1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/shared.py
Vladimir Mandic 2309398be8 temp fix sdxl lora
2023-09-15 11:38:38 -04:00

1052 lines
58 KiB
Python

import io
import os
import sys
import time
import json
import datetime
import contextlib
import urllib.request
from urllib.parse import urlparse
from enum import Enum
import gradio as gr
import tqdm
import fasteners
from rich.console import Console
from modules import errors, ui_components, shared_items, cmd_args
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # pylint: disable=W0611
from modules.dml import memory_providers, default_memory_provider, directml_do_hijack
import modules.interrogate
import modules.memmon
import modules.styles
import modules.devices as devices # pylint: disable=R0402
import modules.paths_internal as paths
from installer import print_dict
from installer import log as central_logger # pylint: disable=E0611
errors.install(gr)
demo: gr.Blocks = None
log = central_logger
progress_print_out = sys.stdout
parser = cmd_args.parser
url = 'https://github.com/vladmandic/automatic'
cmd_opts, _ = parser.parse_known_args()
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
xformers_available = False
clip_model = None
interrogator = modules.interrogate.InterrogateModels("interrogate")
sd_upscalers = []
face_restorers = []
tab_names = []
options_templates = {}
hypernetworks = {}
loaded_hypernetworks = []
gradio_theme = gr.themes.Base()
settings_components = None
pipelines = [
'Autodetect',
'Stable Diffusion', 'Stable Diffusion XL', 'Kandinsky V1', 'Kandinsky V2', 'DeepFloyd IF', 'Shap-E',
'Stable Diffusion Img2Img', 'Stable Diffusion XL Img2Img', 'Kandinsky V1 Img2Img', 'Kandinsky V2 Img2Img', 'DeepFloyd IF Img2Img', 'Shap-E Img2Img'
]
latent_upscale_default_mode = "None"
latent_upscale_modes = {
"Latent": {"mode": "bilinear", "antialias": False},
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
"Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
"Latent (nearest)": {"mode": "nearest", "antialias": False},
"Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
}
restricted_opts = {
"samples_filename_pattern",
"directories_filename_pattern",
"outdir_samples",
"outdir_txt2img_samples",
"outdir_img2img_samples",
"outdir_extras_samples",
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
}
compatibility_opts = ['clip_skip', 'uni_pc_lower_order_final', 'uni_pc_order']
console = Console(log_time=True, log_time_format='%H:%M:%S-%f')
def is_url(string):
parsed_url = urlparse(string)
return all([parsed_url.scheme, parsed_url.netloc])
class Backend(Enum):
ORIGINAL = 1
DIFFUSERS = 2
def reload_hypernetworks():
from modules.hypernetworks import hypernetwork
global hypernetworks # pylint: disable=W0603
hypernetworks = hypernetwork.list_hypernetworks(opts.hypernetwork_dir)
class State:
skipped = False
interrupted = False
paused = False
job = ""
job_no = 0
job_count = 0
total_jobs = 0
processing_has_refined_job_count = False
job_timestamp = '0'
sampling_step = 0
sampling_steps = 0
current_latent = None
current_image = None
current_image_sampling_step = 0
id_live_preview = 0
textinfo = None
time_start = None
need_restart = False
server_start = None
oom = False
def skip(self):
log.debug('Requested skip')
self.skipped = True
def interrupt(self):
log.debug('Requested interrupt')
self.interrupted = True
def pause(self):
self.paused = not self.paused
log.debug(f'Requested {"pause" if self.paused else "continue"}')
def nextjob(self):
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
self.do_set_current_image()
self.job_no += 1
self.sampling_step = 0
self.current_image_sampling_step = 0
def dict(self):
obj = {
"skipped": self.skipped,
"interrupted": self.interrupted,
"job": self.job,
"job_count": self.job_count,
"job_timestamp": self.job_timestamp,
"job_no": self.job_no,
"sampling_step": self.sampling_step,
"sampling_steps": self.sampling_steps,
}
return obj
def begin(self, title=""):
self.total_jobs += 1
self.current_image = None
self.current_image_sampling_step = 0
self.current_latent = None
self.id_live_preview = 0
self.interrupted = False
self.job = title
self.job_count = -1
self.job_no = 0
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
self.paused = False
self.processing_has_refined_job_count = False
self.sampling_step = 0
self.skipped = False
self.textinfo = None
self.time_start = time.time()
devices.torch_gc()
def end(self):
self.job = ""
self.job_count = 0
self.job_no = 0
self.paused = False
self.interrupted = False
self.skipped = False
devices.torch_gc()
def set_current_image(self):
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
if not parallel_processing_allowed:
return
if abs(self.sampling_step - self.current_image_sampling_step) >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps > 0:
self.do_set_current_image()
def do_set_current_image(self):
if self.current_latent is None:
return
import modules.sd_samplers # pylint: disable=W0621
try:
image = modules.sd_samplers.samples_to_image_grid(self.current_latent) if opts.show_progress_grid else modules.sd_samplers.sample_to_image(self.current_latent)
self.assign_current_image(image)
self.current_image_sampling_step = self.sampling_step
except Exception:
# log.error(f'Error setting current image: step={self.sampling_step} {e}')
pass
def assign_current_image(self, image):
self.current_image = image
self.id_live_preview += 1
state = State()
state.server_start = time.time()
if not hasattr(cmd_opts, "use_openvino"):
cmd_opts.use_openvino = False
if cmd_opts.use_openvino:
backend = Backend.DIFFUSERS
cmd_opts.backend = 'diffusers'
else:
