1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/ui_models.py
Vladimir Mandic 4aa17ca745 networks regex pattern(s) for skip-scan
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-04-13 09:10:11 -04:00

866 lines
55 KiB
Python

import os
import re
import time
import json
import inspect
from datetime import datetime
import gradio as gr
from modules import errors, sd_models, sd_vae, extras, sd_samplers, ui_symbols, hashes
from modules.ui_components import ToolButton
from modules.ui_common import create_refresh_button
from modules.call_queue import wrap_gradio_gpu_call
from modules.shared import opts, log, req, readfile, max_workers, native
from modules.merging import merge_methods
from modules.merging.merge_utils import BETA_METHODS, TRIPLE_METHODS, interpolate
from modules.merging.merge_presets import BLOCK_WEIGHTS_PRESETS, SDXL_BLOCK_WEIGHTS_PRESETS
search_metadata_civit = None
extra_ui = []
def create_ui():
dummy_component = gr.Label(visible=False)
with gr.Row(elem_id="models_tab"):
with gr.Column(elem_id='models_output_container', scale=1):
# models_output = gr.Text(elem_id="models_output", value="", show_label=False)
gr.HTML(elem_id="models_progress", value="")
models_image = gr.Image(elem_id="models_image", show_label=False, interactive=False, type='pil')
models_outcome = gr.HTML(elem_id="models_error", value="")
models_file = gr.File(label='', type='file', help='', visible=False)
with gr.Column(elem_id='models_input_container', scale=3):
with gr.Tab(label="Current"):
def analyze():
from modules import modelstats
model = modelstats.analyze()
desc = f"Model: {model.name}<br>Type: {model.type}<br>Class: {model.cls}<br>Size: {model.size} bytes<br>Modified: {model.mtime}<br>"
meta = model.meta
components = [(m.name, m.cls, m.device, m.dtype, m.params, m.modules, str(m.config)) for m in model.modules]
return [desc, components, meta]
with gr.Row():
gr.HTML('<h2>&nbspAnalyze currently loaded model<br></h2>')
with gr.Row():
model_analyze = gr.Button(value="Analyze", variant='primary')
with gr.Row():
model_desc = gr.HTML(value="", elem_id="model_desc")
with gr.Row():
module_headers = ['Module', 'Class', 'Device', 'DType', 'Params', 'Modules', 'Config']
module_types = ['str', 'str', 'str', 'str', 'number', 'number', 'str']
model_modules = gr.DataFrame(value=None, label=None, show_label=False, interactive=False, wrap=True, headers=module_headers, datatype=module_types, type='array')
with gr.Row():
model_meta = gr.JSON(label="Metadata", value={}, elem_id="model_meta")
model_analyze.click(fn=analyze, inputs=[], outputs=[model_desc, model_modules, model_meta])
with gr.Tab(label="Loader"):
from modules import ui_models_load
ui_models_load.create_ui(models_outcome, models_file)
with gr.Tab(label="Merge"):
def sd_model_choices():
return ['None'] + sd_models.checkpoint_titles()
with gr.Row():
gr.HTML('<h2>&nbspMerge multiple models<br></h2>')
with gr.Row(equal_height=False):
with gr.Column(variant='compact'):
with gr.Row():
custom_name = gr.Textbox(label="New model name")
with gr.Row():
merge_mode = gr.Dropdown(choices=merge_methods.__all__, value="weighted_sum", label="Interpolation Method")
merge_mode_docs = gr.HTML(value=getattr(merge_methods, "weighted_sum", "").__doc__.replace("\n", "<br>"))
with gr.Row():
primary_model_name = gr.Dropdown(sd_model_choices(), label="Primary model", value="None")
create_refresh_button(primary_model_name, sd_models.list_models, lambda: {"choices": sd_model_choices()}, "refresh_checkpoint_A")
secondary_model_name = gr.Dropdown(sd_model_choices(), label="Secondary model", value="None")
create_refresh_button(secondary_model_name, sd_models.list_models, lambda: {"choices": sd_model_choices()}, "refresh_checkpoint_B")
tertiary_model_name = gr.Dropdown(sd_model_choices(), label="Tertiary model", value="None", visible=False)
tertiary_refresh = create_refresh_button(tertiary_model_name, sd_models.list_models, lambda: {"choices": sd_model_choices()}, "refresh_checkpoint_C", visible=False)
with gr.Row():
with gr.Tabs() as tabs:
with gr.TabItem(label="Simple Merge", id=0):
with gr.Row():
alpha = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Alpha Ratio', value=0.5)
beta = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Beta Ratio', value=None, visible=False)
with gr.TabItem(label="Preset Block Merge", id=1):
with gr.Row():
sdxl = gr.Checkbox(label="SDXL")
with gr.Row():
alpha_preset = gr.Dropdown(
choices=["None"] + list(BLOCK_WEIGHTS_PRESETS.keys()), value=None,
label="ALPHA Block Weight Preset", multiselect=True, max_choices=2)
alpha_preset_lambda = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Preset Interpolation Ratio', value=None, visible=False)
apply_preset = ToolButton('', visible=True)
