1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/processing_vae.py
Vladimir Mandic a3a177277a history prototype
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2024-10-07 19:09:44 -04:00

237 lines
10 KiB
Python

import os
import time
import numpy as np
import torch
import torchvision.transforms.functional as TF
from modules import shared, devices, sd_models, sd_vae, sd_vae_taesd, errors
debug = os.environ.get('SD_VAE_DEBUG', None) is not None
log_debug = shared.log.trace if debug else lambda *args, **kwargs: None
log_debug('Trace: VAE')
def create_latents(image, p, dtype=None, device=None):
from modules.processing import create_random_tensors
from PIL import Image
if image is None:
return image
elif isinstance(image, Image.Image):
latents = vae_encode(image, model=shared.sd_model, full_quality=p.full_quality)
elif isinstance(image, list):
latents = [vae_encode(i, model=shared.sd_model, full_quality=p.full_quality).squeeze(dim=0) for i in image]
latents = torch.stack(latents, dim=0).to(shared.device)
else:
shared.log.warning(f'Latents: input type: {type(image)} {image}')
return image
noise = p.denoising_strength * create_random_tensors(latents.shape[1:], seeds=p.all_seeds, subseeds=p.all_subseeds, subseed_strength=p.subseed_strength, p=p)
latents = (1 - p.denoising_strength) * latents + noise
if dtype is not None:
latents = latents.to(dtype=dtype)
if device is not None:
latents = latents.to(device=device)
return latents
def full_vae_decode(latents, model):
t0 = time.time()
if not hasattr(model, 'vae'):
shared.log.error('VAE not found in model')
return []
if debug:
devices.torch_gc(force=True)
shared.mem_mon.reset()
base_device = None
if shared.opts.diffusers_move_unet and not getattr(model, 'has_accelerate', False):
base_device = sd_models.move_base(model, devices.cpu)
if shared.opts.diffusers_offload_mode == "balanced":
shared.sd_model = sd_models.apply_balanced_offload(shared.sd_model)
elif shared.opts.diffusers_offload_mode != "sequential":
sd_models.move_model(model.vae, devices.device)
upcast = (model.vae.dtype == torch.float16) and (getattr(model.vae.config, 'force_upcast', False) or shared.opts.no_half_vae)
if upcast:
if hasattr(model, 'upcast_vae'): # this is done by diffusers automatically if output_type != 'latent'
model.upcast_vae()
else: # manual upcast and we restore it later
model.vae.orig_dtype = model.vae.dtype
model.vae = model.vae.to(dtype=torch.float32)
latents = latents.to(torch.float32)
latents = latents.to(devices.device)
if getattr(model.vae, "post_quant_conv", None) is not None:
latents = latents.to(next(iter(model.vae.post_quant_conv.parameters())).dtype)
# normalize latents
latents_mean = model.vae.config.get("latents_mean", None)
latents_std = model.vae.config.get("latents_std", None)
scaling_factor = model.vae.config.get("scaling_factor", None)
shift_factor = model.vae.config.get("shift_factor", None)
if latents_mean and latents_std:
latents_mean = (torch.tensor(latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype))
latents_std = (torch.tensor(latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype))
latents = latents * latents_std / scaling_factor + latents_mean
else:
latents = latents / scaling_factor
if shift_factor:
latents = latents + shift_factor
vae_name = os.path.splitext(os.path.basename(sd_vae.loaded_vae_file))[0] if sd_vae.loaded_vae_file is not None else "default"
vae_stats = f'name="{vae_name}" dtype={model.vae.dtype} device={model.vae.device} upcast={upcast} slicing={getattr(model.vae, "use_slicing", None)} tiling={getattr(model.vae, "use_tiling", None)}'
latents_stats = f'shape={latents.shape} dtype={latents.dtype} device={latents.device}'
stats = f'vae {vae_stats} latents {latents_stats}'
log_debug(f'VAE config: {model.vae.config}')
try:
decoded = model.vae.decode(latents, return_dict=False)[0]
except Exception as e:
shared.log.error(f'VAE decode: {stats} {e}')
errors.display(e, 'VAE decode')
decoded = []
if hasattr(model.vae, "orig_dtype"):
model.vae = model.vae.to(dtype=model.vae.orig_dtype)
del model.vae.orig_dtype
# delete vae after OpenVINO compile
if 'VAE' in shared.opts.cuda_compile and shared.opts.cuda_compile_backend == "openvino_fx" and shared.compiled_model_state.first_pass_vae:
shared.compiled_model_state.first_pass_vae = False
if not shared.opts.openvino_disable_memory_cleanup and hasattr(shared.sd_model, "vae"):
model.vae.apply(sd_models.convert_to_faketensors)
devices.torch_gc(force=True)
if shared.opts.diffusers_offload_mode == "balanced":
shared.sd_model = sd_models.apply_balanced_offload(shared.sd_model)
elif shared.opts.diffusers_move_unet and not getattr(model, 'has_accelerate', False) and base_device is not None:
sd_models.move_base(model, base_device)
t1 = time.time()
if debug:
log_debug(f'VAE memory: {shared.mem_mon.read()}')
shared.log.debug(f'VAE decode: {stats} time={round(t1-t0, 3)}')
return decoded
def full_vae_encode(image, model):
log_debug(f'VAE encode: name={sd_vae.loaded_vae_file if sd_vae.loaded_vae_file is not None else "baked"} dtype={model.vae.dtype} upcast={model.vae.config.get("force_upcast", None)}')
if shared.opts.diffusers_move_unet and not getattr(model, 'has_accelerate', False) and hasattr(model, 'unet'):
log_debug('Moving to CPU: model=UNet')
unet_device = model.unet.device
sd_models.move_model(model.unet, devices.cpu)
if not shared.opts.diffusers_offload_mode == "sequential" and hasattr(model, 'vae'):
sd_models.move_model(model.vae, devices.device)
encoded = model.vae.encode(image.to(model.vae.device, model.vae.dtype)).latent_dist.sample()
if shared.opts.diffusers_move_unet and not getattr(model, 'has_accelerate', False) and hasattr(model, 'unet'):
sd_models.move_model(model.unet, unet_device)
return encoded
def taesd_vae_decode(latents):
log_debug(f'VAE decode: name=TAESD images={len(latents)} latents={latents.shape} slicing={shared.opts.diffusers_vae_slicing}')
if len(latents) == 0:
return []
if shared.opts.diffusers_vae_slicing and len(latents) > 1:
decoded = torch.zeros((len(latents), 3, latents.shape[2] * 8, latents.shape[3] * 8), dtype=devices.dtype_vae, device=devices.device)
for i in range(latents.shape[0]):
decoded[i] = sd_vae_taesd.decode(latents[i])
else:
decoded = sd_vae_taesd.decode(latents)
return decoded
def taesd_vae_encode(image):
log_debug(f'VAE encode: name=TAESD image={image.shape}')
encoded = sd_vae_taesd.encode(image)
return encoded
def vae_decode(latents, model, output_type='np', full_quality=True, width=None, height=None, save=True):
t0 = time.time()
if latents is None or not torch.is_tensor(latents): # already decoded
return latents
prev_job = shared.state.job
shared.state.job = 'VAE'
if latents.shape[0] == 0:
shared.log.error(f'VAE nothing to decode: {latents.shape}')
return []
if shared.state.interrupted or shared.state.skipped:
return []
if not hasattr(model, 'vae'):
shared.log.error('VAE not found in model')
return []
if hasattr(model, "_unpack_latents") and hasattr(model, "vae_scale_factor") and width is not None and height is not None: # FLUX
latents = model._unpack_latents(latents, height, width, model.vae_scale_factor) # pylint: disable=protected-access
if len(latents.shape) == 3: # lost a batch dim in hires
latents = latents.unsqueeze(0)
if latents.shape[0] == 4 and latents.shape[1] != 4: # likely animatediff latent
latents = latents.permute(1, 0, 2, 3)
if save:
shared.history.add(latents)
if latents.shape[-1] <= 4: # not a latent, likely an image
decoded = latents.float().cpu().numpy()
elif full_quality and hasattr(shared.sd_model, "vae"):
decoded = full_vae_decode(latents=latents, model=shared.sd_model)
else:
decoded = taesd_vae_decode(latents=latents)
if torch.is_tensor(decoded):
if hasattr(model, 'image_processor'):
imgs = model.image_processor.postprocess(decoded, output_type=output_type)
else:
import diffusers
model.image_processor = diffusers.image_processor.VaeImageProcessor()
imgs = model.image_processor.postprocess(decoded, output_type=output_type)
else:
imgs = decoded if isinstance(decoded, list) or isinstance(decoded, np.ndarray) else [decoded]
shared.state.job = prev_job
if shared.cmd_opts.profile or debug:
t1 = time.time()
shared.log.debug(f'Profile: VAE decode: {t1-t0:.2f}')
devices.torch_gc()
return imgs
def vae_encode(image, model, full_quality=True): # pylint: disable=unused-variable
if shared.state.interrupted or shared.state.skipped:
return []
if not hasattr(model, 'vae'):
shared.log.error('VAE not found in model')
return []
tensor = TF.to_tensor(image.convert("RGB")).unsqueeze(0).to(devices.device, devices.dtype_vae)
if full_quality:
tensor = tensor * 2 - 1
latents = full_vae_encode(image=tensor, model=shared.sd_model)
else:
latents = taesd_vae_encode(image=tensor)
devices.torch_gc()
return latents
def reprocess(gallery):
from PIL import Image
from modules import images
latent = shared.history.latest
if latent is None or gallery is None:
return None
shared.log.info(f'Reprocessing: latent={latent.shape}')
reprocessed = vae_decode(latent, shared.sd_model, output_type='pil', full_quality=True)
outputs = []
for i0, i1 in zip(gallery, reprocessed):
if isinstance(i1, np.ndarray):
i1 = Image.fromarray(i1)
fn = i0['name']
i0 = Image.open(fn)
fn = os.path.splitext(os.path.basename(fn))[0] + '-re'
i0.load() # wait for info to be populated
i1.info = i0.info
info, _params = images.read_info_from_image(i0)
if shared.opts.samples_save:
images.save_image(i1, info=info, forced_filename=fn)
i1.already_saved_as = fn
outputs.append(i0)
outputs.append(i1)
return outputs