backend = Backend.DIFFUSERS if (cmd_opts.backend is not None) and (cmd_opts.backend.lower() == 'diffusers') else Backend.ORIGINAL # initial since we don't have opts loaded yet
class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, folder=None, submit=None, comment_before='', comment_after=''):
self.default = default
self.label = label
self.component = component
self.component_args = component_args
self.onchange = onchange
self.section = section
self.refresh = refresh
self.folder = folder
self.comment_before = comment_before # HTML text that will be added after label in UI
self.comment_after = comment_after # HTML text that will be added before label in UI
self.submit = submit
def link(self, label, uri):
self.comment_before += f"[<a href='{uri}' target='_blank'>{label}</a>]"
return self
def js(self, label, js_func):
self.comment_before += f"[<a onclick='{js_func}(); return false'>{label}</a>]"
return self
def info(self, info):
self.comment_after += f"<span class='info'>({info})</span>"
return self
def html(self, info):
self.comment_after += f"<span class='info'>{info}</span>"
return self
def needs_restart(self):
self.comment_after += " <span class='info'>(requires restart)</span>"
return self
def options_section(section_identifier, options_dict):
for v in options_dict.values():
v.section = section_identifier
return options_dict
def list_checkpoint_tiles():
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.checkpoint_tiles()
default_checkpoint = list_checkpoint_tiles()[0] if len(list_checkpoint_tiles()) > 0 else "model.ckpt"
def refresh_checkpoints():
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.list_models()
def refresh_vaes():
import modules.sd_vae # pylint: disable=W0621
modules.sd_vae.refresh_vae_list()
def list_samplers():
import modules.sd_samplers # pylint: disable=W0621
modules.sd_samplers.set_samplers()
return modules.sd_samplers.all_samplers
def temp_disable_extensions():
disabled = []
if backend == Backend.DIFFUSERS:
for ext in ['sd-webui-controlnet', 'multidiffusion-upscaler-for-automatic1111', 'a1111-sd-webui-lycoris']:
if ext not in opts.disabled_extensions:
disabled.append(ext)
log.info(f'Diffusers disabling uncompatible extensions: {disabled}')
if opts.lyco_patch_lora and backend != Backend.DIFFUSERS:
cmd_opts.lyco_dir = opts.lora_dir
if 'Lora' not in opts.disabled_extensions:
disabled.append('Lora')
cmd_opts.controlnet_loglevel = 'WARNING'
return disabled
def list_builtin_themes():
files = [os.path.splitext(f)[0] for f in os.listdir('javascript') if f.endswith('.css')]
return files
def list_themes():
fn = os.path.join('html', 'themes.json')
if not os.path.exists(fn):
refresh_themes()
if os.path.exists(fn):
with open(fn, mode='r', encoding='utf=8') as f:
res = json.loads(f.read())
else:
res = []
builtin = list_builtin_themes()
default = ["gradio/default", "gradio/base", "gradio/glass", "gradio/monochrome", "gradio/soft"]
external = {x['id'] for x in res if x['status'] == 'RUNNING' and 'test' not in x['id'].lower()}
log.info(f'Themes: builtin={len(builtin)} default={len(default)} external={len(external)}')
themes = sorted(builtin) + sorted(default) + sorted(external, key=str.casefold)
return themes
def refresh_themes():
import requests
try:
req = requests.get('https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json', timeout=5)
if req.status_code == 200:
res = req.json()
fn = os.path.join('html', 'themes.json')
writefile(res, fn)
list_themes()
else:
log.error('Error refreshing UI themes')
except Exception:
log.error('Exception refreshing UI themes')
def readfile(filename, silent=False):
data = {}
try:
if not os.path.exists(filename):
return {}
with fasteners.InterProcessLock(f"{filename}.lock"):
with open(filename, "r", encoding="utf8") as file:
data = json.load(file)
if type(data) is str:
data = json.loads(data)
if not silent:
log.debug(f'Reading: {filename} len={len(data)}')
except Exception as e:
log.error(f'Reading failed: {filename} {e}')
return data
def writefile(data, filename, mode='w'):
def default(obj):
log.error(f"Saving: {filename} not a valid object: {obj}")
return str(obj)
try:
with fasteners.InterProcessLock(f"{filename}.lock"):
# skipkeys=True, ensure_ascii=True, check_circular=True, allow_nan=True
output = json.dumps(data, indent=2, default=default)
log.debug(f'Saving: {filename} len={len(output)}')
with open(filename, mode, encoding="utf8") as file:
file.write(output)
except Exception as e:
log.error(f'Saving failed: {filename} {e}')
if devices.backend == "cpu":
cross_attention_optimization_default = "Doggettx's"
elif devices.backend == "mps":
cross_attention_optimization_default = "Doggettx's"
elif devices.backend == "ipex":
cross_attention_optimization_default = "Scaled-Dot-Product"
elif devices.backend == "directml":
cross_attention_optimization_default = "Sub-quadratic"
elif devices.backend == "rocm":
cross_attention_optimization_default = "Sub-quadratic"
else: # cuda
cross_attention_optimization_default ="Scaled-Dot-Product"
options_templates.update(options_section(('sd', "Execution & Models"), {
"sd_backend": OptionInfo("diffusers" if cmd_opts.use_openvino else "original", "Execution backend", gr.Radio, lambda: {"choices": ["original", "diffusers"] }),
"sd_checkpoint_autoload": OptionInfo(True, "Model autoload on server start"),
"sd_model_checkpoint": OptionInfo(default_checkpoint, "Base model", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_model_refiner": OptionInfo('None', "Refiner model", gr.Dropdown, lambda: {"choices": ['None'] + list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Number of cached models", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "Number of cached VAEs", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "VAE model", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
