mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-29 05:02:09 +03:00
713 lines
41 KiB
Python
713 lines
41 KiB
Python
import os
|
|
import sys
|
|
import time
|
|
import json
|
|
import datetime
|
|
import gradio as gr
|
|
import tqdm
|
|
import modules.interrogate
|
|
import modules.memmon
|
|
import modules.styles
|
|
import modules.devices as devices
|
|
from modules import errors, ui_components, shared_items, cmd_args
|
|
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # pylint: disable=W0611
|
|
import modules.paths_internal as paths
|
|
from setup import log as setup_log # pylint: disable=E0611
|
|
|
|
errors.install(gr)
|
|
demo: gr.Blocks = None
|
|
log = setup_log
|
|
parser = cmd_args.parser
|
|
url = 'https://github.com/vladmandic/automatic'
|
|
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
|
|
cmd_opts = parser.parse_args()
|
|
else:
|
|
cmd_opts, _ = parser.parse_known_args()
|
|
|
|
restricted_opts = {
|
|
"samples_filename_pattern",
|
|
"directories_filename_pattern",
|
|
"outdir_samples",
|
|
"outdir_txt2img_samples",
|
|
"outdir_img2img_samples",
|
|
"outdir_extras_samples",
|
|
"outdir_grids",
|
|
"outdir_txt2img_grids",
|
|
"outdir_save",
|
|
}
|
|
|
|
ui_reorder_categories = [
|
|
"inpaint",
|
|
"sampler",
|
|
"checkboxes",
|
|
"hires_fix",
|
|
"dimensions",
|
|
"cfg",
|
|
"seed",
|
|
"batch",
|
|
"override_settings",
|
|
"scripts",
|
|
]
|
|
|
|
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure
|
|
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
|
|
device = devices.device
|
|
sd_upscalers = []
|
|
sd_model = None
|
|
clip_model = None
|
|
|
|
|
|
def reload_hypernetworks():
|
|
from modules.hypernetworks import hypernetwork
|
|
global hypernetworks # pylint: disable=W0603
|
|
hypernetworks = hypernetwork.list_hypernetworks(opts.hypernetwork_dir)
|
|
|
|
|
|
class State:
|
|
skipped = False
|
|
interrupted = False
|
|
job = ""
|
|
job_no = 0
|
|
job_count = 0
|
|
processing_has_refined_job_count = False
|
|
job_timestamp = '0'
|
|
sampling_step = 0
|
|
sampling_steps = 0
|
|
current_latent = None
|
|
current_image = None
|
|
current_image_sampling_step = 0
|
|
id_live_preview = 0
|
|
textinfo = None
|
|
time_start = None
|
|
need_restart = False
|
|
server_start = None
|
|
|
|
def skip(self):
|
|
self.skipped = True
|
|
|
|
def interrupt(self):
|
|
self.interrupted = True
|
|
|
|
def nextjob(self):
|
|
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
|
|
self.do_set_current_image()
|
|
self.job_no += 1
|
|
self.sampling_step = 0
|
|
self.current_image_sampling_step = 0
|
|
|
|
def dict(self):
|
|
obj = {
|
|
"skipped": self.skipped,
|
|
"interrupted": self.interrupted,
|
|
"job": self.job,
|
|
"job_count": self.job_count,
|
|
"job_timestamp": self.job_timestamp,
|
|
"job_no": self.job_no,
|
|
"sampling_step": self.sampling_step,
|
|
"sampling_steps": self.sampling_steps,
|
|
}
|
|
return obj
|
|
|
|
def begin(self):
|
|
self.sampling_step = 0
|
|
self.job_count = -1
|
|
self.processing_has_refined_job_count = False
|
|
self.job_no = 0
|
|
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
self.current_latent = None
|
|
self.current_image = None
|
|
self.current_image_sampling_step = 0
|
|
self.id_live_preview = 0
|
|
self.skipped = False
|
|
self.interrupted = False
|
|
self.textinfo = None
|
|
self.time_start = time.time()
|
|
devices.torch_gc()
|
|
|
|
def end(self):
|
|
self.job = ""
|
|
self.job_count = 0
|
|
devices.torch_gc()
|
|
|
|
def set_current_image(self):
|
|
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
|
|
if not parallel_processing_allowed:
|
|
return
|
|
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
|
|
self.do_set_current_image()
|
|
|
|
def do_set_current_image(self):
|
|
if self.current_latent is None:
|
|
return
|
|
import modules.sd_samplers # pylint: disable=W0621
|
|
if opts.show_progress_grid:
|
|
self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
|
|
else:
|
|
self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
|
|
