1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/prompt_parser_diffusers.py
2024-01-17 10:28:05 -05:00

240 lines
12 KiB
Python

import os
import time
import typing
import torch
from compel import ReturnedEmbeddingsType
from compel.embeddings_provider import BaseTextualInversionManager, EmbeddingsProvider
from transformers import PreTrainedTokenizer
from modules import shared, prompt_parser, devices
debug = shared.log.trace if os.environ.get('SD_PROMPT_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: PROMPT')
CLIP_SKIP_MAPPING = {
None: ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED,
1: ReturnedEmbeddingsType.LAST_HIDDEN_STATES_NORMALIZED,
2: ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NORMALIZED,
}
# from https://github.com/damian0815/compel/blob/main/src/compel/diffusers_textual_inversion_manager.py
class DiffusersTextualInversionManager(BaseTextualInversionManager):
def __init__(self, pipe, tokenizer):
self.pipe = pipe
self.tokenizer = tokenizer
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used.clear()
# code from
# https://github.com/huggingface/diffusers/blob/705c592ea98ba4e288d837b9cba2767623c78603/src/diffusers/loaders.py
def maybe_convert_prompt(self, prompt: typing.Union[str, typing.List[str]], tokenizer: PreTrainedTokenizer):
prompts = [prompt] if not isinstance(prompt, typing.List) else prompt
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, typing.List):
return prompts[0]
return prompts
def _maybe_convert_prompt(self, prompt: str, tokenizer: PreTrainedTokenizer):
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used.append(token)
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
if hasattr(self.pipe, 'embedding_db'):
self.pipe.embedding_db.embeddings_used = list(set(self.pipe.embedding_db.embeddings_used))
debug(f'Prompt: convert={prompt}')
return prompt
def expand_textual_inversion_token_ids_if_necessary(self, token_ids: typing.List[int]) -> typing.List[int]:
if len(token_ids) == 0:
return token_ids
prompt = self.pipe.tokenizer.decode(token_ids)
prompt = self.maybe_convert_prompt(prompt, self.pipe.tokenizer)
debug(f'Prompt: expand={prompt}')
return self.pipe.tokenizer.encode(prompt, add_special_tokens=False)
def get_prompt_schedule(prompt, steps):
t0 = time.time()
temp = []
schedule = prompt_parser.get_learned_conditioning_prompt_schedules([prompt], steps)[0]
if all(x == schedule[0] for x in schedule):
return [schedule[0][1]], False
for chunk in schedule:
for s in range(steps):
if len(temp) < s + 1 <= chunk[0]:
temp.append(chunk[1])
debug(f'Prompt: schedule={temp} time={time.time() - t0}')
return temp, len(schedule) > 1
def encode_prompts(pipe, p, prompts: list, negative_prompts: list, steps: int,
clip_skip: typing.Optional[int] = None):
if 'StableDiffusion' not in pipe.__class__.__name__ and 'DemoFusion':
shared.log.warning(f"Prompt parser not supported: {pipe.__class__.__name__}")
return None, None, None, None
else:
t0 = time.time()
positive_schedule, scheduled = get_prompt_schedule(prompts[0], steps)
negative_schedule, neg_scheduled = get_prompt_schedule(negative_prompts[0], steps)
p.scheduled_prompt = scheduled or neg_scheduled
p.prompt_embeds = []
p.positive_pooleds = []
p.negative_embeds = []
p.negative_pooleds = []
cache = {}
for i in range(max(len(positive_schedule), len(negative_schedule))):
positive_prompt = positive_schedule[i % len(positive_schedule)]
negative_prompt = negative_schedule[i % len(negative_schedule)]
results = cache.get(positive_prompt + negative_prompt, None)
if results is None:
results = get_weighted_text_embeddings(pipe, positive_prompt, negative_prompt, clip_skip)
cache[positive_prompt + negative_prompt] = results
prompt_embed, positive_pooled, negative_embed, negative_pooled = results
if prompt_embed is not None:
p.prompt_embeds.append(torch.cat([prompt_embed] * len(prompts), dim=0))
if negative_embed is not None:
p.negative_embeds.append(torch.cat([negative_embed] * len(negative_prompts), dim=0))
if positive_pooled is not None:
p.positive_pooleds.append(torch.cat([positive_pooled] * len(prompts), dim=0))
if negative_pooled is not None:
p.negative_pooleds.append(torch.cat([negative_pooled] * len(negative_prompts), dim=0))
debug(f"Prompt Parser: Elapsed Time {time.time() - t0}")
return
def get_prompts_with_weights(prompt: str):
manager = DiffusersTextualInversionManager(shared.sd_model,
shared.sd_model.tokenizer or shared.sd_model.tokenizer_2)
prompt = manager.maybe_convert_prompt(prompt, shared.sd_model.tokenizer or shared.sd_model.tokenizer_2)
texts_and_weights = prompt_parser.parse_prompt_attention(prompt)
texts, text_weights = zip(*texts_and_weights)
debug(f'Prompt: weights={texts_and_weights}')
return texts, text_weights
def prepare_embedding_providers(pipe, clip_skip):
device = pipe.device if str(pipe.device) != 'meta' else devices.device