"sd_model_dict": OptionInfo('None', "Use baseline data from a different model", gr.Dropdown, lambda: {"choices": ['None'] + list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"stream_load": OptionInfo(False, "Load models using stream loading method"),
"model_reuse_dict": OptionInfo(False, "When loading models attempt to reuse previous model dictionary"),
"prompt_attention": OptionInfo("Full parser", "Prompt attention parser", gr.Radio, lambda: {"choices": ["Full parser", "Compel parser", "A1111 parser", "Fixed attention"] }),
"prompt_mean_norm": OptionInfo(True, "Prompt attention mean normalization"),
"comma_padding_backtrack": OptionInfo(20, "Prompt padding for long prompts", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"sd_disable_ckpt": OptionInfo(False, "Disallow usage of models in ckpt format"),
}))
options_templates.update(options_section(('optimizations', "Optimizations"), {
"cross_attention_optimization": OptionInfo(cross_attention_optimization_default, "Cross-attention optimization method", gr.Radio, lambda: {"choices": shared_items.list_crossattention() }),
"cross_attention_options": OptionInfo([], "Cross-attention advanced options", gr.CheckboxGroup, lambda: {"choices": ['xFormers enable flash Attention', 'SDP disable memory attention']}),
"sub_quad_q_chunk_size": OptionInfo(512, "Sub-quadratic cross-attention query chunk size", gr.Slider, {"minimum": 16, "maximum": 8192, "step": 8}),
"sub_quad_kv_chunk_size": OptionInfo(512, "Sub-quadratic cross-attention kv chunk size", gr.Slider, {"minimum": 0, "maximum": 8192, "step": 8}),
"sub_quad_chunk_threshold": OptionInfo(80, "Sub-quadratic cross-attention chunking threshold", gr.Slider, {"minimum": 0, "maximum": 100, "step": 1}),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for hires pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"inference_mode": OptionInfo("no-grad", "Torch inference mode", gr.Radio, lambda: {"choices": ["no-grad", "inference-mode", "none"]}),
"sd_vae_sliced_encode": OptionInfo(False, "VAE Slicing (original)"),
}))
options_templates.update(options_section(('cuda', "Compute Settings"), {
# "memmon_poll_rate": OptionInfo(2, "VRAM usage polls per second during generation", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
"precision": OptionInfo("Autocast", "Precision type", gr.Radio, lambda: {"choices": ["Autocast", "Full"]}),
"cuda_dtype": OptionInfo("FP32" if sys.platform == "darwin" or cmd_opts.use_openvino else "BF16" if devices.backend == "ipex" else "FP16", "Device precision type", gr.Radio, lambda: {"choices": ["FP32", "FP16", "BF16"]}),
"no_half": OptionInfo(False, "Use full precision for model (--no-half)", None, None, None),
"no_half_vae": OptionInfo(False, "Use full precision for VAE (--no-half-vae)"),
"upcast_sampling": OptionInfo(True if sys.platform == "darwin" else False, "Enable upcast sampling"),
"upcast_attn": OptionInfo(False, "Enable upcast cross attention layer"),
"cuda_cast_unet": OptionInfo(False, "Use fixed UNet precision"),
"disable_nan_check": OptionInfo(True, "Disable NaN check in produced images/latent spaces", gr.Checkbox, {"visible": False}),
"rollback_vae": OptionInfo(False, "Attempt VAE roll back when produced NaN values (experimental)"),
"opt_channelslast": OptionInfo(False, "Use channels last as torch memory format "),
"cudnn_benchmark": OptionInfo(False, "Enable full-depth cuDNN benchmark feature"),
"ipex_optimize": OptionInfo(True if devices.backend == "ipex" else False, "Enable IPEX Optimize for Intel GPUs"),
"directml_memory_provider": OptionInfo(default_memory_provider, 'DirectML memory stats provider', gr.Radio, lambda: {"choices": memory_providers}),
"cuda_compile_sep": OptionInfo("<h2>Model Compile</h2>", "", gr.HTML),
"cuda_compile": OptionInfo(True if cmd_opts.use_openvino else False, "Enable model compile"),
"cuda_compile_backend": OptionInfo("openvino_fx" if cmd_opts.use_openvino else "none", "Model compile backend", gr.Radio, lambda: {"choices": ['none', 'inductor', 'cudagraphs', 'aot_ts_nvfuser', 'hidet', 'ipex', 'openvino_fx']}),
"cuda_compile_mode": OptionInfo("default", "Model compile mode", gr.Radio, lambda: {"choices": ['default', 'reduce-overhead', 'max-autotune']}),
"cuda_compile_fullgraph": OptionInfo(False, "Model compile fullgraph"),
"cuda_compile_precompile": OptionInfo(False, "Model compile precompile"),
"cuda_compile_verbose": OptionInfo(False, "Model compile verbose mode"),
"cuda_compile_errors": OptionInfo(True, "Model compile suppress errors"),
}))
options_templates.update(options_section(('diffusers', "Diffusers Settings"), {
"diffusers_pipeline": OptionInfo(pipelines[0], 'Diffusers pipeline', gr.Dropdown, lambda: {"choices": pipelines}),
"diffusers_move_base": OptionInfo(True, "Move base model to CPU when using refiner"),
"diffusers_move_unet": OptionInfo(True, "Move base model to CPU when using VAE"),
"diffusers_move_refiner": OptionInfo(True, "Move refiner model to CPU when not in use"),
"diffusers_extract_ema": OptionInfo(True, "Use model EMA weights when possible"),
"diffusers_generator_device": OptionInfo("default", "Generator device", gr.Radio, lambda: {"choices": ["default", "cpu"]}),
"diffusers_model_cpu_offload": OptionInfo(False, "Enable model CPU offload (--medvram)"),
"diffusers_seq_cpu_offload": OptionInfo(False, "Enable sequential CPU offload (--lowvram)"),
"diffusers_vae_upcast": OptionInfo("default", "VAE upcasting", gr.Radio, lambda: {"choices": ['default', 'true', 'false']}),
"diffusers_vae_slicing": OptionInfo(True, "Enable VAE slicing"),
