1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/modelloader.py
Vladimir Mandic 06f4879be9 fix logging
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-04-14 08:28:35 -04:00

637 lines
28 KiB
Python

import io
import os
import time
import json
import shutil
import importlib
import contextlib
from typing import Dict
from urllib.parse import urlparse
from PIL import Image
import rich.progress as p
import huggingface_hub as hf
from installer import install, log
from modules import shared, errors, files_cache
from modules.upscaler import Upscaler
from modules.paths import script_path, models_path
loggedin = None
diffuser_repos = []
debug = log.trace if os.environ.get('SD_DOWNLOAD_DEBUG', None) is not None else lambda *args, **kwargs: None
pbar = None
def hf_login(token=None):
global loggedin # pylint: disable=global-statement
token = token or shared.opts.huggingface_token
install('hf_xet', quiet=True)
if token is None or len(token) <= 2:
log.debug('HF login: no token provided')
return False
if os.environ.get('HUGGING_FACE_HUB_TOKEN', None) is not None:
log.warning('HF login: removing existing env variable: HUGGING_FACE_HUB_TOKEN')
del os.environ['HUGGING_FACE_HUB_TOKEN']
if os.environ.get('HF_TOKEN', None) is not None:
log.warning('HF login: removing existing env variable: HF_TOKEN')
del os.environ['HF_TOKEN']
if loggedin != token:
stdout = io.StringIO()
with contextlib.redirect_stdout(stdout):
hf.logout()
hf.login(token=token, add_to_git_credential=False, write_permission=False)
text = stdout.getvalue() or ''
line = [l for l in text.split('\n') if 'Token' in l]
log.info(f'HF login: token="{hf.constants.HF_TOKEN_PATH}" {line[0] if len(line) > 0 else text}')
loggedin = token
return True
def download_civit_meta(model_path: str, model_id):
fn = os.path.splitext(model_path)[0] + '.json'
url = f'https://civitai.com/api/v1/models/{model_id}'
r = shared.req(url)
if r.status_code == 200:
try:
shared.writefile(r.json(), filename=fn, mode='w', silent=True)
msg = f'CivitAI download: id={model_id} url={url} file="{fn}"'
shared.log.info(msg)
return msg
except Exception as e:
msg = f'CivitAI download error: id={model_id} url={url} file="{fn}" {e}'
errors.display(e, 'CivitAI download error')
shared.log.error(msg)
return msg
return f'CivitAI download error: id={model_id} url={url} code={r.status_code}'
def save_video_frame(filepath: str):
from modules import video
try:
frames, fps, duration, w, h, codec, frame = video.get_video_params(filepath, capture=True)
except Exception as e:
shared.log.error(f'Video: file={filepath} {e}')
return None
if frame is not None:
basename = os.path.splitext(filepath)
thumb = f'{basename[0]}.thumb.jpg'
shared.log.debug(f'Video: file={filepath} frames={frames} fps={fps} size={w}x{h} codec={codec} duration={duration} thumb={thumb}')
frame.save(thumb)
else:
shared.log.error(f'Video: file={filepath} no frames found')
return frame
def download_civit_preview(model_path: str, preview_url: str):
global pbar # pylint: disable=global-statement
if model_path is None:
pbar = None
return ''
ext = os.path.splitext(preview_url)[1]
preview_file = os.path.splitext(model_path)[0] + ext
is_video = preview_file.lower().endswith('.mp4')
is_json = preview_file.lower().endswith('.json')
if is_json:
shared.log.warning(f'CivitAI download: url="{preview_url}" skip json')
return 'CivitAI download error: JSON file'
if os.path.exists(preview_file):
return ''
res = f'CivitAI download: url={preview_url} file="{preview_file}"'
r = shared.req(preview_url, stream=True)
total_size = int(r.headers.get('content-length', 0))
block_size = 16384 # 16KB blocks
written = 0
img = None
shared.state.begin('CivitAI')
if pbar is None:
pbar = p.Progress(p.TextColumn('[cyan]Download'), p.DownloadColumn(), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TransferSpeedColumn(), p.TextColumn('[yellow]{task.description}'), console=shared.console)