self.current_image_sampling_step = self.sampling_step
|
|
|
|
def assign_current_image(self, image):
|
|
self.current_image = image
|
|
self.id_live_preview += 1
|
|
|
|
|
|
state = State()
|
|
state.server_start = time.time()
|
|
interrogator = modules.interrogate.InterrogateModels("interrogate")
|
|
face_restorers = []
|
|
|
|
class OptionInfo:
|
|
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
|
|
self.default = default
|
|
self.label = label
|
|
self.component = component
|
|
self.component_args = component_args
|
|
self.onchange = onchange
|
|
self.section = section
|
|
self.refresh = refresh
|
|
|
|
|
|
def options_section(section_identifier, options_dict):
|
|
for _k, v in options_dict.items():
|
|
v.section = section_identifier
|
|
return options_dict
|
|
|
|
|
|
def list_checkpoint_tiles():
|
|
import modules.sd_models # pylint: disable=W0621
|
|
return modules.sd_models.checkpoint_tiles()
|
|
|
|
|
|
def refresh_checkpoints():
|
|
import modules.sd_models # pylint: disable=W0621
|
|
return modules.sd_models.list_models()
|
|
|
|
|
|
def list_samplers():
|
|
import modules.sd_samplers # pylint: disable=W0621
|
|
return modules.sd_samplers.all_samplers
|
|
|
|
def list_themes():
|
|
if not os.path.exists(os.path.join('javascript', 'themes.json')):
|
|
refresh_themes()
|
|
if os.path.exists(os.path.join('javascript', 'themes.json')):
|
|
with open(os.path.join('javascript', 'themes.json'), mode='r', encoding='utf=8') as f:
|
|
res = json.loads(f.read())
|
|
else:
|
|
res = []
|
|
builtin = ["black-orange", "gradio/default", "gradio/base", "gradio/glass", "gradio/monochrome", "gradio/soft"]
|
|
themes = builtin + [x['id'] for x in res if x['status'] == 'RUNNING' and 'test' not in x['id'].lower()]
|
|
return themes
|
|
|
|
|
|
def refresh_themes():
|
|
import requests
|
|
try:
|
|
req = requests.get('https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json', timeout=5)
|
|
if req.status_code == 200:
|
|
res = req.json()
|
|
with open(os.path.join('javascript', 'themes.json'), mode='w', encoding='utf=8') as f:
|
|
f.write(json.dumps(res))
|
|
else:
|
|
print('Error refreshing UI themes')
|
|
except:
|
|
print('Exception refreshing UI themes')
|
|
|
|
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
|
|
tab_names = []
|
|
options_templates = {}
|
|
default_checkpoint = list_checkpoint_tiles()[0] if len(list_checkpoint_tiles()) > 0 else "model.ckpt"
|
|
|
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|
"sd_model_checkpoint": OptionInfo(default_checkpoint, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
|
|
"sd_checkpoint_cache": OptionInfo(0, "Model checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
"sd_vae": OptionInfo("Automatic", "Select VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
|
|
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them", gr.Checkbox, {"visible": False}),
|
|
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
|
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
|
"img2img_fix_steps": OptionInfo(False, "For image processing do exactly the amount of steps as specified."),
|
|
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
|
|
"enable_quantization": OptionInfo(True, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds."),
|
|
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention", gr.Checkbox, {"visible": False}),
|
|
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image", gr.Checkbox, {"visible": False}),
|
|
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
|
|
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1, "visible": False}),
|
|
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
|
|
"cross_attention_optimization": OptionInfo("Scaled-Dot-Product", "Cross-attention optimization method", gr.Radio, lambda: {"choices": shared_items.list_crossattention() }),
|
|
"cross_attention_options": OptionInfo([], "Cross-attention advanced options", gr.CheckboxGroup, lambda: {"choices": ['xFormers enable flash Attention', 'SDP disable memory attention']}),