embeddings_providers = []
if 'XL' in pipe.__class__.__name__:
embedding_type = ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED
else:
if clip_skip > 2:
shared.log.warning(f"Prompt parser unsupported: clip_skip={clip_skip}")
clip_skip = 2
embedding_type = CLIP_SKIP_MAPPING[clip_skip]
if hasattr(pipe, "tokenizer") and hasattr(pipe, "text_encoder"):
provider = EmbeddingsProvider(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, truncate=False,
returned_embeddings_type=embedding_type, device=device)
embeddings_providers.append(provider)
if hasattr(pipe, "tokenizer_2") and hasattr(pipe, "text_encoder_2"):
provider = EmbeddingsProvider(tokenizer=pipe.tokenizer_2, text_encoder=pipe.text_encoder_2, truncate=False,
returned_embeddings_type=embedding_type, device=device)
embeddings_providers.append(provider)
return embeddings_providers
def pad_to_same_length(pipe, embeds):
device = pipe.device if str(pipe.device) != 'meta' else devices.device
try: # SDXL
empty_embed = pipe.encode_prompt("")
except TypeError: # SD1.5
empty_embed = pipe.encode_prompt("", device, 1, False)
max_token_count = max([embed.shape[1] for embed in embeds])
repeats = max_token_count - min([embed.shape[1] for embed in embeds])
empty_batched = empty_embed[0].to(embeds[0].device).repeat(embeds[0].shape[0], repeats // empty_embed[0].shape[1], 1)
for i, embed in enumerate(embeds):
if embed.shape[1] < max_token_count:
embed = torch.cat([embed, empty_batched], dim=1)
embeds[i] = embed
return embeds
def get_weighted_text_embeddings(pipe, prompt: str = "", neg_prompt: str = "", clip_skip: int = None):
device = pipe.device if str(pipe.device) != 'meta' else devices.device
prompt_2 = prompt.split("TE2:")[-1]
neg_prompt_2 = neg_prompt.split("TE2:")[-1]
prompt = prompt.split("TE2:")[0]
neg_prompt = neg_prompt.split("TE2:")[0]
ps = [get_prompts_with_weights(p) for p in [prompt, prompt_2]]
positives, positive_weights = zip(*ps)
ns = [get_prompts_with_weights(p) for p in [neg_prompt, neg_prompt_2]]
negatives, negative_weights = zip(*ns)
if hasattr(pipe, "tokenizer_2") and not hasattr(pipe, "tokenizer"):
positives.pop(0)
positive_weights.pop(0)
negatives.pop(0)
negative_weights.pop(0)
embedding_providers = prepare_embedding_providers(pipe, clip_skip)
prompt_embeds = []
negative_prompt_embeds = []
pooled_prompt_embeds = None
negative_pooled_prompt_embeds = None
for i in range(len(embedding_providers)):
# add BREAK keyword that splits the prompt into multiple fragments
text = list(positives[i])
weights = list(positive_weights[i])
text.append('BREAK')
weights.append(-1)
provider_embed = []
while 'BREAK' in text:
pos = text.index('BREAK')
debug(f'Prompt: section="{text[:pos]}" len={len(text[:pos])} weights={weights[:pos]}')
if len(text[:pos]) > 0:
embed, ptokens = embedding_providers[i].get_embeddings_for_weighted_prompt_fragments(
text_batch=[text[:pos]], fragment_weights_batch=[weights[:pos]], device=device,
should_return_tokens=True)
provider_embed.append(embed)
text = text[pos + 1:]
weights = weights[pos + 1:]
prompt_embeds.append(torch.cat(provider_embed, dim=1))
debug(f'Prompt: positive unpadded shape = {prompt_embeds[0].shape}')
# negative prompt has no keywords
embed, ntokens = embedding_providers[i].get_embeddings_for_weighted_prompt_fragments(text_batch=[negatives[i]],
fragment_weights_batch=[
negative_weights[i]],
device=device,
should_return_tokens=True)
negative_prompt_embeds.append(embed)
if prompt_embeds[-1].shape[-1] > 768:
if shared.opts.diffusers_pooled == "weighted":
pooled_prompt_embeds = prompt_embeds[-1][
torch.arange(prompt_embeds[-1].shape[0], device=device),
(ptokens.to(dtype=torch.int, device=device) == 49407)
.int()
.argmax(dim=-1),
]
negative_pooled_prompt_embeds = negative_prompt_embeds[-1][
torch.arange(negative_prompt_embeds[-1].shape[0], device=device),
(ntokens.to(dtype=torch.int, device=device) == 49407)
.int()
.argmax(dim=-1),
]
else:
pooled_prompt_embeds = embedding_providers[-1].get_pooled_embeddings(texts=[prompt_2], device=device) if \
prompt_embeds[-1].shape[-1] > 768 else None
negative_pooled_prompt_embeds = embedding_providers[-1].get_pooled_embeddings(texts=[neg_prompt_2],
device=device) if \
negative_prompt_embeds[-1].shape[-1] > 768 else None
prompt_embeds = torch.cat(prompt_embeds, dim=-1) if len(prompt_embeds) > 1 else prompt_embeds[0]
negative_prompt_embeds = torch.cat(negative_prompt_embeds, dim=-1) if len(negative_prompt_embeds) > 1 else \
negative_prompt_embeds[0]
debug(f'Prompt: shape={prompt_embeds.shape} negative={negative_prompt_embeds.shape}')
if prompt_embeds.shape[1] != negative_prompt_embeds.shape[1]:
[prompt_embeds, negative_prompt_embeds] = pad_to_same_length(pipe, [prompt_embeds, negative_prompt_embeds])
return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds