COM4C1); break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D: cbi(TCCR4C, COM4D1); break;
#endif
#if defined(TCCR5A)
case TIMER5A: cbi(TCCR5A, COM5A1); break;
case TIMER5B: cbi(TCCR5A, COM5B1); break;
case TIMER5C: cbi(TCCR5A, COM5C1); break;
#endif
}
}
void digitalWrite(uint8_t pin, uint8_t val)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *out;
if (port == NOT_A_PIN) return;
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
out = portOutputRegister(port);
uint8_t oldSREG = SREG;
cli();
if (val == LOW) {
*out &= ~bit;
} else {
*out |= bit;
}
SREG = oldSREG;
}
int digitalRead(uint8_t pin)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
if (port == NOT_A_PIN) return LOW;
// If the pin that support PWM output, we need to turn it off
// before getting a digital reading.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
if (*portInputRegister(port) & bit) return HIGH;
return LOW;
}

View File

@@ -1,72 +0,0 @@
/*
wiring_private.h - Internal header file.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
#ifndef WiringPrivate_h
#define WiringPrivate_h
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <stdarg.h>
#include "Arduino.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
uint32_t countPulseASM(volatile uint8_t *port, uint8_t bit, uint8_t stateMask, unsigned long maxloops);
#define EXTERNAL_INT_0 0
#define EXTERNAL_INT_1 1
#define EXTERNAL_INT_2 2
#define EXTERNAL_INT_3 3
#define EXTERNAL_INT_4 4
#define EXTERNAL_INT_5 5
#define EXTERNAL_INT_6 6
#define EXTERNAL_INT_7 7
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega128RFA1__) || defined(__AVR_ATmega256RFR2__) || \
defined(__AVR_AT90USB82__) || defined(__AVR_AT90USB162__) || defined(__AVR_ATmega32U2__) || defined(__AVR_ATmega16U2__) || defined(__AVR_ATmega8U2__)
#define EXTERNAL_NUM_INTERRUPTS 8
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define EXTERNAL_NUM_INTERRUPTS 3
#elif defined(__AVR_ATmega32U4__)
#define EXTERNAL_NUM_INTERRUPTS 5
#else
#define EXTERNAL_NUM_INTERRUPTS 2
#endif
typedef void (*voidFuncPtr)(void);
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View File

@@ -20,8 +20,117 @@
Boston, MA 02111-1307 USA Boston, MA 02111-1307 USA
*/ */
#include "wiring_private.h" //#include "wiring_private.h"
#include "pins_arduino.h" //#include "pins_arduino.h"
#include "Arduino.h"
const uint16_t PROGMEM port_to_mode_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &DDRB,
(uint16_t) &DDRC,
(uint16_t) &DDRD,
};
const uint16_t PROGMEM port_to_output_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &PORTB,
(uint16_t) &PORTC,
(uint16_t) &PORTD,
};
const uint16_t PROGMEM port_to_input_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &PINB,
(uint16_t) &PINC,
(uint16_t) &PIND,
};
const uint8_t PROGMEM digital_pin_to_port_PGM[] = {
PD, /* 0 */
PD,
PD,
PD,
PD,
PD,
PD,
PD,
PB, /* 8 */
PB,
PB,
PB,
PB,
PB,
PC, /* 14 */
PC,
PC,
PC,
PC,
PC,
};
const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = {
_BV(0), /* 0, port D */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(0), /* 8, port B */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(0), /* 14, port C */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
};
const uint8_t PROGMEM digital_pin_to_timer_PGM[] = {
NOT_ON_TIMER, /* 0 - port D */
NOT_ON_TIMER,
NOT_ON_TIMER,
// on the ATmega168, digital pin 3 has hardware pwm
#if defined(__AVR_ATmega8__)
NOT_ON_TIMER,
#else
TIMER2B,
#endif
NOT_ON_TIMER,
// on the ATmega168, digital pins 5 and 6 have hardware pwm
#if defined(__AVR_ATmega8__)
NOT_ON_TIMER,
NOT_ON_TIMER,
#else
TIMER0B,
TIMER0A,
#endif
NOT_ON_TIMER,
NOT_ON_TIMER, /* 8 - port B */
TIMER1A,
TIMER1B,
#if defined(__AVR_ATmega8__)
TIMER2,
#else
TIMER2A,
#endif
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER, /* 14 - port C */
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
};
/* Measures the length (in microseconds) of a pulse on the pin; state is HIGH /* Measures the length (in microseconds) of a pulse on the pin; state is HIGH
* or LOW, the type of pulse to measure. Works on pulses from 2-3 microseconds * or LOW, the type of pulse to measure. Works on pulses from 2-3 microseconds