"diffusers_vae_tiling": OptionInfo(False if cmd_opts.use_openvino else True, "Enable VAE tiling"),
"diffusers_attention_slicing": OptionInfo(False, "Enable attention slicing"),
"diffusers_model_load_variant": OptionInfo("default", "Diffusers model loading variant", gr.Radio, lambda: {"choices": ['default', 'fp32', 'fp16']}),
"diffusers_vae_load_variant": OptionInfo("default", "Diffusers VAE loading variant", gr.Radio, lambda: {"choices": ['default', 'fp32', 'fp16']}),
"diffusers_lora_loader": OptionInfo("diffusers", "Diffusers LoRA loading variant", gr.Radio, lambda: {"choices": ['diffusers', 'sequential apply', 'merge and apply']}),
"diffusers_force_zeros": OptionInfo(True, "Force zeros for prompts when empty"),
"diffusers_aesthetics_score": OptionInfo(False, "Require aesthetics score"),
}))
options_templates.update(options_section(('system-paths', "System Paths"), {
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default", folder=True),
"clean_temp_dir_at_start": OptionInfo(True, "Cleanup non-default temporary directory when starting webui"),
"ckpt_dir": OptionInfo(os.path.join(paths.models_path, 'Stable-diffusion'), "Folder with stable diffusion models", folder=True),
"diffusers_dir": OptionInfo(os.path.join(paths.models_path, 'Diffusers'), "Folder with Hugggingface models", folder=True),
"vae_dir": OptionInfo(os.path.join(paths.models_path, 'VAE'), "Folder with VAE files", folder=True),
"sd_lora": OptionInfo("", "Add LoRA to prompt", gr.Textbox, {"visible": False}),
"lora_dir": OptionInfo(os.path.join(paths.models_path, 'Lora'), "Folder with LoRA network(s)", folder=True),
"lyco_dir": OptionInfo(os.path.join(paths.models_path, 'LyCORIS'), "Folder with LyCORIS network(s)", folder=True),
"styles_dir": OptionInfo(os.path.join(paths.data_path, 'styles.csv'), "File or Folder with user-defined styles", folder=True),
"embeddings_dir": OptionInfo(os.path.join(paths.models_path, 'embeddings'), "Folder with textual inversion embeddings", folder=True),
"hypernetwork_dir": OptionInfo(os.path.join(paths.models_path, 'hypernetworks'), "Folder with Hypernetwork models", folder=True),
"codeformer_models_path": OptionInfo(os.path.join(paths.models_path, 'Codeformer'), "Folder with codeformer models", folder=True),
"gfpgan_models_path": OptionInfo(os.path.join(paths.models_path, 'GFPGAN'), "Folder with GFPGAN models", folder=True),
"esrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'ESRGAN'), "Folder with ESRGAN models", folder=True),
"bsrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'BSRGAN'), "Folder with BSRGAN models", folder=True),
"realesrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'RealESRGAN'), "Folder with RealESRGAN models", folder=True),
"scunet_models_path": OptionInfo(os.path.join(paths.models_path, 'ScuNET'), "Folder with ScuNET models", folder=True),
"swinir_models_path": OptionInfo(os.path.join(paths.models_path, 'SwinIR'), "Folder with SwinIR models", folder=True),
"ldsr_models_path": OptionInfo(os.path.join(paths.models_path, 'LDSR'), "Folder with LDSR models", folder=True),
"clip_models_path": OptionInfo(os.path.join(paths.models_path, 'CLIP'), "Folder with CLIP models", folder=True),
}))
options_templates.update(options_section(('saving-images', "Image Options"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('jpg', 'File format for generated images', gr.Dropdown, lambda: {"choices": ["jpg", "png", "webp", "tiff", "jp2"]}),
"jpeg_quality": OptionInfo(90, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"img_max_size_mp": OptionInfo(250, "Maximum allowed image size in megapixels", gr.Number),
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"samples_save_zip": OptionInfo(True, "Create zip archive when downloading multiple images"),
"image_sep_metadata": OptionInfo("<h2>Metadata/Logging</h2>", "", gr.HTML),
"image_metadata": OptionInfo(True, "Include metadata in saved images"),
"save_txt": OptionInfo(False, "Create text file next to every image with generation parameters"),
"save_log_fn": OptionInfo("", "Create JSON log file for each saved image", component_args=hide_dirs),
"image_watermark_enabled": OptionInfo(False, "Include watermark in saved images"),
"image_watermark": OptionInfo('', "Image watermark string"),
"image_sep_grid": OptionInfo("<h2>Grid Options</h2>", "", gr.HTML),
"grid_save": OptionInfo(True, "Always save all generated image grids"),
"grid_format": OptionInfo('jpg', 'File format for grids', gr.Dropdown, lambda: {"choices": ["jpg", "png", "webp", "tiff", "jp2"]}),
"n_rows": OptionInfo(-1, "Grid row count", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
"save_sep_options": OptionInfo("<h2>Intermediate Image Saving</h2>", "", gr.HTML),
"save_init_img": OptionInfo(True, "Save copy of img2img init images"),
"save_images_before_highres_fix": OptionInfo(False, "Save copy of image before applying highres fix"),
"save_images_before_refiner": OptionInfo(False, "Save copy of image before running refiner"),
"save_images_before_face_restoration": OptionInfo(False, "Save copy of image before doing face restoration"),
"save_images_before_color_correction": OptionInfo(False, "Save copy of image before applying color correction"),
"save_mask": OptionInfo(False, "Save copy of the inpainting greyscale mask"),
"save_mask_composite": OptionInfo(False, "Save copy of inpainting masked composite"),
}))
options_templates.update(options_section(('saving-paths', "Image Naming & Paths"), {
"saving_sep_images": OptionInfo("<h2>Images</h2>", "", gr.HTML),
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process"),
"use_upscaler_name_as_suffix": OptionInfo(True, "Use upscaler name as filename suffix in the extras tab"),