try:
with open(preview_file, 'wb') as f:
with pbar:
task = pbar.add_task(description=preview_file, total=total_size)
for data in r.iter_content(block_size):
written = written + len(data)
f.write(data)
pbar.update(task, advance=block_size)
if written < 1024: # min threshold
os.remove(preview_file)
raise ValueError(f'removed invalid download: bytes={written}')
if is_video:
img = save_video_frame(preview_file)
else:
img = Image.open(preview_file)
except Exception as e:
# os.remove(preview_file)
res += f' error={e}'
shared.log.error(f'CivitAI download error: url={preview_url} file="{preview_file}" written={written} {e}')
shared.state.end()
if img is None:
return res
shared.log.info(f'{res} size={total_size} image={img.size}')
img.close()
return res
download_pbar = None
def download_civit_model_thread(model_name: str, model_url: str, model_path: str = "", model_type: str = "Model", token: str = None):
import hashlib
sha256 = hashlib.sha256()
sha256.update(model_url.encode('utf-8'))
temp_file = sha256.hexdigest()[:8] + '.tmp'
headers = {}
starting_pos = 0
if os.path.isfile(temp_file):
starting_pos = os.path.getsize(temp_file)
headers['Range'] = f'bytes={starting_pos}-'
if token is None:
token = shared.opts.civitai_token
if token is not None and len(token) > 0:
headers['Authorization'] = f'Bearer {token}'
r = shared.req(model_url, headers=headers, stream=True)
total_size = int(r.headers.get('content-length', 0))
if model_name is None or len(model_name) == 0:
cn = r.headers.get('content-disposition', '')
model_name = cn.split('filename=')[-1].strip('"')
if model_type == 'LoRA':
model_file = os.path.join(shared.opts.lora_dir, model_path, model_name)
temp_file = os.path.join(shared.opts.lora_dir, model_path, temp_file)
elif model_type == 'Embedding':
model_file = os.path.join(shared.opts.embeddings_dir, model_path, model_name)
temp_file = os.path.join(shared.opts.embeddings_dir, model_path, temp_file)
elif model_type == 'VAE':
model_file = os.path.join(shared.opts.vae_dir, model_path, model_name)
temp_file = os.path.join(shared.opts.vae_dir, model_path, temp_file)
else:
model_file = os.path.join(shared.opts.ckpt_dir, model_path, model_name)
temp_file = os.path.join(shared.opts.ckpt_dir, model_path, temp_file)
res = f'Model download: name="{model_name}" url="{model_url}" path="{model_path}" temp="{temp_file}"'
if os.path.isfile(model_file):
res += ' already exists'
shared.log.warning(res)
return res
res += f' size={round((starting_pos + total_size)/1024/1024, 2)}Mb'
shared.log.info(res)
shared.state.begin('CivitAI')
block_size = 16384 # 16KB blocks
written = starting_pos
global download_pbar # pylint: disable=global-statement
if download_pbar is None:
download_pbar = p.Progress(p.TextColumn('[cyan]{task.description}'), p.DownloadColumn(), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TransferSpeedColumn(), p.TextColumn('[cyan]{task.fields[name]}'), console=shared.console)
with download_pbar:
task = download_pbar.add_task(description="Download starting", total=starting_pos+total_size, name=model_name)
try:
with open(temp_file, 'ab') as f:
for data in r.iter_content(block_size):
if written == 0:
try: # check if response is JSON message instead of bytes
shared.log.error(f'Model download: response={json.loads(data.decode("utf-8"))}')
raise ValueError('response: type=json expected=bytes')
except Exception: # this is good
pass
written = written + len(data)
f.write(data)
download_pbar.update(task, description="Download", completed=written)
if written < 1024: # min threshold
os.remove(temp_file)
raise ValueError(f'removed invalid download: bytes={written}')
"""
if preview is not None:
preview_file = os.path.splitext(model_file)[0] + '.jpg'
preview.save(preview_file)
res += f' preview={preview_file}'
"""
except Exception as e:
shared.log.error(f'{res} {e}')
finally:
download_pbar.stop_task(task)
download_pbar.remove_task(task)
if starting_pos+total_size != written:
shared.log.warning(f'{res} written={round(written/1024/1024)}Mb incomplete download')
elif os.path.exists(temp_file):
shared.log.debug(f'Model download complete: temp="{temp_file}" path="{model_file}"')
os.rename(temp_file, model_file)
shared.state.end()
if os.path.exists(model_file):
return model_file
else:
return None
def download_civit_model(model_url: str, model_name: str, model_path: str, model_type: str, token: str = None):
import threading
if model_name is None or len(model_name) == 0:
err = 'Model download: no target model name provided'
shared.log.error(err)
return err
thread = threading.Thread(target=download_civit_model_thread, args=(model_name, model_url, model_path, model_type, token))
thread.start()
return f'Model download: name={model_name} url={model_url} path={model_path}'
def download_diffusers_model(hub_id: str, cache_dir: str = None, download_config: Dict[str, str] = None, token = None, variant = None, revision = None, mirror = None, custom_pipeline = None):
if hub_id is None or len(hub_id) == 0:
return None
from diffusers import DiffusionPipeline
shared.state.begin('HuggingFace')
if hub_id.startswith('huggingface/'):
hub_id = hub_id.replace('huggingface/', '')
if download_config is None:
download_config = {
"force_download": False,
"resume_download": True,
"cache_dir": shared.opts.diffusers_dir,
"load_connected_pipeline": True,
}
if cache_dir is not None:
download_config["cache_dir"] = cache_dir
if variant is not None and len(variant) > 0:
download_config["variant"] = variant
if revision is not None and len(revision) > 0:
download_config["revision"] = revision
if mirror is not None and len(mirror) > 0:
download_config["mirror"] = mirror
if custom_pipeline is not None and len(custom_pipeline) > 0:
download_config["custom_pipeline"] = custom_pipeline
shared.log.debug(f'Diffusers downloading: id="{hub_id}" args={download_config}')
token = token or shared.opts.huggingface_token
if token is not None and len(token) > 2:
hf_login(token)
pipeline_dir = None
ok = False
err = None
if not ok:
try:
pipeline_dir = DiffusionPipeline.download(hub_id, **download_config)
ok = True
except Exception as e:
err = e
ok = False
debug(f'Diffusers download error: id="{hub_id}" {e}')
if not ok and 'Repository Not Found' not in str(err):
try:
download_config.pop('load_connected_pipeline', None)
download_config.pop('variant', None)
pipeline_dir = hf.snapshot_download(hub_id, **download_config)
except Exception as e:
debug(f'Diffusers download error: id="{hub_id}" {e}')
if 'gated' in str(e):
shared.log.error(f'Diffusers download error: id="{hub_id}" model access requires login')
return None
if pipeline_dir is None:
shared.log.error(f'Diffusers download error: id="{hub_id}" {err}')
return None
try:
model_info_dict = hf.model_info(hub_id).cardData if pipeline_dir is not None else None
except Exception:
model_info_dict = None
if model_info_dict is not None and "prior" in model_info_dict: # some checkpoints need to be downloaded as "hidden" as they just serve as pre- or post-pipelines of other pipelines
download_dir = DiffusionPipeline.download(model_info_dict["prior"][0], **download_config)
model_info_dict["prior"] = download_dir
with open(os.path.join(download_dir, "hidden"), "w", encoding="utf-8") as f: # mark prior as hidden
f.write("True")
if pipeline_dir is not None:
shared.writefile(model_info_dict, os.path.join(pipeline_dir, "model_info.json"))
shared.state.end()
return pipeline_dir
def load_diffusers_models(clear=True):
excluded_models = []
# t0 = time.time()
place = shared.opts.diffusers_dir
if place is None or len(place) == 0 or not os.path.isdir(place):
place = os.path.join(models_path, 'Diffusers')
if clear:
diffuser_repos.clear()
already_found = []
try:
for folder in os.listdir(place):
try:
if any([x in folder for x in excluded_models]): # noqa:C419 # pylint: disable=use-a-generator
continue
if "--" not in folder:
continue
if folder.endswith("-prior"):
continue
_, name = folder.split("--", maxsplit=1)
name = name.replace("--", "/")
folder = os.path.join(place, folder)
friendly = os.path.join(place, name)
if os.path.exists(os.path.join(folder, 'model_index.json')): # direct download of diffusers model
repo = { 'name': name, 'filename': name, 'friendly': friendly, 'folder': folder, 'path': folder, 'hash': '', 'mtime': os.path.getmtime(folder), 'model_info': os.path.join(folder, 'model_info.json'), 'model_index': os.path.join(folder, 'model_index.json') }
diffuser_repos.append(repo)
continue
snapshots = os.listdir(os.path.join(folder, "snapshots"))
if len(snapshots) == 0:
shared.log.warning(f'Diffusers folder has no snapshots: location="{place}" folder="{folder}" name="{name}"')
continue
for snapshot in snapshots: # download using from_pretrained which uses huggingface_hub or huggingface_hub directly and creates snapshot-like structure
commit = os.path.join(folder, 'snapshots', snapshot)
mtime = os.path.getmtime(commit)
info = os.path.join(commit, "model_info.json")
index = os.path.join(commit, "model_index.json")
config = os.path.join(commit, "config.json")
if (not os.path.exists(index)) and (not os.path.exists(info)) and (not os.path.exists(config)):
debug(f'Diffusers skip model no info: {name}')
continue
if name in already_found:
debug(f'Diffusers skip model already found: {name}')
continue
repo = { 'name': name, 'filename': name, 'friendly': friendly, 'folder': folder, 'path': commit, 'hash': snapshot, 'mtime': mtime, 'model_info': info, 'model_index': index, 'model_config': config }
already_found.append(name)
diffuser_repos.append(repo)
if os.path.exists(os.path.join(folder, 'hidden')):
continue
except Exception as e:
debug(f'Error analyzing diffusers model: "{folder}" {e}')
except Exception as e:
shared.log.error(f"Error listing diffusers: {place} {e}")
# shared.log.debug(f'Scanning diffusers cache: folder="{place}" items={len(list(diffuser_repos))} time={time.time()-t0:.2f}')
return diffuser_repos
def find_diffuser(name: str, full=False):
repo = [r for r in diffuser_repos if name == r['name'] or name == r['friendly'] or name == r['path']]
if len(repo) > 0:
return [repo[0]['name']]
hf_api = hf.HfApi()
models = list(hf_api.list_models(model_name=name, library=['diffusers'], full=True, limit=20, sort="downloads", direction=-1))
if len(models) == 0:
models = list(hf_api.list_models(model_name=name, full=True, limit=20, sort="downloads", direction=-1)) # widen search
models = [m for m in models if m.id.startswith(name)] # filter exact
shared.log.debug(f'Search model: repo="{name}" {len(models) > 0}')
if len(models) > 0:
if not full:
return models[0].id
else:
return [m.id for m in models]
return None
def get_reference_opts(name: str, quiet=False):
model_opts = {}
name = name.replace('Diffusers/', 'huggingface/')
for k, v in shared.reference_models.items():
model_name = os.path.splitext(v.get('path', '').split('@')[0])[0]
if k == name or model_name == name:
model_opts = v
break
model_name = model_name.replace('huggingface/', '')
if k == name or model_name == name:
model_opts = v
break
if not model_opts:
# shared.log.error(f'Reference: model="{name}" not found')
return {}
if not quiet:
shared.log.debug(f'Reference: model="{name}" {model_opts}')
return model_opts
def load_reference(name: str, variant: str = None, revision: str = None, mirror: str = None, custom_pipeline: str = None):
found = [r for r in diffuser_repos if name == r['name'] or name == r['friendly'] or name == r['path']]
if len(found) > 0: # already downloaded
model_opts = get_reference_opts(found[0]['name'])
