mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
1984 lines
104 KiB
Python
1984 lines
104 KiB
Python
"""
|
|
credits: https://github.com/exx8/differential-diffusion
|
|
code from: https://github.com/exx8/differential-diffusion/blob/main/SDXL/diff_pipe.py
|
|
sdnext implementation follows after pipeline-end
|
|
"""
|
|
|
|
### pipeline start
|
|
|
|
import inspect
|
|
import hashlib
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
from packaging import version
|
|
|
|
import PIL.Image
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor
|
|
from diffusers.configuration_utils import FrozenDict
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import PIL_INTERPOLATION, logging, deprecate, is_accelerate_available, is_accelerate_version, replace_example_docstring
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import StableDiffusionXLImg2ImgPipeline
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
|
... "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16
|
|
... )
|
|
>>> pipe = pipe.to("cuda")
|
|
>>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
|
|
|
|
>>> init_image = load_image(url).convert("RGB")
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
|
>>> image = pipe(prompt, image=init_image).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
"""
|
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
# rescale the results from guidance (fixes overexposure)
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|
|
|
|
|
|
class StableDiffusionXLDiffImg2ImgPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
|
|
r"""
|
|
Pipeline for text-to-image generation using Stable Diffusion XL.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
In addition the pipeline inherits the following loading methods:
|
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
|
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
|
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
|
|
|
|
as well as the following saving methods:
|
|
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
|
specifically the
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
|
variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer_2 (`CLIPTokenizer`):
|
|
Second Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
"""
|
|
_optional_components = ["tokenizer", "text_encoder"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
tokenizer_2: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
requires_aesthetics_score: bool = False,
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None, # pylint: disable=unused-argument
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
)
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.watermark = None
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
processing larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ
|
|
r"""
|
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
|
from accelerate import cpu_offload_with_hook
|
|
else:
|
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
model_sequence = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
model_sequence.extend([self.unet, self.vae])
|
|
|
|
hook = None
|
|
for cpu_offloaded_model in model_sequence:
|
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
|
|
|
# We'll offload the last model manually.
|
|
self.final_offload_hook = hook # pylint: disable=attribute-defined-outside-init
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt: str,
|
|
prompt_2: Optional[str] = None,
|
|
device: Optional[torch.device] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[str] = None,
|
|
negative_prompt_2: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
lora_scale (`float`, *optional*):
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
|
self._lora_scale = lora_scale # pylint: disable=attribute-defined-outside-init
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
# Define tokenizers and text encoders
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
# textual inversion: procecss multi-vector tokens if necessary
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = text_encoder(
|
|
text_input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt # pylint: disable=no-member
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
uncond_tokens: List[str]
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
negative_prompt_embeds_list = []
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
if do_classifier_free_guidance:
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
prompt_2,
|
|
strength,
|
|
num_inference_steps,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
negative_prompt_2=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
):
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
if num_inference_steps is None:
|
|
raise ValueError("`num_inference_steps` cannot be None.")
|
|
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
|
raise ValueError(
|
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
|
f" {type(num_inference_steps)}."
|
|
)
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): # pylint: disable=unused-argument
|
|
# get the original timestep using init_timestep
|
|
if denoising_start is None:
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
else:
|
|
t_start = 0
|
|
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
|
|
|
# Strength is irrelevant if we directly request a timestep to start at;
|
|
# that is, strength is determined by the denoising_start instead.
|
|
if denoising_start is not None:
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_start * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
timesteps = list(filter(lambda ts: ts < discrete_timestep_cutoff, timesteps))
|
|
return torch.tensor(timesteps), len(timesteps)
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_latents(
|
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
|
):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.text_encoder_2.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
|
|
if image.shape[1] == 4:
|
|
init_latents = image
|
|
|
|
else:
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
if self.vae.config.force_upcast:
|
|
image = image.float()
|
|
self.vae.to(dtype=torch.float32)
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
elif isinstance(generator, list):
|
|
init_latents = [
|
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
|
|
|
if self.vae.config.force_upcast:
|
|
self.vae.to(dtype)
|
|
|
|
init_latents = init_latents.to(dtype)
|
|
init_latents = self.vae.config.scaling_factor * init_latents
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
|
# expand init_latents for batch_size
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
|
)
|
|
else:
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
if add_noise:
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
def _get_add_time_ids(
|
|
self, original_size, crops_coords_top_left, target_size, aesthetic_score, negative_aesthetic_score, dtype
|
|
):
|
|
if self.config.requires_aesthetics_score: # pylint: disable=no-member
|
|
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
|
add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,))
|
|
else:
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
add_neg_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
|
|
passed_add_embed_dim = (
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim
|
|
)
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
|
|
|
if (
|
|
expected_add_embed_dim > passed_add_embed_dim
|
|
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
|
)
|
|
elif (
|
|
expected_add_embed_dim < passed_add_embed_dim
|
|
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
|
)
|
|
elif expected_add_embed_dim != passed_add_embed_dim:
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
)
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
|
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
|
|
|
return add_time_ids, add_neg_time_ids
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
|
|
def upcast_vae(self):
|
|
dtype = self.vae.dtype
|
|
self.vae.to(dtype=torch.float32)
|
|
use_torch_2_0_or_xformers = isinstance(
|
|
self.vae.decoder.mid_block.attentions[0].processor,
|
|
(
|
|
AttnProcessor2_0,
|
|
XFormersAttnProcessor,
|
|
FusedAttnProcessor2_0,
|
|
),
|
|
)
|
|
# if xformers or torch_2_0 is used attention block does not need
|
|
# to be in float32 which can save lots of memory
|
|
if use_torch_2_0_or_xformers:
|
|
self.vae.post_quant_conv.to(dtype)
|
|
self.vae.decoder.conv_in.to(dtype)
|
|
self.vae.decoder.mid_block.to(dtype)
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
image: Union[
|
|
torch.FloatTensor,
|
|
PIL.Image.Image,
|
|
np.ndarray,
|
|
List[torch.FloatTensor],
|
|
List[PIL.Image.Image],
|
|
List[np.ndarray],
|
|
] = None,
|
|
strength: float = 0.3,
|
|
num_inference_steps: int = 50,
|
|
denoising_start: Optional[float] = None,
|
|
denoising_end: Optional[float] = None,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
original_size: Tuple[int, int] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Tuple[int, int] = None,
|
|
aesthetic_score: float = 6.0,
|
|
negative_aesthetic_score: float = 2.5,
|
|
map: torch.FloatTensor = None, # pylint: disable=redefined-builtin
|
|
original_image: Union[
|
|
torch.FloatTensor,
|
|
PIL.Image.Image,
|
|
np.ndarray,
|
|
List[torch.FloatTensor],
|
|
List[PIL.Image.Image],
|
|
List[np.ndarray],
|
|
] = None,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
image (`torch.FloatTensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.FloatTensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
|
|
The image(s) to modify with the pipeline.
|
|
strength (`float`, *optional*, defaults to 0.3):
|
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
|
be maximum and the denoising process will run for the full number of iterations specified in
|
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
|
|
`denoising_start` being declared as an integer, the value of `strength` will be ignored.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
denoising_start (`float`, *optional*):
|
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
|
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
|
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
|
denoising_end (`float`, *optional*):
|
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
|
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
|
|
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
|
|
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
|
|
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
|
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
|
explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
|
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
|
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
|
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
|
Part of SDXL's micro-conditioning as explained in section 2.2 of
|
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
|
|
simulate an aesthetic score of the generated image by influencing the negative text condition.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
|
`tuple. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
strength,
|
|
num_inference_steps,
|
|
callback_steps,
|
|
negative_prompt,
|
|
negative_prompt_2,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_2=negative_prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
|
lora_scale=text_encoder_lora_scale,
|
|
)
|
|
|
|
# 4. Preprocess image
|
|
#image = self.image_processor.preprocess(image) #ideally we would have preprocess the image with diffusers, but for this POC we won't --- it throws a deprecated warning
|
|
map = torchvision.transforms.Resize(tuple(s // self.vae_scale_factor for s in original_image.shape[2:]),antialias=None)(map)
|
|
# 5. Prepare timesteps
|
|
def denoising_value_valid(dnv):
|
|
return type(denoising_end) == float and 0 < dnv < 1
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
#begin diff diff change
|
|
total_time_steps = num_inference_steps
|
|
#end diff diff change
|
|
timesteps, num_inference_steps = self.get_timesteps(
|
|
num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None # pylint: disable=missing-parentheses-for-call-in-test, using-constant-test
|
|
)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
|
|
add_noise = True if denoising_start is None else False
|
|
# 6. Prepare latent variables
|
|
latents = self.prepare_latents(
|
|
image,
|
|
latent_timestep,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
add_noise,
|
|
)