"samples_filename_pattern": OptionInfo("[seq]-[prompt_words]", "Images filename pattern", component_args=hide_dirs),
"outdir_sep_dirs": OptionInfo("<h2>Directories</h2>", "", gr.HTML),
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
"use_save_to_dirs_for_ui": OptionInfo(False, "Save images to a subdirectory when using Save button"),
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 99, "step": 1, **hide_dirs}),
"outdir_samples": OptionInfo("", "Output directory for images", component_args=hide_dirs, folder=True),
"outdir_txt2img_samples": OptionInfo("outputs/text", 'Output directory for txt2img images', component_args=hide_dirs, folder=True),
"outdir_img2img_samples": OptionInfo("outputs/image", 'Output directory for img2img images', component_args=hide_dirs, folder=True),
"outdir_extras_samples": OptionInfo("outputs/extras", 'Output directory for images from extras tab', component_args=hide_dirs, folder=True),
"outdir_save": OptionInfo("outputs/save", "Directory for saving images using the Save button", component_args=hide_dirs, folder=True),
"outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs, folder=True),
"outdir_sep_grids": OptionInfo("<h2>Grids</h2>", "", gr.HTML),
"grid_extended_filename": OptionInfo(True, "Add extended info (seed, prompt) to filename when saving grid"),
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
"outdir_grids": OptionInfo("", "Output directory for grids", component_args=hide_dirs, folder=True),
"outdir_txt2img_grids": OptionInfo("outputs/grids", 'Output directory for txt2img grids', component_args=hide_dirs, folder=True),
"outdir_img2img_grids": OptionInfo("outputs/grids", 'Output directory for img2img grids', component_args=hide_dirs, folder=True),
}))
options_templates.update(options_section(('ui', "User Interface"), {
"gradio_theme": OptionInfo("black-teal", "UI theme", gr.Dropdown, lambda: {"choices": list_themes()}, refresh=refresh_themes),
"theme_style": OptionInfo("Auto", "Theme mode", gr.Radio, {"choices": ["Auto", "Dark", "Light"]}),
"tooltips": OptionInfo("UI Tooltips", "UI tooltips", gr.Radio, {"choices": ["None", "Browser default", "UI tooltips"]}),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
"disable_weights_auto_swap": OptionInfo(True, "Do not change selected model when reading generation parameters"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), # pylint: disable=anomalous-backslash-in-string
"quicksettings_list": OptionInfo(["sd_model_checkpoint"] if backend == Backend.ORIGINAL else ["sd_model_checkpoint", "sd_model_refiner"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}),
"ui_scripts_reorder": OptionInfo("", "UI scripts order"),
}))
options_templates.update(options_section(('live-preview', "Live Previews"), {
"show_progressbar": OptionInfo(True, "Show progressbar"),
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"notification_audio_enable": OptionInfo(False, "Play a sound when images are finished generating"),
"notification_audio_path": OptionInfo("html/notification.mp3","Path to notification sound", component_args=hide_dirs, folder=True),
"show_progress_every_n_steps": OptionInfo(1, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Approximate NN", "Live preview method", gr.Radio, {"choices": ["Full VAE", "Approximate NN", "Approximate simple", "TAESD"]}),
"live_preview_content": OptionInfo("Combined", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(500, "Progress update period", gr.Slider, {"minimum": 0, "maximum": 5000, "step": 25}),
"logmonitor_show": OptionInfo(True, "Show log view"),
"logmonitor_refresh_period": OptionInfo(5000, "Log view update period", gr.Slider, {"minimum": 0, "maximum": 30000, "step": 25}),
}))
options_templates.update(options_section(('sampler-params', "Sampler Settings"), {
"show_samplers": OptionInfo(["Default", "Euler a", "UniPC", "DEIS", "DDIM", "DPM 1S", "DPM 2M", "DPM++ 2M SDE", "DPM++ 2M SDE Karras", "DPM2 Karras", "DPM++ 2M Karras"], "Show samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers() if x.name != "PLMS"]}),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
'eta_noise_seed_delta': OptionInfo(0, "Noise seed delta (eta)", gr.Number, {"precision": 0}),
"eta_ddim": OptionInfo(0.0, "Noise multiplier for DDIM (eta)", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"schedulers_solver_order": OptionInfo(2, "Samplers solver order where applicable", gr.Slider, {"minimum": 1, "maximum": 5, "step": 1}),
"schedulers_sep_diffusers": OptionInfo("<h2>Diffusers specific config</h2>", "", gr.HTML),
"schedulers_prediction_type": OptionInfo("default", "Samplers override model prediction type", gr.Radio, lambda: {"choices": ['default', 'epsilon', 'sample', 'v-prediction']}),
"schedulers_use_karras": OptionInfo(True, "Samplers use Karras sigmas where applicable"),
"schedulers_use_loworder": OptionInfo(True, "Samplers use simplified solvers in final steps where applicable"),
"schedulers_use_thresholding": OptionInfo(False, "Samplers use dynamic thresholding where applicable"),
"schedulers_dpm_solver": OptionInfo("sde-dpmsolver++", "Samplers DPM solver algorithm", gr.Radio, lambda: {"choices": ['dpmsolver', 'dpmsolver++', 'sde-dpmsolver++']}),
"schedulers_beta_schedule": OptionInfo("default", "Samplers override beta schedule", gr.Radio, lambda: {"choices": ['default', 'linear', 'scaled_linear', 'squaredcos_cap_v2']}),
'schedulers_beta_start': OptionInfo(0, "Samplers override beta start", gr.Number, {}),
'schedulers_beta_end': OptionInfo(0, "Samplers override beta end", gr.Number, {}),
"schedulers_sep_kdiffusers": OptionInfo("<h2>K-Diffusion specific config</h2>", "", gr.HTML),