with gr.Row():
beta_preset = gr.Dropdown(choices=["None"] + list(BLOCK_WEIGHTS_PRESETS.keys()), value=None, label="BETA Block Weight Preset", multiselect=True, max_choices=2, interactive=True, visible=False)
beta_preset_lambda = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Preset Interpolation Ratio', value=None, interactive=True, visible=False)
beta_apply_preset = ToolButton('', interactive=True, visible=False)
with gr.TabItem(label="Manual Block Merge", id=2):
with gr.Row():
alpha_label = gr.Markdown("# Alpha")
with gr.Row():
alpha_base = gr.Textbox(value=None, label="Base", min_width=70, scale=1)
alpha_in_blocks = gr.Textbox(value=None, label="In Blocks", scale=15)
alpha_mid_block = gr.Textbox(value=None, label="Mid Block", min_width=80, scale=1)
alpha_out_blocks = gr.Textbox(value=None, label="Out Block", scale=15)
with gr.Row():
beta_label = gr.Markdown("# Beta", visible=False)
with gr.Row():
beta_base = gr.Textbox(value=None, label="Base", min_width=70, scale=1, interactive=True, visible=False)
beta_in_blocks = gr.Textbox(value=None, label="In Blocks", interactive=True, scale=15, visible=False)
beta_mid_block = gr.Textbox(value=None, label="Mid Block", min_width=80, interactive=True, scale=1, visible=False)
beta_out_blocks = gr.Textbox(value=None, label="Out Block", interactive=True, scale=15, visible=False)
with gr.Row():
overwrite = gr.Checkbox(label="Overwrite model")
with gr.Row():
save_metadata = gr.Checkbox(value=True, label="Save metadata")
with gr.Row():
weights_clip = gr.Checkbox(label="Weights clip")
prune = gr.Checkbox(label="Prune", value=True, visible=False)
with gr.Row():
re_basin = gr.Checkbox(label="ReBasin")
re_basin_iterations = gr.Slider(minimum=0, maximum=25, step=1, label='Number of ReBasin Iterations', value=None, visible=False)
with gr.Row():
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", visible=False, label="Model format")
with gr.Row():
precision = gr.Radio(choices=["fp16", "fp32"], value="fp16", label="Model precision")
with gr.Row():
device = gr.Radio(choices=["cpu", "shuffle", "gpu"], value="cpu", label="Merge Device")
unload = gr.Checkbox(label="Unload Current Model from VRAM", value=False, visible=False)
with gr.Row():
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", interactive=True, label="Replace VAE")
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list,
lambda: {"choices": ["None"] + list(sd_vae.vae_dict)},
"modelmerger_refresh_bake_in_vae")
with gr.Row():
modelmerger_merge = gr.Button(value="Merge", variant='primary')
def modelmerger(dummy_component, # dummy function just to get argspec later
overwrite, # pylint: disable=unused-argument
primary_model_name, # pylint: disable=unused-argument
secondary_model_name, # pylint: disable=unused-argument
tertiary_model_name, # pylint: disable=unused-argument
merge_mode, # pylint: disable=unused-argument
alpha, # pylint: disable=unused-argument
beta, # pylint: disable=unused-argument
alpha_preset, # pylint: disable=unused-argument
alpha_preset_lambda, # pylint: disable=unused-argument
alpha_base, # pylint: disable=unused-argument
alpha_in_blocks, # pylint: disable=unused-argument
alpha_mid_block, # pylint: disable=unused-argument
alpha_out_blocks, # pylint: disable=unused-argument
beta_preset, # pylint: disable=unused-argument
beta_preset_lambda, # pylint: disable=unused-argument
beta_base, # pylint: disable=unused-argument
beta_in_blocks, # pylint: disable=unused-argument
beta_mid_block, # pylint: disable=unused-argument
beta_out_blocks, # pylint: disable=unused-argument
precision, # pylint: disable=unused-argument
custom_name, # pylint: disable=unused-argument
checkpoint_format, # pylint: disable=unused-argument
save_metadata, # pylint: disable=unused-argument
weights_clip, # pylint: disable=unused-argument
prune, # pylint: disable=unused-argument
re_basin, # pylint: disable=unused-argument
re_basin_iterations, # pylint: disable=unused-argument
device, # pylint: disable=unused-argument
unload, # pylint: disable=unused-argument
bake_in_vae): # pylint: disable=unused-argument
kwargs = {}
for x in inspect.getfullargspec(modelmerger)[0]:
kwargs[x] = locals()[x]
for key in list(kwargs.keys()):
if kwargs[key] in [None, "None", "", 0, []]:
del kwargs[key]
del kwargs['dummy_component']
if kwargs.get("custom_name", None) is None:
log.error('Merge: no output model specified')
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_titles()) for _ in range(4)], "No output model specified"]
elif kwargs.get("primary_model_name", None) is None or kwargs.get("secondary_model_name", None) is None:
log.error('Merge: no models selected')
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_titles()) for _ in range(4)], "No models selected"]
