1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/prompt_parser_diffusers.py
2023-08-06 11:22:33 +00:00

78 lines
2.8 KiB
Python

import typing
import torch
import diffusers
from compel import Compel, ReturnedEmbeddingsType
import modules.shared as shared
import modules.prompt_parser as prompt_parser
def convert_to_compel(prompt: str):
if prompt is None:
return None
all_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(
prompt, 100
)[
0
]
output_list = prompt_parser.parse_prompt_attention(all_schedules[0][1])
converted_prompt = []
for subprompt, weight in output_list:
if subprompt != " ":
if weight == 1:
converted_prompt.append(subprompt)
else:
converted_prompt.append(f"({subprompt}){weight}")
converted_prompt = " ".join(converted_prompt)
return converted_prompt
def compel_encode_prompt(
pipeline: diffusers.StableDiffusionXLPipeline,
prompt: str,
negative_prompt: str,
prompt_2: typing.Optional[str] = None,
negative_prompt_2: typing.Optional[str] = None,
is_refiner: bool = None,
):
if shared.sd_model_type not in {"sd", "sdxl"}:
shared.log.warning(
f"Compel encoding not yet supported for {type(pipeline).__name__}."
)
return (None,) * 4
if shared.opts.data["prompt_attention"] != "Compel parser":
prompt = convert_to_compel(prompt)
negative_prompt = convert_to_compel(negative_prompt)
prompt_2 = convert_to_compel(prompt_2)
negative_prompt_2 = convert_to_compel(negative_prompt_2)
compel_te1 = Compel(
tokenizer=pipeline.tokenizer,
text_encoder=pipeline.text_encoder,
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=False,
)
compel_te2 = Compel(
tokenizer=pipeline.tokenizer_2,
text_encoder=pipeline.text_encoder_2,
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=True,
)
if not is_refiner:
positive_te1 = compel_te1(prompt)
positive_te2, positive_pooled = compel_te2(prompt_2)
positive = torch.cat((positive_te1, positive_te2), dim=-1)
negative_te1 = compel_te1(negative_prompt)
negative_te2, negative_pooled = compel_te2(negative_prompt_2)
negative = torch.cat((negative_te1, negative_te2), dim=-1)
else:
positive, positive_pooled = compel_te2(prompt)
negative, negative_pooled = compel_te2(negative_prompt)
shared.log.debug(compel_te1.parse_prompt_string(prompt))
[prompt_embed, negative_embed] = compel_te2.pad_conditioning_tensors_to_same_length(
[positive, negative]
)
return prompt_embed, positive_pooled, negative_embed, negative_pooled