return True
else:
model_opts = get_reference_opts(name)
if model_opts.get('skip', False):
return True
shared.log.debug(f'Reference: download="{name}"')
model_dir = download_diffusers_model(
hub_id=name,
cache_dir=shared.opts.diffusers_dir,
variant=variant or model_opts.get('variant', None),
revision=revision or model_opts.get('revision', None),
mirror=mirror or model_opts.get('mirror', None),
custom_pipeline=custom_pipeline or model_opts.get('custom_pipeline', None)
)
if model_dir is None:
shared.log.error(f'Reference download: model="{name}"')
return False
else:
shared.log.debug(f'Reference download complete: model="{name}"')
model_opts = get_reference_opts(name)
from modules import sd_models
sd_models.list_models()
return True
def load_civitai(model: str, url: str):
from modules import sd_models
name, _ext = os.path.splitext(model)
info = sd_models.get_closet_checkpoint_match(name)
if info is not None:
_model_opts = get_reference_opts(info.model_name)
return name # already downloaded
else:
shared.log.debug(f'Reference download start: model="{name}"')
download_civit_model_thread(model_name=model, model_url=url, model_path='', model_type='safetensors', token=shared.opts.civitai_token)
shared.log.debug(f'Reference download complete: model="{name}"')
sd_models.list_models()
info = sd_models.get_closet_checkpoint_match(name)
if info is not None:
shared.log.debug(f'Reference: model="{name}"')
return name # already downloaded
else:
shared.log.error(f'Reference model="{name}" not found')
return None
def download_url_to_file(url: str, dst: str):
# based on torch.hub.download_url_to_file
import uuid
import tempfile
from urllib.request import urlopen, Request
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn
file_size = None
req = Request(url, headers={"User-Agent": "sdnext"})
u = urlopen(req) # pylint: disable=R1732
meta = u.info()
if hasattr(meta, 'getheaders'):
content_length = meta.getheaders("Content-Length")
else:
content_length = meta.get_all("Content-Length") # pylint: disable=R1732
if content_length is not None and len(content_length) > 0:
file_size = int(content_length[0])
dst = os.path.expanduser(dst)
for _seq in range(tempfile.TMP_MAX):
tmp_dst = dst + '.' + uuid.uuid4().hex + '.partial'
try:
f = open(tmp_dst, 'w+b') # pylint: disable=R1732
except FileExistsError:
continue
break
else:
shared.log.error('Error downloading: url={url} no usable temporary filename found')
return
try:
with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=shared.console) as progress:
task = progress.add_task(description="Downloading", total=file_size)
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
progress.update(task, advance=len(buffer))
f.close()
shutil.move(f.name, dst)
finally:
f.close()
if os.path.exists(f.name):
os.remove(f.name)
def load_file_from_url(url: str, *, model_dir: str, progress: bool = True, file_name = None): # pylint: disable=unused-argument
"""Download a file from url into model_dir, using the file present if possible. Returns the path to the downloaded file."""
if model_dir is None:
shared.log.error('Download folder is none')
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.abspath(os.path.join(model_dir, file_name))
if not os.path.exists(cached_file):
shared.log.info(f'Downloading: url="{url}" file="{cached_file}"')
download_url_to_file(url, cached_file)
if os.path.exists(cached_file):
return cached_file
else:
return None
def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
"""
A one-and done loader to try finding the desired models in specified directories.
@param download_name: Specify to download from model_url immediately.
@param model_url: If no other models are found, this will be downloaded on upscale.
@param model_path: The location to store/find models in.
@param command_path: A command-line argument to search for models in first.