else:
log.debug(f'Merge start: {kwargs}')
try:
results = extras.run_modelmerger(dummy_component, **kwargs)
except Exception as e:
errors.display(e, 'Merge')
sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_titles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results
def tertiary(mode):
if mode in TRIPLE_METHODS:
return [gr.update(visible=True) for _ in range(2)]
else:
return [gr.update(visible=False) for _ in range(2)]
def beta_visibility(mode):
if mode in BETA_METHODS:
return [gr.update(visible=True) for _ in range(9)]
else:
return [gr.update(visible=False) for _ in range(9)]
def show_iters(show):
if show:
return gr.Slider.update(value=5, visible=True)
else:
return gr.Slider.update(value=None, visible=False)
def show_help(mode):
doc = getattr(merge_methods, mode).__doc__.replace("\n", "<br>")
return gr.update(value=doc, visible=True)
def show_unload(device):
if device == "gpu":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def preset_visiblility(x):
if len(x) == 2:
return gr.Slider.update(value=0.5, visible=True)
else:
return gr.Slider.update(value=None, visible=False)
def load_presets(presets, ratio):
for i, p in enumerate(presets):
presets[i] = BLOCK_WEIGHTS_PRESETS[p]
if len(presets) == 2:
preset = interpolate(presets, ratio)
else:
preset = presets[0]
preset = ['%.3f' % x if int(x) != x else str(x) for x in preset] # pylint: disable=consider-using-f-string
preset = [preset[0], ",".join(preset[1:13]), preset[13], ",".join(preset[14:])]
return [gr.update(value=x) for x in preset] + [gr.update(selected=2)]
def preset_choices(sdxl):
if sdxl:
return [gr.update(choices=["None"] + list(SDXL_BLOCK_WEIGHTS_PRESETS.keys())) for _ in range(2)]
else:
return [gr.update(choices=["None"] + list(BLOCK_WEIGHTS_PRESETS.keys())) for _ in range(2)]
device.change(fn=show_unload, inputs=device, outputs=unload)
merge_mode.change(fn=show_help, inputs=merge_mode, outputs=merge_mode_docs)
sdxl.change(fn=preset_choices, inputs=sdxl, outputs=[alpha_preset, beta_preset])
alpha_preset.change(fn=preset_visiblility, inputs=alpha_preset, outputs=alpha_preset_lambda)
beta_preset.change(fn=preset_visiblility, inputs=alpha_preset, outputs=beta_preset_lambda)
merge_mode.input(fn=tertiary, inputs=merge_mode, outputs=[tertiary_model_name, tertiary_refresh])
merge_mode.input(fn=beta_visibility, inputs=merge_mode, outputs=[beta, alpha_label, beta_label, beta_apply_preset, beta_preset, beta_base, beta_in_blocks, beta_mid_block, beta_out_blocks])
re_basin.change(fn=show_iters, inputs=re_basin, outputs=re_basin_iterations)
apply_preset.click(fn=load_presets, inputs=[alpha_preset, alpha_preset_lambda], outputs=[alpha_base, alpha_in_blocks, alpha_mid_block, alpha_out_blocks, tabs])
beta_apply_preset.click(fn=load_presets, inputs=[beta_preset, beta_preset_lambda], outputs=[beta_base, beta_in_blocks, beta_mid_block, beta_out_blocks, tabs])
modelmerger_merge.click(
fn=wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)], name='Models'),
_js='modelmerger',
inputs=[
dummy_component,
overwrite,
primary_model_name,
secondary_model_name,
tertiary_model_name,
merge_mode,
alpha,
beta,
alpha_preset,
alpha_preset_lambda,
alpha_base,
alpha_in_blocks,
alpha_mid_block,
alpha_out_blocks,
beta_preset,
beta_preset_lambda,
beta_base,
beta_in_blocks,
beta_mid_block,
beta_out_blocks,
precision,
custom_name,
checkpoint_format,
save_metadata,
weights_clip,
prune,
re_basin,
re_basin_iterations,
device,
unload,
bake_in_vae,
],
outputs=[
primary_model_name,
secondary_model_name,
tertiary_model_name,
dummy_component,
models_outcome,
]
)
with gr.Tab(label="Modules"):
with gr.Row():
gr.HTML('<h2>&nbspReplace model components<br></h2>')
with gr.Row():
with gr.Column(scale=3):
model_type = gr.Dropdown(label="Model type", choices=['sd15', 'sdxl', 'sd21', 'sd35', 'flux.1'], value='sdxl', interactive=False)
with gr.Column(scale=5):
with gr.Row():
model_name = gr.Dropdown(sd_models.checkpoint_titles(), label="Input model")
create_refresh_button(model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_titles()}, "refresh_checkpoint_Z")
with gr.Column(scale=5):
custom_name = gr.Textbox(label="Output model", placeholder="Output model path")
with gr.Row():
with gr.Column(scale=3):
gr.HTML('Model components<br><span style="color: var(--body-text-color-subdued)">Specify the components to include<br>Paths can be relative or absolute</span><br>')
with gr.Column(scale=5):
comp_unet = gr.Textbox(placeholder="UNet model", show_label=False)
comp_vae = gr.Textbox(placeholder="VAE model", show_label=False)
with gr.Column(scale=5):
comp_te1 = gr.Textbox(placeholder="Text encoder 1", show_label=False)
comp_te2 = gr.Textbox(placeholder="Text encoder 2", show_label=False)