|
|
"sub_quad_q_chunk_size": OptionInfo(512, "Sub-quadratic cross-attention query chunk size for the layer optimization to use", gr.Slider, {"minimum": 16, "maximum": 8192, "step": 8}),
|
|
"sub_quad_kv_chunk_size": OptionInfo(512, "Sub-quadratic cross-attentionkv chunk size for the sub-quadratic cross-attention layer optimization to use", gr.Slider, {"minimum": 0, "maximum": 8192, "step": 8}),
|
|
"sub_quad_chunk_threshold": OptionInfo(80, "Sub-quadratic cross-attention percentage of VRAM chunking threshold", gr.Slider, {"minimum": 0, "maximum": 100, "step": 1}),
|
|
"always_batch_cond_uncond": OptionInfo(False, "Disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram"),
|
|
"multiple_tqdm": OptionInfo(False, "Add a second progress bar to the console that shows progress for an entire job.", gr.Checkbox, {"visible": False}),
|
|
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console.", gr.Checkbox, {"visible": False}),
|
|
"dimensions_and_batch_together": OptionInfo(True, "", gr.Checkbox, {"visible": False}),
|
|
}))
|
|
|
|
options_templates.update(options_section(('system-paths', "System Paths"), {
|
|
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
|
|
"clean_temp_dir_at_start": OptionInfo(True, "Cleanup non-default temporary directory when starting webui"),
|
|
"ckpt_dir": OptionInfo(os.path.join(paths.models_path, 'Stable-diffusion'), "Path to directory with stable diffusion checkpoints"),
|
|
"vae_dir": OptionInfo(os.path.join(paths.models_path, 'VAE'), "Path to directory with VAE files"),
|
|
"embeddings_dir": OptionInfo(os.path.join(paths.models_path, 'embeddings'), "Embeddings directory for textual inversion"),
|
|
"embeddings_templates_dir": OptionInfo(os.path.join(paths.script_path, 'train/templates'), "Embeddings train templates directory"),
|
|
"embeddings_train_log": OptionInfo(os.path.join(paths.script_path, 'train.csv'), "Embeddings train log file"),
|
|
"hypernetwork_dir": OptionInfo(os.path.join(paths.models_path, 'hypernetworks'), "Hypernetwork directory"),
|
|
"codeformer_models_path": OptionInfo(os.path.join(paths.models_path, 'Codeformer'), "Path to directory with codeformer model file(s)."),
|
|
"gfpgan_models_path": OptionInfo(os.path.join(paths.models_path, 'GFPGAN'), "Path to directory with GFPGAN model file(s)"),
|
|
"esrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'ESRGAN'), "Path to directory with ESRGAN model file(s)"),
|
|
"bsrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'BSRGAN'), "Path to directory with BSRGAN model file(s)"),
|
|
"realesrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'RealESRGAN'), "Path to directory with RealESRGAN model file(s)"),
|
|
"scunet_models_path": OptionInfo(os.path.join(paths.models_path, 'ScuNET'), "Path to directory with ScuNET model file(s)"),
|
|
"swinir_models_path": OptionInfo(os.path.join(paths.models_path, 'SwinIR'), "Path to directory with SwinIR model file(s)"),
|
|
"ldsr_models_path": OptionInfo(os.path.join(paths.models_path, 'LDSR'), "Path to directory with LDSR model file(s)"),
|
|
"clip_models_path": OptionInfo(os.path.join(paths.models_path, 'CLIP'), "Path to directory with CLIP model file(s)"),
|
|
"lora_dir": OptionInfo(os.path.join(paths.models_path, 'Lora'), "Path to directory with Lora network(s)"),
|
|
"lyco_dir": OptionInfo(os.path.join(paths.models_path, 'LyCORIS'), "Path to directory with LyCORIS network(s)"),
|
|
"styles_dir": OptionInfo('styles.csv', "Path to user-defined styles file"),
|
|
# "gfpgan_model": OptionInfo("", "GFPGAN model file name"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('saving-images', "Image options"), {
|
|
"samples_save": OptionInfo(True, "Always save all generated images"),
|
|
"samples_format": OptionInfo('jpg', 'File format for images'),
|
|
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
|
|
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
|
|
"grid_save": OptionInfo(True, "Always save all generated image grids"),
|
|
