1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/model_flex.py
Vladimir Mandic c6cc1476c6 add hidream-e1
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-04-29 10:08:51 -04:00

93 lines
4.1 KiB
Python

import os
import transformers
import diffusers
from huggingface_hub import auth_check
from modules import shared, devices, sd_models, model_quant, modelloader, sd_hijack_te
def load_transformer(repo_id, diffusers_load_config={}):
load_args, quant_args = model_quant.get_dit_args(diffusers_load_config, module='Transformer', device_map=True)
fn = None
if shared.opts.sd_unet is not None and shared.opts.sd_unet != 'Default':
from modules import sd_unet
if shared.opts.sd_unet not in list(sd_unet.unet_dict):
shared.log.error(f'Load module: type=Transformer not found: {shared.opts.sd_unet}')
return None
fn = sd_unet.unet_dict[shared.opts.sd_unet] if os.path.exists(sd_unet.unet_dict[shared.opts.sd_unet]) else None
if fn is not None and 'gguf' in fn.lower():
shared.log.error('Load model: type=HiDream format="gguf" unsupported')
transformer = None
from modules import ggml
transformer = ggml.load_gguf(fn, cls=diffusers.HiDreamImageTransformer2DModel, compute_dtype=devices.dtype)
elif fn is not None and 'safetensors' in fn.lower():
shared.log.debug(f'Load model: type=FLEX transformer="{repo_id}" quant="{model_quant.get_quant(repo_id)}" args={load_args}')
transformer = diffusers.FluxTransformer2DModel.from_single_file(fn, cache_dir=shared.opts.hfcache_dir, **load_args)
# elif model_quant.check_nunchaku('Transformer'):
# shared.log.error(f'Load model: type=HiDream transformer="{repo_id}" quant="Nunchaku" unsupported')
# transformer = None
else:
shared.log.debug(f'Load model: type=FLEX transformer="{repo_id}" quant="{model_quant.get_quant_type(quant_args)}" args={load_args}')
transformer = diffusers.FluxTransformer2DModel.from_pretrained(
repo_id,
subfolder="transformer",
cache_dir=shared.opts.hfcache_dir,
**load_args,
**quant_args,
)
if shared.opts.diffusers_offload_mode != 'none' and transformer is not None:
sd_models.move_model(transformer, devices.cpu)
return transformer
def load_text_encoders(repo_id, diffusers_load_config={}):
load_args, quant_args = model_quant.get_dit_args(diffusers_load_config, module='TE', device_map=True)
shared.log.debug(f'Load model: type=FLEX t5="{repo_id}" quant="{model_quant.get_quant_type(quant_args)}" args={load_args}')
text_encoder_2 = transformers.T5EncoderModel.from_pretrained(
repo_id,
subfolder="text_encoder_2",
cache_dir=shared.opts.hfcache_dir,
**load_args,
**quant_args,
)
if shared.opts.diffusers_offload_mode != 'none' and text_encoder_2 is not None:
sd_models.move_model(text_encoder_2, devices.cpu)
return text_encoder_2
def load_flex(checkpoint_info, diffusers_load_config={}):
repo_id = sd_models.path_to_repo(checkpoint_info.name)
login = modelloader.hf_login()
try:
auth_check(repo_id)
except Exception as e:
shared.log.error(f'Load model: repo="{repo_id}" login={login} {e}')
return False
transformer = load_transformer(repo_id, diffusers_load_config)
text_encoder_2 = load_text_encoders(repo_id, diffusers_load_config)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, module='Model')
shared.log.debug(f'Load model: type=FLEX model="{checkpoint_info.name}" repo="{repo_id}" offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
from modules.flex2 import Flex2Pipeline
pipe = Flex2Pipeline.from_pretrained(
repo_id,
# custom_pipeline=repo_id,
transformer=transformer,
text_encoder_2=text_encoder_2,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
sd_hijack_te.init_hijack(pipe)
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["flex2"] = Flex2Pipeline
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["flex2"] = Flex2Pipeline
diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["flex2"] = Flex2Pipeline
del text_encoder_2
del transformer
devices.torch_gc()
return pipe