with gr.Row():
with gr.Column(scale=3):
gr.HTML('Model settings<br>')
with gr.Column(scale=10):
with gr.Row():
precision = gr.Dropdown(label="Model precision", choices=["fp32", "fp16", "bf16"], value="fp16")
comp_scheduler = gr.Dropdown(label="Sampler", choices=[s.name for s in sd_samplers.samplers if s.constructor is not None])
comp_prediction = gr.Dropdown(Label="Prediction type", choices=["epsilon", "v"], value="epsilon")
with gr.Row():
with gr.Column(scale=3):
gr.HTML('Merge LoRA<br>')
with gr.Column(scale=9):
comp_lora = gr.Textbox(label="Comma separated list with optional strength per LoRA", placeholder="LoRA models")
with gr.Column(scale=1):
comp_fuse = gr.Number(label="Fuse strength", value=1.0)
with gr.Row():
gr.HTML('<br>')
with gr.Row():
with gr.Column(scale=2):
gr.HTML('Model metadata<br>')
with gr.Column(scale=5):
meta_author = gr.Textbox(placeholder="Author name", show_label=False)
meta_version = gr.Textbox(placeholder="Model version", show_label=False)
meta_license = gr.Textbox(placeholder="Model license", show_label=False)
with gr.Column(scale=5):
meta_desc = gr.Textbox(placeholder="Model description", lines=3, show_label=False)
meta_hint = gr.Textbox(placeholder="Model hint", lines=3, show_label=False)
with gr.Column(scale=3):
meta_thumbnail = gr.Image(label="Thumbnail", type='pil', source='upload')
with gr.Row():
gr.HTML('Note: Save is optional as you can merge in-memory and use newly created model immediately')
with gr.Row():
create_diffusers = gr.Checkbox(label="Save diffusers", value=True)
create_safetensors = gr.Checkbox(label="Save safetensors", value=True)
debug = gr.Checkbox(label="Debug info", value=False)
model_modules_btn = gr.Button(label="Modules", variant='primary')
model_modules_btn.click(
fn=extras.run_model_modules,
inputs=[
model_type, model_name, custom_name,
comp_unet, comp_vae, comp_te1, comp_te2,
precision, comp_scheduler, comp_prediction,
comp_lora, comp_fuse,
meta_author, meta_version, meta_license, meta_desc, meta_hint, meta_thumbnail,
create_diffusers, create_safetensors, debug,
],
outputs=[models_outcome]
)
with gr.Tab(label="Validate"):
model_headers = ['name', 'type', 'filename', 'hash', 'added', 'size', 'metadata']
model_data = []
with gr.Row():
gr.HTML('<h2>&nbspList all models <br></h2>')
with gr.Row():
model_list_btn = gr.Button(value="List model details", variant='primary')
model_checkhash_btn = gr.Button(value="Calculate hash for all models", variant='primary')
model_checkhash_btn.click(fn=sd_models.update_model_hashes, inputs=[], outputs=[models_outcome])
with gr.Row():
model_table = gr.DataFrame(
value=None,
headers=model_headers,
label='Model data',
show_label=True,
interactive=False,
wrap=True,
overflow_row_behaviour='paginate',
max_rows=50,
)
def list_models():
total_size = 0
model_data.clear()
txt = ''
for m in sd_models.checkpoints_list.values():
try:
stat = os.stat(m.filename)
m_name = m.name.replace('.ckpt', '').replace('.safetensors', '')
m_type = 'ckpt' if m.name.endswith('.ckpt') else 'safe'
m_meta = len(json.dumps(m.metadata)) - 2
m_size = round(stat.st_size / 1024 / 1024 / 1024, 3)
m_time = datetime.fromtimestamp(stat.st_mtime)
model_data.append([m_name, m_type, m.filename, m.shorthash, m_time, m_size, m_meta])
total_size += stat.st_size
except Exception as e:
txt += f"Error: {m.name} {e}<br>"
txt += f"Model list enumerated {len(sd_models.checkpoints_list.keys())} models in {round(total_size / 1024 / 1024 / 1024, 3)} GB<br>"
return model_data, txt
model_list_btn.click(fn=list_models, inputs=[], outputs=[model_table, models_outcome])
with gr.Tab(label="Huggingface"):
data = []
os.environ.setdefault('HF_HUB_DISABLE_EXPERIMENTAL_WARNING', '1')
os.environ.setdefault('HF_HUB_DISABLE_SYMLINKS_WARNING', '1')
os.environ.setdefault('HF_HUB_DISABLE_IMPLICIT_TOKEN', '1')
os.environ.setdefault('HUGGINGFACE_HUB_VERBOSITY', 'warning')
def hf_search(keyword):
import huggingface_hub as hf
hf_api = hf.HfApi()
models = hf_api.list_models(model_name=keyword, full=True, library="diffusers", limit=50, sort="downloads", direction=-1)
data.clear()
for model in models:
tags = [t for t in model.tags if not t.startswith('diffusers') and not t.startswith('license') and not t.startswith('arxiv') and len(t) > 2]
data.append([model.id, model.pipeline_tag, tags, model.downloads, model.lastModified, f'https://huggingface.co/{model.id}'])
return data
def hf_select(evt: gr.SelectData, data):
return data[evt.index[0]][0]
def hf_download_model(hub_id: str, token, variant, revision, mirror, custom_pipeline):
from modules.modelloader import download_diffusers_model
download_diffusers_model(hub_id, cache_dir=opts.diffusers_dir, token=token, variant=variant, revision=revision, mirror=mirror, custom_pipeline=custom_pipeline)