View File

@@ -20,7 +20,7 @@
Boston, MA 02111-1307 USA Boston, MA 02111-1307 USA
*/ */
#include "wiring_private.h" #include "Arduino.h"
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) { uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) {
uint8_t value = 0; uint8_t value = 0;

52
GyverCore/keywords.txt Normal file
View File

@@ -0,0 +1,52 @@
#######################################
# Syntax Coloring Map
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
#######################################
# Methods and Functions (KEYWORD2)
#######################################
digitalToggle KEYWORD2
bitToggle KEYWORD2
analogPrescaler KEYWORD2
_BV KEYWORD2
cbi KEYWORD2
sbi KEYWORD2
setPWM_20kHz KEYWORD2
setPWM_9_10_resolution KEYWORD2
setPwmFreqnuency KEYWORD2
setPWM_default KEYWORD2
analogStartConvert KEYWORD2
analogGet KEYWORD2
uartBegin KEYWORD2
uartEnd KEYWORD2
uartPeek KEYWORD2
uartClear KEYWORD2
uartRead KEYWORD2
uartWrite KEYWORD2
uartPrint KEYWORD2
uartPrintln KEYWORD2
uartAvailable KEYWORD2
uartSetTimeout KEYWORD2
uartParseInt KEYWORD2
uartReadString KEYWORD2
uartParseFloat KEYWORD2
uartParsePacket KEYWORD2
######################################
# Constants (LITERAL1)
#######################################
THERMOMETR LITERAL1
A0 LITERAL1
A1 LITERAL1
A2 LITERAL1
A3 LITERAL1
A4 LITERAL1
A5 LITERAL1
A6 LITERAL1
A7 LITERAL1

View File

@@ -1,25 +0,0 @@
/*
pins_arduino.h - Pin definition functions for Arduino
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2007 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
#include "../standard/pins_arduino.h"
#undef NUM_ANALOG_INPUTS
#define NUM_ANALOG_INPUTS 8

View File

@@ -1,254 +0,0 @@
/*
pins_arduino.h - Pin definition functions for Arduino
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2007 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
#ifndef Pins_Arduino_h
#define Pins_Arduino_h
#include <avr/pgmspace.h>
#define NUM_DIGITAL_PINS 20
#define NUM_ANALOG_INPUTS 6
#define analogInputToDigitalPin(p) ((p < 6) ? (p) + 14 : -1)
#if defined(__AVR_ATmega8__)
#define digitalPinHasPWM(p) ((p) == 9 || (p) == 10 || (p) == 11)
#else
#define digitalPinHasPWM(p) ((p) == 3 || (p) == 5 || (p) == 6 || (p) == 9 || (p) == 10 || (p) == 11)
#endif
#define PIN_SPI_SS (10)
#define PIN_SPI_MOSI (11)
#define PIN_SPI_MISO (12)
#define PIN_SPI_SCK (13)
static const uint8_t SS = PIN_SPI_SS;
static const uint8_t MOSI = PIN_SPI_MOSI;
static const uint8_t MISO = PIN_SPI_MISO;
static const uint8_t SCK = PIN_SPI_SCK;
#define PIN_WIRE_SDA (18)
#define PIN_WIRE_SCL (19)
static const uint8_t SDA = PIN_WIRE_SDA;
static const uint8_t SCL = PIN_WIRE_SCL;
#define LED_BUILTIN 13
#define PIN_A0 (14)
#define PIN_A1 (15)
#define PIN_A2 (16)
#define PIN_A3 (17)
#define PIN_A4 (18)
#define PIN_A5 (19)
#define PIN_A6 (20)
#define PIN_A7 (21)
static const uint8_t A0 = PIN_A0;
static const uint8_t A1 = PIN_A1;
static const uint8_t A2 = PIN_A2;
static const uint8_t A3 = PIN_A3;
static const uint8_t A4 = PIN_A4;
static const uint8_t A5 = PIN_A5;
static const uint8_t A6 = PIN_A6;
static const uint8_t A7 = PIN_A7;
#define digitalPinToPCICR(p) (((p) >= 0 && (p) <= 21) ? (&PCICR) : ((uint8_t *)0))
#define digitalPinToPCICRbit(p) (((p) <= 7) ? 2 : (((p) <= 13) ? 0 : 1))
#define digitalPinToPCMSK(p) (((p) <= 7) ? (&PCMSK2) : (((p) <= 13) ? (&PCMSK0) : (((p) <= 21) ? (&PCMSK1) : ((uint8_t *)0))))
#define digitalPinToPCMSKbit(p) (((p) <= 7) ? (p) : (((p) <= 13) ? ((p) - 8) : ((p) - 14)))
#define digitalPinToInterrupt(p) ((p) == 2 ? 0 : ((p) == 3 ? 1 : NOT_AN_INTERRUPT))
#ifdef ARDUINO_MAIN
// On the Arduino board, digital pins are also used
// for the analog output (software PWM). Analog input
// pins are a separate set.
// ATMEL ATMEGA8 & 168 / ARDUINO
//
// +-\/-+
// PC6 1| |28 PC5 (AI 5)
// (D 0) PD0 2| |27 PC4 (AI 4)
// (D 1) PD1 3| |26 PC3 (AI 3)
// (D 2) PD2 4| |25 PC2 (AI 2)
// PWM+ (D 3) PD3 5| |24 PC1 (AI 1)
// (D 4) PD4 6| |23 PC0 (AI 0)
// VCC 7| |22 GND
// GND 8| |21 AREF
// PB6 9| |20 AVCC
// PB7 10| |19 PB5 (D 13)
// PWM+ (D 5) PD5 11| |18 PB4 (D 12)
// PWM+ (D 6) PD6 12| |17 PB3 (D 11) PWM
// (D 7) PD7 13| |16 PB2 (D 10) PWM
// (D 8) PB0 14| |15 PB1 (D 9) PWM
// +----+
//
// (PWM+ indicates the additional PWM pins on the ATmega168.)
// ATMEL ATMEGA1280 / ARDUINO
//
// 0-7 PE0-PE7 works
// 8-13 PB0-PB5 works
// 14-21 PA0-PA7 works
// 22-29 PH0-PH7 works
// 30-35 PG5-PG0 works
// 36-43 PC7-PC0 works
// 44-51 PJ7-PJ0 works
// 52-59 PL7-PL0 works
// 60-67 PD7-PD0 works
// A0-A7 PF0-PF7
// A8-A15 PK0-PK7
// these arrays map port names (e.g. port B) to the
// appropriate addresses for various functions (e.g. reading
// and writing)
const uint16_t PROGMEM port_to_mode_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &DDRB,
(uint16_t) &DDRC,
(uint16_t) &DDRD,
};
const uint16_t PROGMEM port_to_output_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &PORTB,
(uint16_t) &PORTC,
(uint16_t) &PORTD,
};
const uint16_t PROGMEM port_to_input_PGM[] = {
NOT_A_PORT,
NOT_A_PORT,
(uint16_t) &PINB,
(uint16_t) &PINC,
(uint16_t) &PIND,
};
const uint8_t PROGMEM digital_pin_to_port_PGM[] = {
PD, /* 0 */
PD,
PD,
PD,
PD,
PD,
PD,
PD,
PB, /* 8 */
PB,
PB,
PB,
PB,
PB,
PC, /* 14 */
PC,
PC,
PC,
PC,
PC,
};
const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[] = {
_BV(0), /* 0, port D */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(6),
_BV(7),
_BV(0), /* 8, port B */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
_BV(0), /* 14, port C */
_BV(1),
_BV(2),
_BV(3),
_BV(4),
_BV(5),
};
const uint8_t PROGMEM digital_pin_to_timer_PGM[] = {
NOT_ON_TIMER, /* 0 - port D */
NOT_ON_TIMER,
NOT_ON_TIMER,
// on the ATmega168, digital pin 3 has hardware pwm
#if defined(__AVR_ATmega8__)
NOT_ON_TIMER,
#else
TIMER2B,
#endif
NOT_ON_TIMER,
// on the ATmega168, digital pins 5 and 6 have hardware pwm
#if defined(__AVR_ATmega8__)
NOT_ON_TIMER,
NOT_ON_TIMER,
#else
TIMER0B,
TIMER0A,
#endif
NOT_ON_TIMER,
NOT_ON_TIMER, /* 8 - port B */
TIMER1A,
TIMER1B,
#if defined(__AVR_ATmega8__)
TIMER2,
#else
TIMER2A,
#endif
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER, /* 14 - port C */
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
NOT_ON_TIMER,
};
#endif
// These serial port names are intended to allow libraries and architecture-neutral
// sketches to automatically default to the correct port name for a particular type
// of use. For example, a GPS module would normally connect to SERIAL_PORT_HARDWARE_OPEN,
// the first hardware serial port whose RX/TX pins are not dedicated to another use.
//
// SERIAL_PORT_MONITOR Port which normally prints to the Arduino Serial Monitor
//
// SERIAL_PORT_USBVIRTUAL Port which is USB virtual serial
//
// SERIAL_PORT_LINUXBRIDGE Port which connects to a Linux system via Bridge library
//
// SERIAL_PORT_HARDWARE Hardware serial port, physical RX & TX pins.
//
// SERIAL_PORT_HARDWARE_OPEN Hardware serial ports which are open for use. Their RX & TX
// pins are NOT connected to anything by default.
#define SERIAL_PORT_MONITOR Serial
#define SERIAL_PORT_HARDWARE Serial
#endif

