mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
1672 lines
81 KiB
Python
1672 lines
81 KiB
Python
# pylint: skip-file
|
|
|
|
"""
|
|
credits: https://github.com/zacheryvaughn/softfill-pipelines
|
|
code from: https://github.com/zacheryvaughn/softfill-pipelines/blob/main/pipeline_stable_diffusion_xl_softfill.py
|
|
sdnext implementation follows after pipeline-end
|
|
"""
|
|
|
|
pnoise2 = None # dynamically instlled and imported module
|
|
|
|
### pipeline start
|
|
|
|
import inspect
|
|
import random
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image, ImageFilter
|
|
import torch
|
|
import torchvision
|
|
from torchvision import transforms
|
|
from transformers import (
|
|
CLIPImageProcessor,
|
|
CLIPTextModel,
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
IPAdapterMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
|
from diffusers.models.attention_processor import (
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
)
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
is_torch_xla_available,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import StableDiffusionXLImg2ImgPipeline
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
|
... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16
|
|
... )
|
|
>>> pipe = pipe.to("cuda")
|
|
>>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
|
|
|
|
>>> init_image = load_image(url).convert("RGB")
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
|
>>> image = pipe(prompt, image=init_image).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
# rescale the results from guidance (fixes overexposure)
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
def retrieve_latents(
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
):
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
|
return encoder_output.latent_dist.sample(generator)
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
|
return encoder_output.latent_dist.mode()
|
|
elif hasattr(encoder_output, "latents"):
|
|
return encoder_output.latents
|
|
else:
|
|
raise AttributeError("Could not access latents of provided encoder_output")
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
|
`timesteps` must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
|
must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class StableDiffusionXLSoftFillPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
TextualInversionLoaderMixin,
|
|
FromSingleFileMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
IPAdapterMixin,
|
|
):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
In addition the pipeline inherits the following loading methods:
|
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
|
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`]
|
|
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
|
|
|
as well as the following saving methods:
|
|
- *LoRA*: [`loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`]
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
|
specifically the
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
|
variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer_2 (`CLIPTokenizer`):
|
|
Second Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
|
_optional_components = [
|
|
"tokenizer",
|
|
"tokenizer_2",
|
|
"text_encoder",
|
|
"text_encoder_2",
|
|
"image_encoder",
|
|
"feature_extractor",
|
|
]
|
|
_callback_tensor_inputs = [
|
|
"latents",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
"add_text_embeds",
|
|
"add_time_ids",
|
|
"negative_pooled_prompt_embeds",
|
|
"add_neg_time_ids",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
tokenizer_2: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
image_encoder: CLIPVisionModelWithProjection = None,
|
|
feature_extractor: CLIPImageProcessor = None,
|
|
requires_aesthetics_score: bool = False,
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
image_encoder=image_encoder,
|
|
feature_extractor=feature_extractor,
|
|
scheduler=scheduler,
|
|
)
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.watermark = None
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt: str,
|
|
prompt_2: Optional[str] = None,
|
|
device: Optional[torch.device] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[str] = None,
|
|
negative_prompt_2: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
lora_scale (`float`, *optional*):
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if self.text_encoder is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
# Define tokenizers and text encoders
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
else:
|
|
# "2" because SDXL always indexes from the penultimate layer.
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
|
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
# normalize str to list
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
negative_prompt_2 = (
|
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
|
)
|
|
|
|
uncond_tokens: List[str]
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
negative_prompt_embeds_list = []
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
if self.text_encoder_2 is not None:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
if do_classifier_free_guidance:
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
prompt_2,
|
|
strength,
|
|
num_inference_steps,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
negative_prompt_2=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
ip_adapter_image=None,
|
|
ip_adapter_image_embeds=None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
):
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
if num_inference_steps is None:
|
|
raise ValueError("`num_inference_steps` cannot be None.")
|
|
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
|
raise ValueError(
|
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
|
f" {type(num_inference_steps)}."
|
|
)
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
|
raise ValueError(
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
|
)
|
|
|
|
if ip_adapter_image_embeds is not None:
|
|
if not isinstance(ip_adapter_image_embeds, list):
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
|
)
|
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
|
)
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
|
|
# get the original timestep using init_timestep
|
|
if denoising_start is None:
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
else:
|
|
t_start = 0
|
|
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
|
|
|
# Strength is irrelevant if we directly request a timestep to start at;
|
|
# that is, strength is determined by the denoising_start instead.
|
|
if denoising_start is not None:
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
|
|
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
|
# if the scheduler is a 2nd order scheduler we might have to do +1
|
|
# because `num_inference_steps` might be even given that every timestep
|
|
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
|
# mean that we cut the timesteps in the middle of the denoising step
|
|
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
|
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
|
num_inference_steps = num_inference_steps + 1
|
|
|
|
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
|
timesteps = timesteps[-num_inference_steps:]
|
|
return timesteps, num_inference_steps
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_latents(
|
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
|
):
|
|
if not isinstance(image, (torch.Tensor, Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.text_encoder_2.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
|
|
if image.shape[1] == 4:
|
|
init_latents = image
|
|
|
|
else:
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
if self.vae.config.force_upcast:
|
|
image = image.float()
|
|
self.vae.to(dtype=torch.float32)
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
elif isinstance(generator, list):
|
|
init_latents = [
|
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
|
for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
|
|
|
if self.vae.config.force_upcast:
|
|
self.vae.to(dtype)
|
|
|
|
init_latents = init_latents.to(dtype)
|
|
init_latents = self.vae.config.scaling_factor * init_latents
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
|
# expand init_latents for batch_size
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
|
)
|
|
else:
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
if add_noise:
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
if output_hidden_states:
|
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_enc_hidden_states = self.image_encoder(
|
|
torch.zeros_like(image), output_hidden_states=True
|
|
).hidden_states[-2]
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
|
else:
|
|
image_embeds = self.image_encoder(image).image_embeds
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
return image_embeds, uncond_image_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
|
def prepare_ip_adapter_image_embeds(
|
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
|
):
|
|
if ip_adapter_image_embeds is None:
|
|
if not isinstance(ip_adapter_image, list):
|
|
ip_adapter_image = [ip_adapter_image]
|
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
|
raise ValueError(
|
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
|
)
|
|
|
|
image_embeds = []
|
|
for single_ip_adapter_image, image_proj_layer in zip(
|
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
|
):
|
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
|
single_ip_adapter_image, device, 1, output_hidden_state
|
|
)
|
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
|
single_negative_image_embeds = torch.stack(
|
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
|
)
|
|
|
|
if do_classifier_free_guidance:
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
|
single_image_embeds = single_image_embeds.to(device)
|
|
|
|
image_embeds.append(single_image_embeds)
|
|
else:
|
|
repeat_dims = [1]
|
|
image_embeds = []
|
|
for single_image_embeds in ip_adapter_image_embeds:
|
|
if do_classifier_free_guidance:
|
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
|
single_image_embeds = single_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
|
)
|
|
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
|
)
|
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
|
else:
|
|
single_image_embeds = single_image_embeds.repeat(
|
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
|
)
|
|
image_embeds.append(single_image_embeds)
|
|
|
|
return image_embeds
|
|
|
|
def _get_add_time_ids(
|
|
self,
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
aesthetic_score,
|
|
negative_aesthetic_score,
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype,
|
|
text_encoder_projection_dim=None,
|
|
):
|
|
if self.config.requires_aesthetics_score:
|
|
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
|
add_neg_time_ids = list(
|
|
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
|
)
|
|
else:
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
|
|
|
passed_add_embed_dim = (
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
|
)
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
|
|
|
if (
|
|
expected_add_embed_dim > passed_add_embed_dim
|
|
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
|
)
|
|
elif (
|
|
expected_add_embed_dim < passed_add_embed_dim
|
|
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
|
)
|
|
elif expected_add_embed_dim != passed_add_embed_dim:
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
)
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
|
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
|
|
|
return add_time_ids, add_neg_time_ids
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
|
def upcast_vae(self):
|
|
dtype = self.vae.dtype
|
|
self.vae.to(dtype=torch.float32)
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
self.vae.decoder.mid_block.attentions[0].processor,
|
|
(
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
),
|
|
)
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
# to be in float32 which can save lots of memory
|
|
if use_torch_2_0_or_xformers:
|
|
self.vae.post_quant_conv.to(dtype)
|
|
self.vae.decoder.conv_in.to(dtype)
|
|
self.vae.decoder.mid_block.to(dtype)
|
|
|
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
|
def get_guidance_scale_embedding(
|
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
|
) -> torch.Tensor:
|
|
"""
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
w (`torch.Tensor`):
|
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
|
embedding_dim (`int`, *optional*, defaults to 512):
|
|
Dimension of the embeddings to generate.
|
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
|
Data type of the generated embeddings.
|
|
|
|
Returns:
|
|
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1: # zero pad
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def guidance_rescale(self):
|
|
return self._guidance_rescale
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def denoising_end(self):
|
|
return self._denoising_end
|
|
|
|
@property
|
|
def denoising_start(self):
|
|
return self._denoising_start
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
image: Image.Image = None,
|
|
mask: Image.Image = None,
|
|
noise_fill_image: bool = True, # Adds noise to the image at the masks >0.8 area.
|
|
strength: float = 0.3,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
denoising_start: Optional[float] = None,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Tuple[int, int] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Tuple[int, int] = None,
|
|
negative_original_size: Optional[Tuple[int, int]] = None,
|
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
negative_target_size: Optional[Tuple[int, int]] = None,
|
|
aesthetic_score: float = 6.0,
|
|
negative_aesthetic_score: float = 2.5,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
|
The image(s) to modify with the pipeline.
|
|
strength (`float`, *optional*, defaults to 0.3):
|
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
|
be maximum and the denoising process will run for the full number of iterations specified in
|
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
|
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
denoising_start (`float`, *optional*):
|
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
|
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
|
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
|
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
|
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
|
if `do_classifier_free_guidance` is set to `True`.
|
|
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
|
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
|
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
|
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
|
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
strength,
|
|
num_inference_steps,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
callback_on_step_end_tensor_inputs,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._guidance_rescale = guidance_rescale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._denoising_end = denoising_end
|
|
self._denoising_start = denoising_start
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. PREPARE TIMESTEPS
|
|
def denoising_value_valid(dnv):
|
|
return isinstance(dnv, float) and 0 < dnv < 1
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(
|
|
num_inference_steps,
|
|
strength,
|
|
device,
|
|
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
|
|
)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
|
|
add_noise = True if denoising_start is None else False
|
|
|
|
|
|
|
|
# --------------------------------------------
|
|
# IMAGE PREPARATION UTILITIES
|
|
# --------------------------------------------
|
|
|
|
def fbm(x, y, scale, octaves, lacunarity, gain):
|
|
"""
|
|
Fractal Brownian Motion (fbm) noise generator.
|
|
Combines multiple octaves of Perlin noise.
|
|
"""
|
|
total = 0.0
|
|
amplitude = 1.0
|
|
frequency = 1.0
|
|
for _ in range(octaves):
|
|
total += amplitude * pnoise2(x * frequency / scale, y * frequency / scale)
|
|
amplitude *= gain
|
|
frequency *= lacunarity
|
|
return total
|
|
|
|
def pattern(x, y, scale, octaves, lacunarity, gain):
|
|
"""
|
|
Domain-warped pattern using fbm.
|
|
Warps coordinates before applying final fbm call.
|
|
"""
|
|
q0 = fbm(x, y, scale, octaves, lacunarity, gain)
|
|
q1 = fbm(x + 5.2, y + 1.3, scale, octaves, lacunarity, gain)
|
|
return fbm(x + 80.0 * q0, y + 80.0 * q1, scale, octaves, lacunarity, gain)
|
|
|
|
def generate_pattern_noise(size=(512, 512), scale=80, octaves=5, lacunarity=2.0, gain=0.5,
|
|
saturation=1.5, brightness=1, seed=None):
|
|
"""
|
|
Generate colored noise image using domain-warped fractal noise and random offsets.
|
|
"""
|
|
width, height = size
|
|
img = np.zeros((height, width, 3), dtype=np.uint8)
|
|
rng = random.Random(seed)
|
|
offset_x = rng.uniform(-1000, 1000)
|
|
offset_y = rng.uniform(-1000, 1000)
|
|
|
|
for i in range(height):
|
|
for j in range(width):
|
|
x = i + offset_x
|
|
y = j + offset_y
|
|
|
|
r_val = pattern(x, y, scale, octaves, lacunarity, gain)
|
|
g_val = pattern(x + 100, y + 100, scale, octaves, lacunarity, gain)
|
|
b_val = pattern(x + 200, y + 200, scale, octaves, lacunarity, gain)
|
|
|
|
r, g, b = [(val + 1) / 2 for val in (r_val, g_val, b_val)]
|
|
avg = (r + g + b) / 3
|
|
|
|
r = np.clip(avg + (r - avg) * saturation, 0, 1) * brightness
|
|
g = np.clip(avg + (g - avg) * saturation, 0, 1) * brightness
|
|
b = np.clip(avg + (b - avg) * saturation, 0, 1) * brightness
|
|
|
|
img[i, j] = [int(np.clip(r, 0, 1) * 255), int(np.clip(g, 0, 1) * 255), int(np.clip(b, 0, 1) * 255)]
|
|
|
|
image = Image.fromarray(img).filter(ImageFilter.GaussianBlur(radius=2))
|
|
return image
|
|
|
|
def measure_fade_pixels(mask_np):
|
|
"""
|
|
Estimate edge fade width from a grayscale mask using gradient analysis.
|
|
Attempts measurement from top, right, bottom, and left.
|
|
Returns fallback value if no valid result is found.
|
|
"""
|
|
h, w = mask_np.shape
|
|
|
|
def measure_line(line):
|
|
grad = np.gradient(line)
|
|
max_grad = np.max(grad)
|
|
if max_grad == 0:
|
|
return None
|
|
half_max = max_grad / 2.0
|
|
indices = np.where(grad >= half_max)[0]
|
|
if len(indices) == 0:
|
|
return None
|
|
return (indices[-1] - indices[0]) / 2.0
|
|
|
|
lines = [
|
|
mask_np[:, w // 2], # Top
|
|
mask_np[h // 2, ::-1], # Right
|
|
mask_np[::-1, w // 2], # Bottom
|
|
mask_np[h // 2, :] # Left
|
|
]
|
|
|
|
for line in lines:
|
|
result = measure_line(line)
|
|
if result and result > 0:
|
|
return result
|
|
|
|
return 16.0 # Fallback
|
|
|
|
def compute_fade_mask(binary_mask, fade_pixels=16):
|
|
"""
|
|
Compute a smooth fade-out mask from a binary mask using distance transform.
|
|
Pixels within `fade_pixels` of the edge get values between 0 and 1.
|
|
"""
|
|
mask_uint8 = (binary_mask * 255).astype(np.uint8)
|
|
dist = cv2.distanceTransform(mask_uint8, distanceType=cv2.DIST_L2, maskSize=5)
|
|
return np.clip(dist / fade_pixels, 0, 1)
|
|
|
|
def preprocess_image(image, mask, noise_fill_image=True, seed=None):
|
|
"""
|
|
Preprocesses image with optional noise-based fill on masked areas.
|
|
Includes smoothing transitions and standard cropping and normalization.
|
|
"""
|
|
image = image.convert("RGB")
|
|
|
|
if noise_fill_image:
|
|
mask = mask.convert("L").resize(image.size, Image.Resampling.NEAREST)
|
|
mask_blur = np.array(mask, dtype=np.float32) / 255.0
|
|
fade_pixels = measure_fade_pixels(mask_blur)
|
|
binary_mask = (mask_blur > 0.5).astype(np.float32)
|
|
|
|
noise_img = generate_pattern_noise(size=image.size, seed=seed)
|
|
image_np = np.array(image)
|
|
noise_np = np.array(noise_img)
|
|
|
|
fade_mask = compute_fade_mask(binary_mask, fade_pixels=fade_pixels)
|
|
fade_mask = binary_mask * fade_mask
|
|
fade_mask_3c = np.repeat(fade_mask[:, :, None], 3, axis=2)
|
|
|
|
alpha = 0.75
|
|
blended = (1 - alpha * fade_mask_3c) * image_np + alpha * fade_mask_3c * noise_np
|
|
image = Image.fromarray(blended.astype(np.uint8))
|
|
image.save("noised_image.png")
|
|
|
|
image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image)
|
|
image = transforms.ToTensor()(image)
|
|
image = image * 2 - 1 # Normalize to [-1, 1]
|
|
return image.unsqueeze(0)
|
|
|
|
def preprocess_map(map):
|
|
"""
|
|
Convert mask to normalized, inverted grayscale tensor.
|
|
Applies value remapping and center crop.
|
|
"""
|
|
map = map.convert("L")
|
|
map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map)
|
|
map = transforms.ToTensor()(map)
|
|
map = (map - 0.05) / (0.95 - 0.05)
|
|
map = torch.clamp(map, 0.0, 1.0)
|
|
return 1.0 - map
|
|
|
|
# --------------------------------------------
|
|
# APPLY PREPROCESSING
|
|
# --------------------------------------------
|
|
|
|
# Prepare original image with optional noise fill
|
|
original_image_tensor = preprocess_image(image, mask, noise_fill_image=noise_fill_image).to(device)
|
|
image = original_image_tensor.clone().to(device)
|
|
|
|
# Prepare mask as rescaled tensor map
|
|
map = preprocess_map(mask).to(device)
|
|
map = torchvision.transforms.Resize(
|
|
tuple(s // self.vae_scale_factor for s in original_image_tensor.shape[2:]), antialias=None
|
|
)(map)
|
|
|
|
# Generate latent tensor with noise
|
|
original_with_noise = self.prepare_latents(
|
|
original_image_tensor, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
|
)
|
|
|
|
# Create thresholded masks over timesteps
|
|
thresholds = torch.arange(num_inference_steps, dtype=map.dtype) / num_inference_steps
|
|
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
|
|
masks = map > (thresholds + (denoising_start or 0))
|
|
|
|
|
|
|
|
# 6. Prepare latent variables.
|
|
latents = self.prepare_latents(
|
|
image,
|
|
latent_timestep,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
add_noise,
|
|
)
|
|
|
|
# 7. Prepare extra step kwargs.
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
height, width = latents.shape[-2:]
|
|
height = height * self.vae_scale_factor
|
|
width = width * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
# 8. Prepare added time ids & embeddings
|
|
if negative_original_size is None:
|
|
negative_original_size = original_size
|
|
if negative_target_size is None:
|
|
negative_target_size = target_size
|
|
|
|
add_text_embeds = pooled_prompt_embeds
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
aesthetic_score,
|
|
negative_aesthetic_score,
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device)
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
device,
|
|
batch_size * num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
# 9. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
# 9.1 Apply denoising_end
|
|
if (
|
|
denoising_end is not None
|
|
and denoising_start is not None
|
|
and denoising_value_valid(denoising_end)
|
|
and denoising_value_valid(denoising_start)
|
|
and denoising_start >= denoising_end
|
|
):
|
|
raise ValueError(f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: {denoising_end} when using type float."
|
|
)
|
|
elif denoising_end is not None and denoising_value_valid(denoising_end):
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
# 9.2 Optionally get Guidance Scale Embedding
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
self._num_timesteps = len(timesteps)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# diff diff
|
|
if i == 0 and denoising_start is None:
|
|
latents = original_with_noise[:1]
|
|
else:
|
|
mask = masks[i].unsqueeze(0)
|
|
# cast mask to the same type as latents etc
|
|
mask = mask.to(latents.dtype)
|
|
mask = mask.unsqueeze(1) # fit shape
|
|
latents = original_with_noise[i] * mask + latents * (1 - mask)
|
|
# end diff diff
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
added_cond_kwargs["image_embeds"] = image_embeds
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
else:
|
|
raise ValueError(
|
|
"For the given accelerator, there seems to be an unexpected problem in type-casting. Please file an issue on the PyTorch GitHub repository. See also: https://github.com/huggingface/diffusers/pull/7446/."
|
|
)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
|
negative_pooled_prompt_embeds = callback_outputs.pop(
|
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
|
)
|
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
|
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type != "latent":
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
elif latents.dtype != self.vae.dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
self.vae = self.vae.to(latents.dtype)
|
|
else:
|
|
raise ValueError(
|
|
"For the given accelerator, there seems to be an unexpected problem in type-casting. Please file an issue on the PyTorch GitHub repository. See also: https://github.com/huggingface/diffusers/pull/7446/."
|
|
)
|
|
# unscale/denormalize the latents
|
|
# denormalize with the mean and std if available and not None
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
|
if has_latents_mean and has_latents_std:
|
|
latents_mean = (
|
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents_std = (
|
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
|
else:
|
|
latents = latents / self.vae.config.scaling_factor
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
# cast back to fp16 if needed
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
else:
|
|
image = latents
|
|
|
|
# apply watermark if available
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
### pipeline end
|
|
|
|
### script start
|
|
|
|
import gradio as gr
|
|
from installer import install
|
|
from modules import shared, scripts, processing, sd_models
|
|
|
|
|
|
class Script(scripts.Script):
|
|
orig_pipeline = None
|
|
|
|
def title(self):
|
|
return 'SoftFill: Inpaint with Differential diffusion'
|
|
|
|
def show(self, is_img2img):
|
|
return is_img2img if shared.native else False
|
|
|
|
def ui(self, _is_img2img):
|
|
with gr.Row():
|
|
gr.HTML('<a href="https://github.com/zacheryvaughn/softfill-pipelines">  SoftFill: Inpaint with Differential diffusion</a><br>')
|
|
with gr.Row():
|
|
enabled = gr.Checkbox(label='Enabled', value=True)
|
|
with gr.Row():
|
|
noise = gr.Checkbox(label='Apply noise', value=True)
|
|
strength = gr.Slider(minimum=0.0, maximum=1.0, value=0.65, label='Fill strength')
|
|
return enabled, noise, strength
|
|
|
|
def run(self, p: processing.StableDiffusionProcessingImg2Img, enabled, noise, strength): # pylint: disable=arguments-differ
|
|
if not enabled:
|
|
return
|
|
if shared.sd_model_type not in ['sdxl']:
|
|
shared.log.error(f'SoftFill: incorrect base model: {shared.sd_model.__class__.__name__}')
|
|
return
|
|
if not hasattr(p, 'init_images') or len(p.init_images) == 0:
|
|
shared.log.error('SoftFill: no input image')
|
|
return
|
|
if not hasattr(p, 'mask') or p.mask is None:
|
|
shared.log.error('SoftFill: no input mask')
|
|
return
|
|
|
|
try:
|
|
global pnoise2 # pylint: disable=global-statement
|
|
install('noise')
|
|
import noise as noise_module
|
|
pnoise2 = noise_module.pnoise2
|
|
except Exception as e:
|
|
shared.log.error(f'SoftFill: {e}')
|
|
return
|
|
|
|
self.orig_pipeline = shared.sd_model
|
|
try:
|
|
shared.sd_model = sd_models.switch_pipe(StableDiffusionXLSoftFillPipeline, shared.sd_model)
|
|
if shared.sd_model.__class__.__name__ not in sd_models.pipe_switch_task_exclude:
|
|
sd_models.pipe_switch_task_exclude.append(shared.sd_model.__class__.__name__)
|
|
except Exception as e:
|
|
shared.log.error(f'SoftFill: {e}')
|
|
shared.sd_model = self.orig_pipeline
|
|
self.orig_pipeline = None
|
|
return
|
|
|
|
p.task_args['noise_fill_image'] = noise
|
|
p.task_args['strength'] = strength
|
|
p.task_args['image'] = p.init_images[0]
|
|
p.task_args['mask'] = p.mask
|
|
shared.log.info(f'SoftFill: cls={shared.sd_model.__class__.__name__} {p.task_args}')
|
|
|
|
def after(self, p: processing.StableDiffusionProcessingImg2Img, *args, **kwargs): # pylint: disable=unused-argument
|
|
if self.orig_pipeline is not None:
|
|
shared.sd_model = self.orig_pipeline
|
|
self.orig_pipeline = None
|