from modules.sd_models import list_models # pylint: disable=W0621
list_models()
log.info(f'Diffuser model downloaded: model="{hub_id}"')
return f'Diffuser model downloaded: model="{hub_id}"'
def hf_update_token(token):
log.debug('Huggingface update token')
opts.huggingface_token = token
opts.save()
with gr.Column(scale=6):
with gr.Row():
gr.HTML('<h2>&nbspDownload model from huggingface<br></h2>')
with gr.Row():
hf_search_text = gr.Textbox('', label='Search models', placeholder='search huggingface models')
hf_search_btn = ToolButton(value=ui_symbols.search, label="Search")
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
hf_selected = gr.Textbox('', label='Select model', placeholder='select model from search results or enter model name manually')
with gr.Column(scale=1):
with gr.Row():
hf_variant = gr.Textbox('', label='Specify model variant', placeholder='')
hf_revision = gr.Textbox('', label='Specify model revision', placeholder='')
with gr.Row():
hf_token = gr.Textbox(opts.huggingface_token, label='Huggingface token', placeholder='optional access token for private or gated models')
hf_mirror = gr.Textbox('', label='Huggingface mirror', placeholder='optional mirror site for downloads')
hf_custom_pipeline = gr.Textbox('', label='Custom pipeline', placeholder='optional pipeline for downloads')
with gr.Column(scale=1):
gr.HTML('<br>')
hf_download_model_btn = gr.Button(value="Download model", variant='primary')
with gr.Row():
hf_headers = ['Name', 'Pipeline', 'Tags', 'Downloads', 'Updated', 'URL']
hf_types = ['str', 'str', 'str', 'number', 'date', 'markdown']
hf_results = gr.DataFrame(None, label='Search results', show_label=True, interactive=False, wrap=True, overflow_row_behaviour='paginate', max_rows=10, headers=hf_headers, datatype=hf_types, type='array')
hf_search_text.submit(fn=hf_search, inputs=[hf_search_text], outputs=[hf_results])
hf_search_btn.click(fn=hf_search, inputs=[hf_search_text], outputs=[hf_results])
hf_results.select(fn=hf_select, inputs=[hf_results], outputs=[hf_selected])
hf_download_model_btn.click(fn=hf_download_model, inputs=[hf_selected, hf_token, hf_variant, hf_revision, hf_mirror, hf_custom_pipeline], outputs=[models_outcome])
hf_token.change(fn=hf_update_token, inputs=[hf_token], outputs=[])
with gr.Tab(label="CivitAI"):
data = []
def civit_search_model(name, tag, model_type):
# types = 'LORA' if model_type == 'LoRA' else 'Checkpoint'
url = 'https://civitai.com/api/v1/models?limit=25&Sort=Newest'
if model_type == 'Model':
url += '&types=Checkpoint'
elif model_type == 'LoRA':
url += '&types=LORA&types=DoRA&types=LoCon'
elif model_type == 'Embedding':
url += '&types=TextualInversion'
elif model_type == 'VAE':
url += '&types=VAE'
if name is not None and len(name) > 0:
url += f'&query={name}'
if tag is not None and len(tag) > 0:
url += f'&tag={tag}'
r = req(url)
log.debug(f'CivitAI search: type={model_type} name="{name}" tag={tag or "none"} url="{url}" status={r.status_code}')
if r.status_code != 200:
log.warning(f'CivitAI search: name="{name}" tag={tag} status={r.status_code}')
return [], gr.update(visible=False, value=[]), gr.update(visible=False, value=None), gr.update(visible=False, value=None)
try:
body = r.json()
except Exception as e:
log.error(f'CivitAI search: name="{name}" tag={tag} {e}')
return [], gr.update(visible=False, value=[]), gr.update(visible=False, value=None), gr.update(visible=False, value=None)
nonlocal data
data = body.get('items', [])
data1 = []
for model in data:
found = 0
if model_type == 'LoRA' and model['type'].lower() in ['lora', 'locon', 'dora', 'lycoris']:
found += 1
elif model_type == 'Embedding' and model['type'].lower() in ['textualinversion', 'embedding']:
found += 1
elif model_type == 'Model' and model['type'].lower() in ['checkpoint']:
found += 1
elif model_type == 'VAE' and model['type'].lower() in ['vae']:
found += 1
elif model_type == 'Other':
found += 1
if found > 0:
data1.append([
model['id'],
model['name'],
', '.join(model['tags']),
model['stats']['downloadCount'],
model['stats']['rating']
])
res = f'Search result: name={name} tag={tag or "none"} type={model_type} models={len(data1)}'
return res, gr.update(visible=len(data1) > 0, value=data1 if len(data1) > 0 else []), gr.update(visible=False, value=None), gr.update(visible=False, value=None)
def civit_select1(evt: gr.SelectData, in_data):
model_id = in_data[evt.index[0]][0]
data2 = []
preview_img = None
for model in data:
if model['id'] == model_id:
for d in model['modelVersions']:
try:
if d.get('images') is not None and len(d['images']) > 0 and len(d['images'][0]['url']) > 0:
preview_img = d['images'][0]['url']