"always_batch_cond_uncond": OptionInfo(False, "Disable conditional batching enabled on low memory systems"),
"enable_quantization": OptionInfo(True, "Enable samplers quantization for sharper and cleaner results"),
"eta_ancestral": OptionInfo(1.0, "Noise multiplier for ancestral samplers (eta)", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0.0, "sigma negative guidance minimum ", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
'never_discard_next_to_last_sigma': OptionInfo(False, "Never discard next-to-last sigma"),
"schedulers_sep_compvis": OptionInfo("<h2>CompVis specific config</h2>", "", gr.HTML),
"ddim_discretize": OptionInfo('uniform', "DDIM discretize img2img", gr.Radio, {"choices": ['uniform', 'quad']}),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable additional postprocessing operations", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
"postprocessing_sep_img2img": OptionInfo("<h2>Img2Img & Inpainting</h2>", "", gr.HTML),
"img2img_color_correction": OptionInfo(False, "Apply color correction to match original colors"),
"img2img_fix_steps": OptionInfo(False, "For image processing do exact number of steps as specified"),
"img2img_background_color": OptionInfo("#ffffff", "Image transparent color fill", ui_components.FormColorPicker, {}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for image processing", gr.Slider, {"minimum": 0.1, "maximum": 1.5, "step": 0.01}),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 8, "step": 1, "visible": False}),
"postprocessing_sep_face_restoration": OptionInfo("<h2>Face Restoration</h2>", "", gr.HTML),
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.2, "CodeFormer weight parameter", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
"postprocessing_sep_upscalers": OptionInfo("<h2>Upscaling</h2>", "", gr.HTML),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"upscaler_for_img2img": OptionInfo("None", "Default upscaler for image resize operations", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Real-ESRGAN available models", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap in pixels for ESRGAN upscalers", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"SCUNET_tile_overlap": OptionInfo(8, "Tile overlap for SCUNET upscalers", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible"),
"pin_memory": OptionInfo(True, "Pin training dataset to memory"),
"save_optimizer_state": OptionInfo(False, "Save resumable optimizer state when training"),
"save_training_settings_to_txt": OptionInfo(True, "Save training settings to a text file on training start"),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"embeddings_templates_dir": OptionInfo(os.path.join(paths.script_path, 'train', 'templates'), "Embeddings train templates directory", folder=True),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch", gr.Number, {"precision": 0}),
"training_write_csv_every": OptionInfo(0, "Save CSV file containing the loss to log directory"),
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging"),
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard"),
"training_tensorboard_flush_every": OptionInfo(120, "Tensorboard flush period"),
}))
options_templates.update(options_section(('interrogate', "Interrogate"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_return_ranks": OptionInfo(True, "Interrogate: include ranks of model tags matches in results"),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(32, "Interrogate: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(192, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(2048, "CLIP: maximum number of lines in text file"),
"interrogate_clip_skip_categories": OptionInfo(["artists", "movements", "flavors"], "Interrogate: skip categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.65, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(False, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "Use spaces for tags in deepbooru"),
"deepbooru_escape": OptionInfo(True, "Escape brackets in deepbooru"),
"deepbooru_filter_tags": OptionInfo("", "Filter out tags from deepbooru output"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_card_cover": OptionInfo("sidebar", "UI position", gr.Radio, lambda: {"choices": ["cover", "inline", "sidebar"]}),
"extra_networks_height": OptionInfo(53, "UI height (%)", gr.Slider, {"minimum": 10, "maximum": 100, "step": 1}),
"extra_networks_sidebar_width": OptionInfo(35, "UI sidebar width (%)", gr.Slider, {"minimum": 10, "maximum": 80, "step": 1}),
"extra_networks_card_lazy": OptionInfo(True, "UI card preview lazy loading"),
"extra_networks_card_size": OptionInfo(160, "UI card size (px)", gr.Slider, {"minimum": 20, "maximum": 2000, "step": 1}),
"extra_networks_card_square": OptionInfo(True, "UI disable variable aspect ratio"),
"extra_networks_card_fit": OptionInfo("cover", "UI image contain method", gr.Radio, lambda: {"choices": ["contain", "cover", "fill"]}),
"extra_network_skip_indexing": OptionInfo(False, "Do not automatically build extra network pages", gr.Checkbox),
"lyco_patch_lora": OptionInfo(False, "Use LyCoris handler for all LoRA types", gr.Checkbox),
"lora_functional": OptionInfo(False, "Use Kohya method for handling multiple LoRA", gr.Checkbox),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: { "choices": ["None"] + list(hypernetworks.keys()), "visible": False }, refresh=reload_hypernetworks),
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable these extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "user", "all"]}),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