"grid_format": OptionInfo('jpg', 'File format for grids'),
|
|
"grid_extended_filename": OptionInfo(True, "Add extended info (seed, prompt) to filename when saving grid"),
|
|
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
|
|
"grid_prevent_empty_spots": OptionInfo(True, "Prevent empty spots in grid (when set to autodetect)"),
|
|
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
|
|
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
|
|
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
|
|
"save_images_before_face_restoration": OptionInfo(True, "Save a copy of image before doing face restoration."),
|
|
"save_images_before_highres_fix": OptionInfo(True, "Save a copy of image before applying highres fix."),
|
|
"save_images_before_color_correction": OptionInfo(True, "Save a copy of image before applying color correction to img2img results"),
|
|
"save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
|
|
"save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
|
|
"jpeg_quality": OptionInfo(85, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
|
|
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
|
|
"img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
|
|
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
|
|
"use_upscaler_name_as_suffix": OptionInfo(True, "Use upscaler name as filename suffix in the extras tab"),
|
|
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
|
|
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
|
|
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
|
|
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
|
|
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
|
|
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
|
|
}))
|
|
|
|
options_templates.update(options_section(('saving-paths', "Image Paths"), {
|
|
"outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
|
|
"outdir_txt2img_samples": OptionInfo("outputs/text", 'Output directory for txt2img images', component_args=hide_dirs),
|
|
"outdir_img2img_samples": OptionInfo("outputs/image", 'Output directory for img2img images', component_args=hide_dirs),
|
|
"outdir_extras_samples": OptionInfo("outputs/extras", 'Output directory for images from extras tab', component_args=hide_dirs),
|
|
"outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
|
|
"outdir_txt2img_grids": OptionInfo("outputs/grids", 'Output directory for txt2img grids', component_args=hide_dirs),
|
|
"outdir_img2img_grids": OptionInfo("outputs/grids", 'Output directory for img2img grids', component_args=hide_dirs),
|
|
"outdir_save": OptionInfo("outputs/save", "Directory for saving images using the Save button", component_args=hide_dirs),
|
|
}))
|
|
|
|
options_templates.update(options_section(('cuda', "CUDA Settings"), {
|
|
"memmon_poll_rate": OptionInfo(2, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
|
|
"precision": OptionInfo("Autocast", "Precision type", gr.Radio, lambda: {"choices": ["Autocast", "Full"]}),
|
|
"cuda_dtype": OptionInfo("FP32" if sys.platform == "darwin" else "FP16", "Device precision type", gr.Radio, lambda: {"choices": ["FP32", "FP16", "BF16"]}),
|
|
"no_half": OptionInfo(False, "Use full precision for model (--no-half)"),
|
|
"no_half_vae": OptionInfo(False, "Use full precision for VAE (--no-half-vae)"),
|
|
"upcast_sampling": OptionInfo(True if sys.platform == "darwin" else False, "Enable upcast sampling. Usually produces similar results to --no-half with better performance while using less memory"),
|
|
"disable_nan_check": OptionInfo(True, "Do not check if produced images/latent spaces have NaN values"),
|
|
"rollback_vae": OptionInfo(False, "Attempt to roll back VAE when produced NaN values, requires NaN check (experimental)"),
|
|
"opt_channelslast": OptionInfo(False, "Use channels last as torch memory format "),
|
|
"cudnn_benchmark": OptionInfo(False, "Enable cuDNN benchmark feature"),
|
|
"cuda_allow_tf32": OptionInfo(True, "Allow TF32 math ops"),
|
|
"cuda_allow_tf16_reduced": OptionInfo(True, "Allow TF16 reduced precision math ops"),