data2.append([d.get('id', None), d.get('modelId', None) or model_id, d.get('name', None), d.get('baseModel', None), d.get('createdAt', None) or d.get('publishedAt', None)])
except Exception as e:
log.error(f'CivitAI select: model="{in_data[evt.index[0]]}" {e}')
log.error(f'CivitAI version data={type(d)}: {d}')
log.debug(f'CivitAI select: model="{in_data[evt.index[0]]}" versions={len(data2)}')
return data2, None, preview_img
def civit_select2(evt: gr.SelectData, in_data):
variant_id = in_data[evt.index[0]][0]
model_id = in_data[evt.index[0]][1]
data3 = []
for model in data:
if model['id'] == model_id:
for variant in model['modelVersions']:
if variant['id'] == variant_id:
for f in variant['files']:
try:
if os.path.splitext(f['name'])[1].lower() in ['.safetensors', '.ckpt', '.pt', '.pth', '.bin']:
data3.append([f['name'], round(f['sizeKB']), json.dumps(f['metadata']), f['downloadUrl']])
except Exception:
pass
log.debug(f'CivitAI select: model="{in_data[evt.index[0]]}" files={len(data3)}')
return data3
def civit_select3(evt: gr.SelectData, in_data):
log.debug(f'CivitAI select: variant={in_data[evt.index[0]]}')
return in_data[evt.index[0]][3], in_data[evt.index[0]][0], gr.update(interactive=True)
def civit_download_model(model_url: str, model_name: str, model_path: str, model_type: str, token: str = None):
if model_url is None or len(model_url) == 0:
return 'No model selected'
try:
from modules.modelloader import download_civit_model
res = download_civit_model(model_url, model_name, model_path, model_type, token=token)
except Exception as e:
res = f"CivitAI model downloaded error: model={model_url} {e}"
log.error(res)
return res
from modules.sd_models import list_models # pylint: disable=W0621
list_models()
return res
def atomic_civit_search_metadata(item, res, rehash):
from modules.modelloader import download_civit_preview, download_civit_meta
if item is None:
return
meta = os.path.splitext(item['filename'])[0] + '.json'
has_meta = os.path.isfile(meta) and os.stat(meta).st_size > 0
if ('card-no-preview.png' in item['preview'] or not has_meta) and os.path.isfile(item['filename']):
sha = item.get('hash', None)
found = False
if sha is not None and len(sha) > 0:
r = req(f'https://civitai.com/api/v1/model-versions/by-hash/{sha}')
log.debug(f'CivitAI search: name="{item["name"]}" hash={sha} status={r.status_code}')
if r.status_code == 200:
d = r.json()
res.append(download_civit_meta(item['filename'], d['modelId']))
if d.get('images') is not None:
for i in d['images']:
preview_url = i['url']
img_res = download_civit_preview(item['filename'], preview_url)
res.append(img_res)
if 'error' not in img_res:
found = True
break
if not found and rehash and os.stat(item['filename']).st_size < (1024 * 1024 * 1024):
sha = hashes.calculate_sha256(item['filename'], quiet=True)[:10]
r = req(f'https://civitai.com/api/v1/model-versions/by-hash/{sha}')
log.debug(f'CivitAI search: name="{item["name"]}" hash={sha} status={r.status_code}')
if r.status_code == 200:
d = r.json()
res.append(download_civit_meta(item['filename'], d['modelId']))
if d.get('images') is not None:
for i in d['images']:
preview_url = i['url']
img_res = download_civit_preview(item['filename'], preview_url)
res.append(img_res)
if 'error' not in img_res:
found = True
break
def civit_search_metadata(rehash, title):
log.debug(f'CivitAI search metadata: type={title if type(title) == str else "all"}')
from modules.ui_extra_networks import get_pages
res = []
scanned, skipped = 0, 0
t0 = time.time()
candidates = []
re_skip = [r.strip() for r in opts.extra_networks_scan_skip.split(',') if len(r.strip()) > 0]
log.debug(f'CivitAI search metadata: skip={re_skip}')
for page in get_pages():
if type(title) == str:
if page.title != title:
continue
if page.name == 'style':
continue
for item in page.list_items():
if item is None:
continue
if any(re.search(re_str, item.get('name', '') + item.get('filename', '')) for re_str in re_skip):
skipped += 1
continue
scanned += 1
candidates.append(item)
# atomic_civit_search_metadata(item, res, rehash)
import concurrent
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
for fn in candidates:
executor.submit(atomic_civit_search_metadata, fn, res, rehash)
atomic_civit_search_metadata(None, res, rehash)
t1 = time.time()
log.debug(f'CivitAI search metadata: scanned={scanned} skipped={skipped} time={t1-t0:.2f}')
txt = '<br>'.join([r for r in res if len(r) > 0])
return txt
global search_metadata_civit # pylint: disable=global-statement
search_metadata_civit = civit_search_metadata
def civitai_update_token(token):
log.debug('CivitAI update token')
opts.civitai_token = token
opts.save()
with gr.Row():
gr.HTML('<h2>&nbspCivitAI fetch metadata<br></h2>')