options_templates.update()
class Options:
data = None
data_labels = options_templates
typemap = {int: float}
def __init__(self):
self.data = {k: v.default for k, v in self.data_labels.items()}
def __setattr__(self, key, value): # pylint: disable=inconsistent-return-statements
if self.data is not None:
if key in self.data or key in self.data_labels:
if cmd_opts.freeze:
log.warning(f'Settings are frozen: {key}')
return
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
log.warning(f'Settings key is restricted: {key}')
return
self.data[key] = value
return
return super(Options, self).__setattr__(key, value) # pylint: disable=super-with-arguments
def __getattr__(self, item):
if self.data is not None:
if item in self.data:
return self.data[item]
if item in self.data_labels:
return self.data_labels[item].default
return super(Options, self).__getattribute__(item) # pylint: disable=super-with-arguments
def set(self, key, value):
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
oldval = self.data.get(key, None)
if oldval is None:
oldval = self.data_labels[key].default
if oldval == value:
return False
try:
setattr(self, key, value)
except RuntimeError:
return False
if self.data_labels[key].onchange is not None:
try:
self.data_labels[key].onchange()
except Exception as e:
log.error(f'Error in onchange callback: {key} {value} {e}')
setattr(self, key, oldval)
return False
return True
def get_default(self, key):
"""returns the default value for the key"""
data_label = self.data_labels.get(key)
return data_label.default if data_label is not None else None
def save(self, filename):
if cmd_opts.freeze:
log.warning(f'Settings saving is disabled: {filename}')
return
try:
# output = json.dumps(self.data, indent=2)
diff = {}
unused_settings = []
for k, v in self.data.items():
if k in self.data_labels:
if type(v) is list:
diff[k] = v
if self.data_labels[k].default != v:
diff[k] = v
else:
if k not in compatibility_opts:
unused_settings.append(k)
diff[k] = v
writefile(diff, filename)
if len(unused_settings) > 0:
log.debug(f"Unused settings: {unused_settings}")
except Exception as e:
log.error(f'Saving settings failed: {filename} {e}')
def same_type(self, x, y):
if x is None or y is None:
return True
type_x = self.typemap.get(type(x), type(x))
type_y = self.typemap.get(type(y), type(y))
return type_x == type_y
def load(self, filename):
if not os.path.isfile(filename):
log.debug(f'Created default config: {filename}')
self.save(filename)
return
self.data = readfile(filename)
if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
unknown_settings = []
for k, v in self.data.items():
info = self.data_labels.get(k, None)
if info is not None and not self.same_type(info.default, v):
log.error(f"Error: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})")
if info is None and k not in compatibility_opts:
unknown_settings.append(k)
if len(unknown_settings) > 0:
log.debug(f"Unknown settings: {unknown_settings}")
def onchange(self, key, func, call=True):
item = self.data_labels.get(key)
item.onchange = func
if call:
func()
def dumpjson(self):
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
metadata = {
k: {
"is_stored": k in self.data and self.data[k] != self.data_labels[k].default,
"tab_name": v.section[0]
} for k, v in self.data_labels.items()
}
return json.dumps({"values": d, "metadata": metadata})
def add_option(self, key, info):
self.data_labels[key] = info
def reorder(self):
"""reorder settings so that all items related to section always go together"""
section_ids = {}
settings_items = self.data_labels.items()
for _k, item in settings_items:
if item.section not in section_ids:
section_ids[item.section] = len(section_ids)
self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
"""
if value is None:
return None
default_value = self.data_labels[key].default
if default_value is None:
default_value = getattr(self, key, None)
if default_value is None:
return None
expected_type = type(default_value)
if expected_type == bool and value == "False":
value = False
elif expected_type == type(value):
pass
else:
value = expected_type(value)
return value
opts = Options()
config_filename = cmd_opts.config
opts.load(config_filename)
cmd_opts = cmd_args.compatibility_args(opts, cmd_opts)
if cmd_opts.backend is None:
backend = Backend.DIFFUSERS if cmd_opts.use_openvino or opts.data.get('sd_backend', 'original') == 'diffusers' else Backend.ORIGINAL
else:
backend = Backend.DIFFUSERS if cmd_opts.use_openvino or cmd_opts.backend.lower() == 'diffusers' else Backend.ORIGINAL
opts.data['sd_backend'] = 'diffusers' if backend == Backend.DIFFUSERS else 'original'
opts.data['uni_pc_lower_order_final'] = opts.schedulers_use_loworder
opts.data['uni_pc_order'] = opts.schedulers_solver_order
opts.data['diffusers_lora_loader'] = 'diffusers' # TODO broken in diffusers=0.21
log.info(f'Engine: backend={backend} compute={devices.backend} mode={devices.inference_context.__name__} device={devices.get_optimal_device_name()}')
log.info(f'Device: {print_dict(devices.get_gpu_info())}')
prompt_styles = modules.styles.StyleDatabase(opts)
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or (cmd_opts.server_name or False)) and not cmd_opts.insecure
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
device = devices.device
batch_cond_uncond = opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram
mem_mon = modules.memmon.MemUsageMonitor("MemMon", devices.device)
if devices.backend == "directml":
directml_do_hijack()
def reload_gradio_theme(theme_name=None):
global gradio_theme # pylint: disable=global-statement
if not theme_name:
theme_name = opts.gradio_theme
default_font_params = {}