|
|
"cuda_compile": OptionInfo(False, "Enable model compile (experimental)"),
|
|
"cuda_compile_mode": OptionInfo("none", "Model compile mode (experimental)", gr.Radio, lambda: {"choices": ['none', 'inductor', 'cudagraphs', 'aot_ts_nvfuser']}),
|
|
}))
|
|
|
|
options_templates.update(options_section(('upscaling', "Upscaling"), {
|
|
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
|
|
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
|
|
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
|
|
"upscaler_for_img2img": OptionInfo("None", "Default upscaler for image resize operations", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
|
|
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
|
|
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
|
|
}))
|
|
|
|
options_templates.update(options_section(('face-restoration', "Face restoration"), {
|
|
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
|
|
"code_former_weight": OptionInfo(0.2, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
|
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('training', "Training"), {
|
|
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
|
"pin_memory": OptionInfo(True, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
|
|
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
|
|
"save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
|
|
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
|
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
|
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
|
"training_write_csv_every": OptionInfo(0, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
|
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
|
|
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
|
|
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
|
|
}))
|
|
|
|
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
|
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
|
"interrogate_return_ranks": OptionInfo(True, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
|
|
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
|
"interrogate_clip_min_length": OptionInfo(32, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
|
"interrogate_clip_max_length": OptionInfo(192, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
|
"interrogate_clip_dict_limit": OptionInfo(2048, "CLIP: maximum number of lines in text file (0 = No limit)"),
|
|
"interrogate_clip_skip_categories": OptionInfo(["artists", "movements", "flavors"], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
|
|
"interrogate_deepbooru_score_threshold": OptionInfo(0.65, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
|
|
"deepbooru_sort_alpha": OptionInfo(False, "Interrogate: deepbooru sort alphabetically"),
|
|
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
|
|
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
|
|
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
|
|
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
|
|
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
|
|
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
|
|
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
|
|
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
|
|
}))
|
|
|
|
options_templates.update(options_section(('ui', "User interface"), {
|
|
"gradio_theme": OptionInfo("black-orange", "UI theme", gr.Dropdown, lambda: {"choices": list_themes()}, refresh=refresh_themes),
|
|
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
|
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
|
|
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
|
|
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
|
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
|
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
|
|
"disable_weights_auto_swap": OptionInfo(True, "Do not change the selected model when reading generation parameters."),
|
|
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
|
|