gr.HTML('Fetches preview and metadata information for all models with missing information<br>Models with existing previews and information are not updated<br>')
with gr.Row():
civit_previews_btn = gr.Button(value="Start", variant='primary')
with gr.Row():
civit_previews_rehash = gr.Checkbox(value=True, label="Check alternative hash")
with gr.Row():
gr.HTML('<h2>Search for models</h2>')
with gr.Row():
with gr.Column(scale=1):
civit_model_type = gr.Dropdown(label='CivitAI model type', choices=['Model', 'LoRA', 'Embedding', 'VAE', 'Other'], value='Model')
with gr.Column(scale=15):
with gr.Row():
civit_search_text = gr.Textbox('', label='Search models', placeholder='keyword')
civit_search_tag = gr.Textbox('', label='', placeholder='tags')
civit_search_btn = ToolButton(value=ui_symbols.search, label="Search", interactive=True)
with gr.Row():
civit_search_res = gr.HTML('')
with gr.Row():
gr.HTML('<h2>&nbspCivitAI download model<br></h2>')
with gr.Row():
civit_download_model_btn = gr.Button(value="Download", variant='primary')
gr.HTML('<span style="line-height: 2em">Select a model, model version and and model variant from the search results to download or enter model URL manually</span><br>')
with gr.Row():
civit_token = gr.Textbox(opts.civitai_token, label='CivitAI token', placeholder='optional access token for private or gated models')
civit_token.change(fn=civitai_update_token, inputs=[civit_token], outputs=[])
with gr.Row():
civit_name = gr.Textbox('', label='Model name', placeholder='select model from search results', visible=True)
civit_selected = gr.Textbox('', label='Model URL', placeholder='select model from search results', visible=True)
civit_path = gr.Textbox('', label='Download path', placeholder='optional subfolder path where to save model', visible=True)
with gr.Row():
gr.HTML('<h2>Search results</h2>')
with gr.Row():
civit_headers1 = ['ID', 'Name', 'Tags', 'Downloads', 'Rating']
civit_types1 = ['number', 'str', 'str', 'number', 'number']
civit_results1 = gr.DataFrame(value=None, label=None, show_label=False, interactive=False,
wrap=True, overflow_row_behaviour='paginate', max_rows=10,
headers=civit_headers1, datatype=civit_types1, type='array',
visible=False)
with gr.Row():
with gr.Column():
civit_headers2 = ['ID', 'ModelID', 'Name', 'Base', 'Created', 'Preview']
civit_types2 = ['number', 'number', 'str', 'str', 'date', 'str']
civit_results2 = gr.DataFrame(value=None, label='Model versions', show_label=True,
interactive=False, wrap=True, overflow_row_behaviour='paginate',
max_rows=10, headers=civit_headers2, datatype=civit_types2,
type='array', visible=False)
with gr.Column():
civit_headers3 = ['Name', 'Size', 'Metadata', 'URL']
civit_types3 = ['str', 'number', 'str', 'str']
civit_results3 = gr.DataFrame(value=None, label='Model variants', show_label=True,
interactive=False, wrap=True, overflow_row_behaviour='paginate',
max_rows=10, headers=civit_headers3, datatype=civit_types3,
type='array', visible=False)
def is_visible(component):
visible = len(component) > 0 if component is not None else False
return gr.update(visible=visible)
civit_search_text.submit(fn=civit_search_model, inputs=[civit_search_text, civit_search_tag, civit_model_type], outputs=[civit_search_res, civit_results1, civit_results2, civit_results3])
civit_search_tag.submit(fn=civit_search_model, inputs=[civit_search_text, civit_search_tag, civit_model_type], outputs=[civit_search_res, civit_results1, civit_results2, civit_results3])
civit_search_btn.click(fn=civit_search_model, inputs=[civit_search_text, civit_search_tag, civit_model_type], outputs=[civit_search_res, civit_results1, civit_results2, civit_results3])
civit_results1.select(fn=civit_select1, inputs=[civit_results1], outputs=[civit_results2, civit_results3, models_image])
civit_results2.select(fn=civit_select2, inputs=[civit_results2], outputs=[civit_results3])
civit_results3.select(fn=civit_select3, inputs=[civit_results3], outputs=[civit_selected, civit_name, civit_search_btn])
civit_results1.change(fn=is_visible, inputs=[civit_results1], outputs=[civit_results1])
civit_results2.change(fn=is_visible, inputs=[civit_results2], outputs=[civit_results2])
civit_results3.change(fn=is_visible, inputs=[civit_results3], outputs=[civit_results3])
civit_download_model_btn.click(fn=civit_download_model, inputs=[civit_selected, civit_name, civit_path, civit_model_type, civit_token], outputs=[models_outcome])
civit_previews_btn.click(fn=civit_search_metadata, inputs=[civit_previews_rehash, civit_previews_rehash], outputs=[models_outcome])
with gr.Tab(label="Update"):
with gr.Row():
gr.HTML('<h2>&nbspScan CivitAI for information on latest available model versions<br></h2>')
with gr.Row():
civit_update_btn = gr.Button(value="Update", variant='primary')
with gr.Row():