View File

@@ -0,0 +1 @@
#define MILLIS_TMRS

View File

@@ -1,3 +1,19 @@
# GyverCore # GyverCore for ATmega328p/168p
Быстрое ядро для Arduino IDE Быстрое ядро для Arduino IDE. **В разработке**
В разработке Основано на оригинальном ядре Arduino версии 1.8.9, большинство функций заменены на более быстрые и лёгкие аналоги, убрано всё лишнее и не относящееся к микроконтроллеру ATmega328p, убран почти весь Wiring-мусор, код упрощён и причёсан.
# Изменения
## Облегчено и ускорено
Время выполнения функций, мкс
| Функция | Arduino | GyverCore | Быстрее в |
|----------------- |----------- |----------- |----------- |
| pinMode | 2.90 us | 0.57 us | 5.09 |
| digitalWrite | 2.90 us | 0.57 us | 5.09 |
| digitalRead | 2.45 us | 0.50 us | 4.90 |
| analogWrite | 4.15 us | 1.13 us | 3.67 |
| analogRead | 112.01 us | 5.41 us | 20.70 |
| analogReference | 0.00 us | 0.69 us | 0.00 |
| attachInterrupt | 1.20 us | 1.18 us | 1.02 |
| detachInterrupt | 0.82 us | 0.57 us | 1.44 |
## Добавлено