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
|
|
"font": OptionInfo("", "Font for image grids that have text"),
|
|
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer", gr.Checkbox, {"visible": False}),
|
|
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer", gr.Checkbox, {"visible": False}),
|
|
"show_progress_in_title": OptionInfo(False, "Show generation progress in window title.", gr.Checkbox, {"visible": False}),
|
|
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
|
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
|
|
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
|
|
"hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
|
|
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
|
|
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('ui', "Live previews"), {
|
|
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
|
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
|
|
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
|
|
"show_progress_every_n_steps": OptionInfo(1, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
|
|
"show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
|
|
"live_preview_content": OptionInfo("Combined", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
|
|
"live_preview_refresh_period": OptionInfo(250, "Progressbar/preview update period, in milliseconds")
|
|
}))
|
|
|
|
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
|
|
"show_samplers": OptionInfo(["Euler a", "UniPC", "DDIM", "DPM++ SDE", "DPM++ SDE", "DPM2 Karras", "DPM++ 2M Karras"], "Show samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
|
|
"fallback_sampler": OptionInfo("Euler a", "Fallback sampler if primary sampler is not compatible", gr.Dropdown, lambda: {"choices": [x.name for x in list_samplers()]}),
|
|
"eta_ancestral": OptionInfo(1.0, "Noise multiplier for ancestral samplers (eta)", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"eta_ddim": OptionInfo(0.0, "Noise multiplier for DDIM (eta)", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
"ddim_discretize": OptionInfo('uniform', "DDIM discretize img2img", gr.Radio, {"choices": ['uniform', 'quad']}),
|
|
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
|
|
'eta_noise_seed_delta': OptionInfo(0, "Noise seed delta (eta)", gr.Number, {"precision": 0}),
|
|
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
|
|
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
|
|
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
|
|
'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
|
|
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
|
|
}))
|
|
|
|
options_templates.update(options_section(('token_merging', 'Token Merging'), {
|
|
"token_merging": OptionInfo(False, "Enable redundant token merging via tomesd. This can provide significant speed and memory improvements.", gr.Checkbox),
|
|
"token_merging_ratio": OptionInfo(0.5, "Merging Ratio", gr.Slider, {"minimum": 0, "maximum": 0.9, "step": 0.1}),
|
|
"token_merging_hr_only": OptionInfo(True, "Apply only to high-res fix pass. Disabling can yield a ~20-35% speedup on contemporary resolutions.", gr.Checkbox),
|
|
"token_merging_ratio_hr": OptionInfo(0.5, "Merging Ratio (high-res pass) - If 'Apply only to high-res' is enabled, this will always be the ratio used.", gr.Slider, {"minimum": 0, "maximum": 0.9, "step": 0.1}),
|
|
"token_merging_random": OptionInfo(False, "Use random perturbations - Can improve outputs for certain samplers. For others, it may cause visual artifacting.", gr.Checkbox),
|
|
"token_merging_merge_attention": OptionInfo(True, "Merge attention", gr.Checkbox),
|
|
"token_merging_merge_cross_attention": OptionInfo(False, "Merge cross attention", gr.Checkbox),
|
|
"token_merging_merge_mlp": OptionInfo(False, "Merge mlp", gr.Checkbox),
|
|
"token_merging_maximum_down_sampling": OptionInfo(1, "Maximum down sampling", gr.Dropdown, lambda: {"choices": ["1", "2", "4", "8"]}),
|
|
"token_merging_stride_x": OptionInfo(2, "Stride - X", gr.Slider, {"minimum": 2, "maximum": 8, "step": 2}),