gr.HTML('<h2>Update scan results</h2>')
with gr.Row():
civit_headers4 = ['ID', 'File', 'Name', 'Versions', 'Current', 'Latest', 'Update']
civit_types4 = ['number', 'str', 'str', 'number', 'str', 'str', 'str']
civit_widths4 = ['10%', '25%', '25%', '5%', '10%', '10%', '15%']
civit_results4 = gr.DataFrame(value=None, label=None, show_label=False, interactive=False, wrap=True, overflow_row_behaviour='paginate',
row_count=20, max_rows=100, headers=civit_headers4, datatype=civit_types4, type='array', column_widths=civit_widths4)
with gr.Row():
gr.HTML('<h3>Select model from the list and download update if available</h3>')
with gr.Row():
civit_update_download_btn = gr.Button(value="Download", variant='primary', visible=False)
class CivitModel:
def __init__(self, name, fn, sha = None, meta = {}):
self.name = name
self.id = meta.get('id', 0)
self.fn = fn
self.sha = sha
self.meta = meta
self.versions = 0
self.vername = ''
self.latest = ''
self.latest_hashes = []
self.latest_name = ''
self.url = None
self.status = 'Not found'
def array(self):
return [self.id, self.fn, self.name, self.versions, self.vername, self.latest, self.status]
selected_model: CivitModel = None
update_data = []
def civit_update_metadata():
nonlocal update_data
log.debug('CivitAI update metadata: models')
from modules import ui_extra_networks, modelloader
res = []
pages = ui_extra_networks.get_pages('Model')
if len(pages) == 0:
return 'CivitAI update metadata: no models found'
page: ui_extra_networks.ExtraNetworksPage = pages[0]
table_data = []
update_data.clear()
all_hashes = [(item.get('hash', None) or 'XXXXXXXX').upper()[:8] for item in page.list_items()]
for item in page.list_items():
model = CivitModel(name=item['name'], fn=item['filename'], sha=item.get('hash', None), meta=item.get('metadata', {}))
if model.sha is None or len(model.sha) == 0:
res.append(f'CivitAI skip search: name="{model.name}" hash=None')
else:
r = req(f'https://civitai.com/api/v1/model-versions/by-hash/{model.sha}')
res.append(f'CivitAI search: name="{model.name}" hash={model.sha} status={r.status_code}')
if r.status_code == 200:
d = r.json()
model.id = d['modelId']
modelloader.download_civit_meta(model.fn, model.id)
fn = os.path.splitext(item['filename'])[0] + '.json'
model.meta = readfile(fn, silent=True)
model.name = model.meta.get('name', model.name)
model.versions = len(model.meta.get('modelVersions', []))
versions = model.meta.get('modelVersions', [])
if len(versions) > 0:
model.latest = versions[0].get('name', '')
model.latest_hashes.clear()
for v in versions[0].get('files', []):
for h in v.get('hashes', {}).values():
model.latest_hashes.append(h[:8].upper())
for ver in versions:
for f in ver.get('files', []):
for h in f.get('hashes', {}).values():
if h[:8].upper() == model.sha[:8].upper():
model.vername = ver.get('name', '')
model.url = f.get('downloadUrl', None)
model.latest_name = f.get('name', '')
if model.vername == model.latest:
model.status = 'Latest'
elif any(map(lambda v: v in model.latest_hashes, all_hashes)): # pylint: disable=cell-var-from-loop # noqa: C417
model.status = 'Downloaded'
else:
model.status = 'Available'
break
log.debug(res[-1])
update_data.append(model)
table_data.append(model.array())
yield gr.update(value=table_data), '<br>'.join([r for r in res if len(r) > 0])
return '<br>'.join([r for r in res if len(r) > 0])
def civit_update_select(evt: gr.SelectData, in_data):
nonlocal selected_model, update_data
try:
selected_model = next([m for m in update_data if m.fn == in_data[evt.index[0]][1]])
except Exception:
selected_model = None
if selected_model is None or selected_model.url is None or selected_model.status != 'Available':
return [gr.update(value='Model update not available'), gr.update(visible=False)]
else:
return [gr.update(), gr.update(visible=True)]
def civit_update_download():
if selected_model is None or selected_model.url is None or selected_model.status != 'Available':
return 'Model update not available'
if selected_model.latest_name is None or len(selected_model.latest_name) == 0:
model_name = f'{selected_model.name} {selected_model.latest}.safetensors'
else:
model_name = selected_model.latest_name
return civit_download_model(selected_model.url, model_name, model_path='', model_type='Model')
civit_update_btn.click(fn=civit_update_metadata, inputs=[], outputs=[civit_results4, models_outcome])
civit_results4.select(fn=civit_update_select, inputs=[civit_results4], outputs=[models_outcome, civit_update_download_btn])
civit_update_download_btn.click(fn=civit_update_download, inputs=[], outputs=[models_outcome])
if native:
from modules.lora.lora_extract import create_ui as lora_extract_ui
lora_extract_ui()
for ui in extra_ui:
if callable(ui):
ui()