|
|
# 7. Prepare extra step kwargs.
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
height, width = latents.shape[-2:]
|
|
height = height * self.vae_scale_factor
|
|
width = width * self.vae_scale_factor
|
|
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
|
|
# 8. Prepare added time ids & embeddings
|
|
add_text_embeds = pooled_prompt_embeds
|
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
aesthetic_score,
|
|
negative_aesthetic_score,
|
|
dtype=prompt_embeds.dtype,
|
|
)
|
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
if do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device)
|
|
|
|
# 9. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
|
|
# 9.1 Apply denoising_end
|
|
if (
|
|
denoising_end is not None
|
|
and denoising_start is not None
|
|
and denoising_value_valid(denoising_end)
|
|
and denoising_value_valid(denoising_start)
|
|
and denoising_start >= denoising_end
|
|
):
|
|
raise ValueError(f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: {denoising_end} when using type float.")
|
|
elif denoising_end is not None and denoising_value_valid(denoising_end):
|
|
discrete_timestep_cutoff = int(
|
|
round(
|
|
self.scheduler.config.num_train_timesteps
|
|
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
|
)
|
|
)
|
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
|
timesteps = timesteps[:num_inference_steps]
|
|
|
|
# prepartions for diff diff
|
|
original_with_noise = self.prepare_latents(
|
|
original_image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
|
)
|
|
thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps
|
|
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
|
|
masks = map > (thresholds + (denoising_start or 0))
|
|
# end diff diff preparations
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# diff diff
|
|
if i==0 and denoising_start is None:
|
|
latents = original_with_noise[:1]
|
|
else:
|
|
mask = masks[i].unsqueeze(0)
|
|
# cast mask to the same type as latents etc
|
|
mask = mask.to(latents.dtype)
|
|
mask = mask.unsqueeze(1) # fit shape
|
|
latents = original_with_noise[i] * mask + latents * (1 - mask)
|
|
# end diff diff
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
if output_type != "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
else:
|
|
image = latents
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
# apply watermark if available
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
|
|
|
class StableDiffusionDiffImg2ImgPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for text-guided image to image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.__init__
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
requires_safety_checker: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
|
" file"
|
|
)
|
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["steps_offset"] = 1
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
|
deprecation_message = (
|
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
|
)
|
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(scheduler.config)
|
|
new_config["clip_sample"] = False
|
|
scheduler._internal_dict = FrozenDict(new_config)
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
|
version.parse(unet.config._diffusers_version).base_version
|
|
) < version.parse("0.9.0.dev0")
|
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
|
deprecation_message = (
|
|
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
|
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
|
" the `unet/config.json` file"
|
|
)
|
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
|
new_config = dict(unet.config)
|
|
new_config["sample_size"] = 64
|
|
unet._internal_dict = FrozenDict(new_config)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ
|
|
r"""
|
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
|
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
|
`enable_model_cpu_offload`, but performance is lower.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
|
from accelerate import cpu_offload
|
|
else:
|
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
|
cpu_offload(cpu_offloaded_model, device)
|
|
|
|
if self.safety_checker is not None:
|
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
|
|
def enable_model_cpu_offload(self, gpu_id=0): # pylint: disable=arguments-differ
|
|
r"""
|
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
|
"""
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
|
from accelerate import cpu_offload_with_hook
|
|
else:
|
|
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
|
|
|
|
device = torch.device(f"cuda:{gpu_id}")
|
|
|
|
if self.device.type != "cpu":
|
|
self.to("cpu", silence_dtype_warnings=True)
|
|
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
|
|
|
hook = None
|
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
|
|
|
if self.safety_checker is not None:
|
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
|
|
|
# We'll offload the last model manually.
|
|
self.final_offload_hook = hook # pylint: disable=attribute-defined-outside-init
|
|
|
|
@property
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
|
def _execution_device(self):
|
|
r"""
|
|
Returns the device on which the pipeline's models will be executed. After calling
|
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
|
hooks.
|
|
"""
|
|
if not hasattr(self.unet, "_hf_hook"):
|
|
return self.device
|
|
for module in self.unet.modules():
|
|
if (
|
|
hasattr(module, "_hf_hook")
|
|
and hasattr(module._hf_hook, "execution_device") # pylint: disable=protected-access
|
|
and module._hf_hook.execution_device is not None # pylint: disable=protected-access
|
|
):
|
|
return torch.device(module._hf_hook.execution_device) # pylint: disable=protected-access
|
|
return self.device
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
return prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
else:
|
|
has_nsfw_concept = None
|
|
return image, has_nsfw_concept
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
|
def decode_latents(self, latents):
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
|
|
):
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): # pylint: disable=unused-argument
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if isinstance(generator, list):
|
|
init_latents = [
|
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
|
# expand init_latents for batch_size
|
|
deprecation_message = (
|
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
|
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
|
" your script to pass as many initial images as text prompts to suppress this warning."
|
|
)
|
|
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
|
)
|
|
else:
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
lora_scale: Optional[float] = None, # pylint: disable=unused-argument
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: procecss multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: procecss multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
|
|
def preprocess(self, image):
|
|
if isinstance(image, torch.Tensor):
|
|
return image
|
|
elif isinstance(image, PIL.Image.Image):
|
|
image = [image]
|
|
|
|
if isinstance(image[0], PIL.Image.Image):
|
|
w, h = image[0].size
|
|
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8 # noqa: C417
|
|
|
|
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
|
|
image = np.concatenate(image, axis=0)
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = 2.0 * image - 1.0
|
|
image = torch.from_numpy(image)
|
|
elif isinstance(image[0], torch.Tensor):
|
|
image = torch.cat(image, dim=0)
|
|
return image
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
|
strength: float = 1,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: Optional[float] = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
map:torch.FloatTensor = None, # pylint: disable=redefined-builtin
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
|
process.
|
|
strength (`float`, *optional*, defaults to 1):
|
|
Repealed in favor of the map.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference. This parameter will be modulated by `strength`.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale`
|
|
is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
# 3. Encode input prompt
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
)
|
|
|
|
# 4. Preprocess image
|
|
# image = self.preprocess(image)
|
|
|
|
# 5. set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
|
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
map = torchvision.transforms.Resize(tuple(s // self.vae_scale_factor for s in image.shape[2:]),antialias=None)(map)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
|
|
# prepartions
|
|
original_with_noise = self.prepare_latents(
|
|
image, timesteps, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
|
)
|
|
thresholds = torch.arange(len(timesteps), dtype=map.dtype) / len(timesteps)
|
|