|
|
"token_merging_stride_y": OptionInfo(2, "Stride - Y", gr.Slider, {"minimum": 2, "maximum": 8, "step": 2})
|
|
}))
|
|
|
|
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
|
|
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
|
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
|
|
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
|
|
}))
|
|
|
|
options_templates.update(options_section((None, "Hidden options"), {
|
|
"disabled_extensions": OptionInfo([], "Disable these extensions"),
|
|
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
|
|
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
|
|
}))
|
|
|
|
options_templates.update()
|
|
|
|
|
|
class Options:
|
|
data = None
|
|
data_labels = options_templates
|
|
typemap = {int: float}
|
|
|
|
def __init__(self):
|
|
self.data = {k: v.default for k, v in self.data_labels.items()}
|
|
|
|
def __setattr__(self, key, value):
|
|
if self.data is not None:
|
|
if key in self.data or key in self.data_labels:
|
|
if cmd_opts.freeze_settings:
|
|
print(f'Settings are frozen: {key}')
|
|
return
|
|
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
|
|
print(f'Settings key is restricted: {key}')
|
|
return
|
|
else:
|
|
self.data[key] = value
|
|
return
|
|
|
|
return super(Options, self).__setattr__(key, value)
|
|
|
|
def __getattr__(self, item):
|
|
if self.data is not None:
|
|
if item in self.data:
|
|
return self.data[item]
|
|
if item in self.data_labels:
|
|
return self.data_labels[item].default
|
|
return super(Options, self).__getattribute__(item)
|
|
|
|
def set(self, key, value):
|
|
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
|
|
oldval = self.data.get(key, None)
|
|
if oldval == value:
|
|
return False
|
|
try:
|
|
setattr(self, key, value)
|
|
except RuntimeError:
|
|
return False
|
|
if self.data_labels[key].onchange is not None:
|
|
try:
|
|
self.data_labels[key].onchange()
|
|
except Exception as e:
|
|
errors.display(e, f"changing setting {key} to {value}")
|
|
setattr(self, key, oldval)
|
|
return False
|
|
return True
|
|
|
|
def get_default(self, key):
|
|
"""returns the default value for the key"""
|
|
data_label = self.data_labels.get(key)
|
|
if data_label is None:
|
|
return None
|
|
return data_label.default
|
|
|
|
def save(self, filename):
|
|
assert not cmd_opts.freeze_settings, "saving settings is disabled"
|
|
with open(filename, "w", encoding="utf8") as file:
|
|
json.dump(self.data, file, indent=4)
|
|
|
|
def same_type(self, x, y):
|
|
if x is None or y is None:
|
|
return True
|
|
type_x = self.typemap.get(type(x), type(x))
|
|
type_y = self.typemap.get(type(y), type(y))
|
|
return type_x == type_y
|
|
|
|
def load(self, filename):
|
|
with open(filename, "r", encoding="utf8") as file:
|
|
self.data = json.load(file)
|
|
bad_settings = 0
|
|
for k, v in self.data.items():
|
|
info = self.data_labels.get(k, None)
|
|
if info is not None and not self.same_type(info.default, v):
|
|
log.error(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
|
|
bad_settings += 1
|
|
|
|
if bad_settings > 0:
|
|
log.error(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
|
|
|
|
def onchange(self, key, func, call=True):
|
|
item = self.data_labels.get(key)
|
|
item.onchange = func
|
|
if call:
|
|
func()
|
|
|
|
def dumpjson(self):
|
|
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
|
|
return json.dumps(d)
|
|
|
|
def add_option(self, key, info):
|
|
self.data_labels[key] = info
|
|
|
|
def reorder(self):
|
|
"""reorder settings so that all items related to section always go together"""
|
|
section_ids = {}
|
|
settings_items = self.data_labels.items()
|
|
for k, item in settings_items:
|
|
if item.section not in section_ids:
|
|
section_ids[item.section] = len(section_ids)
|
|
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
|
|
|
|
def cast_value(self, key, value):
|
|
"""casts an arbitrary to the same type as this setting's value with key
|
|
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
|
|
"""
|
|