@param ext_filter: An optional list of filename extensions to filter by
@return: A list of paths containing the desired model(s)
"""
places = [x for x in list(set([model_path, command_path])) if x is not None] # noqa:C405
output = []
try:
output:list = [*files_cache.list_files(*places, ext_filter=ext_filter, ext_blacklist=ext_blacklist)]
if model_url is not None and len(output) == 0:
if download_name is not None:
dl = load_file_from_url(model_url, model_dir=places[0], progress=True, file_name=download_name)
if dl is not None:
output.append(dl)
else:
output.append(model_url)
except Exception as e:
errors.display(e,f"Error listing models: {files_cache.unique_directories(places)}")
return output
def friendly_name(file: str):
if "http" in file:
file = urlparse(file).path
file = os.path.basename(file)
model_name, _extension = os.path.splitext(file)
return model_name
def friendly_fullname(file: str):
if "http" in file:
file = urlparse(file).path
file = os.path.basename(file)
return file
def cleanup_models():
# This code could probably be more efficient if we used a tuple list or something to store the src/destinations
# and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
# somehow auto-register and just do these things...
root_path = script_path
src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion")
# move_files(src_path, dest_path, ".ckpt")
# move_files(src_path, dest_path, ".safetensors")
src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path)
src_path = os.path.join(models_path, "BSRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path, ".pth")
src_path = os.path.join(root_path, "gfpgan")
dest_path = os.path.join(models_path, "GFPGAN")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "SwinIR")
dest_path = os.path.join(models_path, "SwinIR")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
dest_path = os.path.join(models_path, "LDSR")
move_files(src_path, dest_path)
src_path = os.path.join(root_path, "SCUNet")
dest_path = os.path.join(models_path, "SCUNet")
move_files(src_path, dest_path)
def move_files(src_path: str, dest_path: str, ext_filter: str = None):
try:
if not os.path.exists(dest_path):
os.makedirs(dest_path)
if os.path.exists(src_path):
for file in os.listdir(src_path):
fullpath = os.path.join(src_path, file)
if os.path.isfile(fullpath):
if ext_filter is not None:
if ext_filter not in file:
continue
shared.log.warning(f"Moving {file} from {src_path} to {dest_path}.")
try:
shutil.move(fullpath, dest_path)
except Exception:
pass
if len(os.listdir(src_path)) == 0:
shared.log.info(f"Removing empty folder: {src_path}")
shutil.rmtree(src_path, True)
except Exception:
pass
def load_upscalers():
# We can only do this 'magic' method to dynamically load upscalers if they are referenced, so we'll try to import any _model.py files before looking in __subclasses__
t0 = time.time()
modules_dir = os.path.join(shared.script_path, "modules", "postprocess")
for file in os.listdir(modules_dir):
if "_model.py" in file:
model_name = file.replace("_model.py", "")
full_model = f"modules.postprocess.{model_name}_model"
try:
importlib.import_module(full_model)
except Exception as e:
shared.log.error(f'Error loading upscaler: {model_name} {e}')
upscalers = []
commandline_options = vars(shared.cmd_opts)
# some of upscaler classes will not go away after reloading their modules, and we'll end up with two copies of those classes. The newest copy will always be the last in the list, so we go from end to beginning and ignore duplicates
used_classes = {}
for cls in reversed(Upscaler.__subclasses__()):
classname = str(cls)
if classname not in used_classes:
used_classes[classname] = cls
upscaler_types = []
for cls in reversed(used_classes.values()):
name = cls.__name__
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
commandline_model_path = commandline_options.get(cmd_name, None)
scaler = cls(commandline_model_path)
scaler.user_path = commandline_model_path
scaler.model_download_path = commandline_model_path or scaler.model_path
upscalers += scaler.scalers
upscaler_types.append(name[8:])
shared.sd_upscalers = upscalers
t1 = time.time()
shared.log.info(f"Available Upscalers: items={len(shared.sd_upscalers)} downloaded={len([x for x in shared.sd_upscalers if x.data_path is not None and os.path.isfile(x.data_path)])} user={len([x for x in shared.sd_upscalers if x.custom])} time={t1-t0:.2f} types={upscaler_types}")
return [x.name for x in shared.sd_upscalers]