res = 0
try:
req = urllib.request.Request("https://fonts.googleapis.com/css2?family=IBM+Plex+Mono", method="HEAD")
res = urllib.request.urlopen(req, timeout=3.0).status # pylint: disable=consider-using-with
except Exception:
res = 0
if res != 200:
log.info('No internet access detected, using default fonts')
default_font_params = {
'font':['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'],
'font_mono':['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace']
}
if theme_name in list_builtin_themes():
gradio_theme = gr.themes.Default(**default_font_params)
elif theme_name.startswith("gradio/"):
if theme_name == "gradio/default":
gradio_theme = gr.themes.Default(**default_font_params)
if theme_name == "gradio/base":
gradio_theme = gr.themes.Base(**default_font_params)
if theme_name == "gradio/glass":
gradio_theme = gr.themes.Glass(**default_font_params)
if theme_name == "gradio/monochrome":
gradio_theme = gr.themes.Monochrome(**default_font_params)
if theme_name == "gradio/soft":
gradio_theme = gr.themes.Soft(**default_font_params)
else:
try:
gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
except Exception:
log.error("Theme download error accessing HuggingFace")
gradio_theme = gr.themes.Default(**default_font_params)
log.info(f'Loading UI theme: name={theme_name} style={opts.theme_style}')
class TotalTQDM: # compatibility with previous global-tqdm
def __init__(self):
pass
def reset(self):
pass
def update(self):
pass
def updateTotal(self, new_total):
pass
def clear(self):
pass
total_tqdm = TotalTQDM()
def restart_server(restart=True):
if demo is None:
return
log.warning('Server shutdown requested')
try:
sys.tracebacklimit = 0
stdout = io.StringIO()
stderr = io.StringIO()
with contextlib.redirect_stdout(stdout), contextlib.redirect_stdout(stderr):
demo.server.wants_restart = restart
demo.server.should_exit = True
demo.server.force_exit = True
demo.close(verbose=False)
demo.server.close()
demo.fns = []
time.sleep(1)
sys.tracebacklimit = 100
# os._exit(0)
except (Exception, BaseException) as e:
log.error(f'Server shutdown error: {e}')
if restart:
log.info('Server will restart')
def restore_defaults(restart=True):
if os.path.exists(cmd_opts.config):
log.info('Restoring server defaults')
os.remove(cmd_opts.config)
restart_server(restart)
def listfiles(dirname):
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)]
def walk_files(path, allowed_extensions=None):
if not os.path.exists(path):
return
if allowed_extensions is not None:
allowed_extensions = set(allowed_extensions)
for root, _dirs, files in os.walk(path, followlinks=True):
for filename in files:
if allowed_extensions is not None:
_, ext = os.path.splitext(filename)
if ext not in allowed_extensions:
continue
yield os.path.join(root, filename)
def html_path(filename):
return os.path.join(paths.script_path, "html", filename)
def html(filename):
path = html_path(filename)
if os.path.exists(path):
with open(path, encoding="utf8") as file:
return file.read()
return ""
def get_version():
version = None
if version is None:
try:
import subprocess
res = subprocess.run('git log --pretty=format:"%h %ad" -1 --date=short', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
ver = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ' '
githash, updated = ver.split(' ')
res = subprocess.run('git remote get-url origin', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
origin = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ''
res = subprocess.run('git rev-parse --abbrev-ref HEAD', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
branch = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ''
version = {
'app': 'sd.next',
'updated': updated,
'hash': githash,
'url': origin.replace('\n', '') + '/tree/' + branch.replace('\n', '')
}
except Exception:
version = { 'app': 'sd.next' }
return version
class Shared(sys.modules[__name__].__class__): # this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than at program startup.
@property
def sd_model(self):
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.model_data.get_sd_model()
@sd_model.setter
def sd_model(self, value):
import modules.sd_models # pylint: disable=W0621
modules.sd_models.model_data.set_sd_model(value)
@property
def sd_refiner(self):
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.model_data.get_sd_refiner()
@sd_refiner.setter
def sd_refiner(self, value):
import modules.sd_models # pylint: disable=W0621
modules.sd_models.model_data.set_sd_refiner(value)
@property
def backend(self):
return Backend.ORIGINAL if not cmd_opts.use_openvino and opts.data['sd_backend'] == 'original' else Backend.DIFFUSERS
@property
def sd_model_type(self):
try:
if backend == Backend.ORIGINAL:
model_type = 'ldm'
elif "StableDiffusionXL" in self.sd_model.__class__.__name__:
model_type = 'sdxl'
elif "StableDiffusion" in self.sd_model.__class__.__name__:
model_type = 'sd'
elif "Kandinsky" in self.sd_model.__class__.__name__:
model_type = 'kandinsky'
else:
model_type = self.sd_model.__class__.__name__
except Exception:
model_type = 'unknown'
return model_type
@property
def sd_refiner_type(self):
try:
if backend == Backend.ORIGINAL:
model_type = 'ldm'
elif "StableDiffusionXL" in self.sd_refiner.__class__.__name__:
model_type = 'sdxl'
elif "StableDiffusion" in self.sd_refiner.__class__.__name__:
model_type = 'sd'
elif "Kandinsky" in self.sd_refiner.__class__.__name__:
model_type = 'kandinsky'
else:
model_type = self.sd_refiner.__class__.__name__
except Exception:
model_type = 'unknown'
return model_type
sd_model = None
sd_refiner = None
sd_model_type = ''
sd_refiner_type = ''
sys.modules[__name__].__class__ = Shared