|
|
if value is None:
|
|
return None
|
|
|
|
default_value = self.data_labels[key].default
|
|
if default_value is None:
|
|
default_value = getattr(self, key, None)
|
|
if default_value is None:
|
|
return None
|
|
|
|
expected_type = type(default_value)
|
|
if expected_type == bool and value == "False":
|
|
value = False
|
|
else:
|
|
value = expected_type(value)
|
|
|
|
return value
|
|
|
|
|
|
opts = Options()
|
|
batch_cond_uncond = opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
|
|
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|
xformers_available = False
|
|
config_filename = cmd_opts.ui_settings_file
|
|
os.makedirs(opts.hypernetwork_dir, exist_ok=True)
|
|
hypernetworks = {}
|
|
loaded_hypernetworks = []
|
|
if os.path.exists(config_filename):
|
|
opts.load(config_filename)
|
|
cmd_opts = cmd_args.compatibility_args(opts, cmd_opts)
|
|
prompt_styles = modules.styles.StyleDatabase(opts.styles_dir)
|
|
settings_components = None
|
|
"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
|
|
latent_upscale_default_mode = "Latent"
|
|
latent_upscale_modes = {
|
|
"Latent": {"mode": "bilinear", "antialias": False},
|
|
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
|
|
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
|
|
"Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
|
|
"Latent (nearest)": {"mode": "nearest", "antialias": False},
|
|
"Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
|
|
}
|
|
progress_print_out = sys.stdout
|
|
gradio_theme = gr.themes.Base()
|
|
|
|
|
|
def reload_gradio_theme(theme_name=None):
|
|
global gradio_theme # pylint: disable=global-statement
|
|
if not theme_name:
|
|
theme_name = opts.gradio_theme
|
|
if theme_name == "black-orange":
|
|
gradio_theme = gr.themes.Default()
|
|
elif theme_name.startswith("gradio/"):
|
|
if theme_name == "gradio/default":
|
|
gradio_theme = gr.themes.Default()
|
|
if theme_name == "gradio/base":
|
|
gradio_theme = gr.themes.Base()
|
|
if theme_name == "gradio/glass":
|
|
gradio_theme = gr.themes.Glass()
|
|
if theme_name == "gradio/monochrome":
|
|
gradio_theme = gr.themes.Monochrome()
|
|
if theme_name == "gradio/soft":
|
|
gradio_theme = gr.themes.Soft()
|
|
else:
|
|
try:
|
|
gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
|
|
except:
|
|
print("Theme download error accessing HuggingFace")
|
|
gradio_theme = gr.themes.Default()
|
|
print(f'Loading theme: {theme_name}')
|
|
|
|
|
|
class TotalTQDM:
|
|
def __init__(self):
|
|
self._tqdm = None
|
|
|
|
def reset(self):
|
|
self._tqdm = tqdm.tqdm(
|
|
desc="Total",
|
|
total=state.job_count * state.sampling_steps,
|
|
position=1,
|
|
file=progress_print_out
|
|
)
|
|
|
|
def update(self):
|
|
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
|
return
|
|
if self._tqdm is None:
|
|
self.reset()
|
|
self._tqdm.update()
|
|
|
|
def updateTotal(self, new_total):
|
|
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
|
|
return
|
|
if self._tqdm is None:
|
|
self.reset()
|
|
self._tqdm.total = new_total
|
|
|
|
def clear(self):
|
|
if self._tqdm is not None:
|
|
self._tqdm.refresh()
|
|
self._tqdm.close()
|
|
self._tqdm = None
|
|
|
|
|
|
total_tqdm = TotalTQDM()
|
|
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
|
|
mem_mon.start()
|
|
|
|
|
|
def restart_server():
|
|
if demo is None:
|
|
return
|
|
try:
|
|
import logging
|
|
logging.disable(logging.CRITICAL)
|
|
demo.server.should_exit = True
|
|
demo.server.force_exit = True
|
|
demo.close(verbose=False)
|
|
demo.server.close()
|
|
except:
|
|
pass
|
|
print('Server shutdown')
|
|
|
|
|
|
def listfiles(dirname):
|
|
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
|
|
return [file for file in filenames if os.path.isfile(file)]
|
|
|
|
|
|
def html_path(filename):
|
|
return os.path.join(paths.script_path, "html", filename)
|
|
|
|
|
|
def html(filename):
|
|
path = html_path(filename)
|
|
|
|
if os.path.exists(path):
|
|
with open(path, encoding="utf8") as file:
|
|
return file.read()
|
|
|
|
return ""
|