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
|
|
masks = map > thresholds
|
|
# end diff diff preparations
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
for i, t in enumerate(timesteps):
|
|
# diff diff
|
|
if i == 0:
|
|
latents = original_with_noise[:1]
|
|
else:
|
|
mask = masks[i].unsqueeze(0)
|
|
# cast mask to the same type as latents etc
|
|
mask = mask.to(latents.dtype)
|
|
mask = mask.unsqueeze(1) # fit shape
|
|
latents = original_with_noise[i] * mask + latents * (1 - mask)
|
|
# end diff diff
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
callback(i, t, latents)
|
|
|
|
# 9. Post-processing
|
|
# image = self.decode_latents(latents)
|
|
|
|
# 10. Run safety checker
|
|
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
#has_nsfw_concept = False
|
|
|
|
# 11. Convert to PIL
|
|
# if output_type == "pil":
|
|
# image = self.numpy_to_pil(image)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
# if not return_dict:
|
|
# return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=latents, nsfw_content_detected=False)
|
|
|
|
### pipeline end
|
|
|
|
### script start
|
|
|
|
import gradio as gr
|
|
import diffusers
|
|
from PIL import Image, ImageEnhance, ImageOps # pylint: disable=reimported
|
|
from torchvision import transforms
|
|
from modules import errors, shared, devices, scripts, processing, sd_models, images
|
|
|
|
|
|
detector = None
|
|
MODELS = {
|
|
'DPT Tiny': 'Intel/dpt-swinv2-tiny-256',
|
|
'DPT Hybrid': 'Intel/dpt-hybrid-midas',
|
|
'DPT Large': 'Intel/dpt-large'
|
|
}
|
|
|
|
|
|
class Script(scripts.Script):
|
|
def title(self):
|
|
return 'Differential diffusion: Individual Pixel Strength'
|
|
|
|
def show(self, is_img2img):
|
|
return is_img2img if shared.native else False
|
|
|
|
def ui(self, _is_img2img):
|
|
with gr.Row():
|
|
gr.HTML('<a href="https://github.com/exx8/differential-diffusion">  Differential diffusion: Individual Pixel Strength</a><br><span>Select a model for auto-preprocess or upload an image map</span><br>')
|
|
with gr.Row():
|
|
enabled = gr.Checkbox(label='Enabled', value=True)
|
|
invert = gr.Checkbox(label='Mask invert', value=False)
|
|
strength = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, label='Mask strength')
|
|
model = gr.Dropdown(label='Model', choices=['None', 'DPT Tiny', 'DPT Hybrid', 'DPT Large'], value='None')
|
|
with gr.Row():
|
|
image = gr.Image(label="Image map", show_label=False, type="pil", source="upload", interactive=True, tool="editor", visible=True, image_mode='RGB')
|
|
return enabled, strength, invert, model, image
|
|
|
|
def depthmap(self, image_init: Image.Image, image_map: Image.Image, model: str, strength: float, invert: bool):
|
|
global detector # pylint: disable=global-statement
|
|
from modules.control.proc.dpt import DPTDetector
|
|
if image_init is None:
|
|
return None, None, None
|
|
if image_map is not None:
|
|
image_map = image_map.resize(image_init.size, Image.Resampling.LANCZOS)
|
|
if model != 'None':
|
|
if detector is None:
|
|
detector = DPTDetector()
|
|
image_map = detector(image_init, MODELS[model])
|
|
if image_map is not None:
|
|
if strength != 1.0:
|
|
enhancer = ImageEnhance.Brightness(image_map)
|
|
image_map = enhancer.enhance(strength)
|
|
image_map = image_map.convert('L')
|
|
if invert:
|
|
image_map = ImageOps.invert(image_map)
|
|
if shared.opts.save_init_img:
|
|
init_img_hash = hashlib.sha256(image_map.tobytes()).hexdigest()[0:8] # pylint: disable=attribute-defined-outside-init
|
|
images.save_image(image_map, path=shared.opts.outdir_init_images, basename=None, forced_filename=init_img_hash, suffix="-init-image")
|
|
else:
|
|
return None, None, None
|
|
image_mask = image_map.copy()
|
|
image_map = transforms.ToTensor()(image_map)
|
|
image_map = image_map.to(devices.device)
|
|
image_init = 2 * transforms.ToTensor()(image_init) - 1
|
|
image_init = image_init.unsqueeze(0)
|
|
image_init = image_init.to(devices.device)
|
|
return image_init, image_map, image_mask
|
|
|
|
def run(self, p: processing.StableDiffusionProcessingImg2Img, enabled, strength, invert, model, image): # pylint: disable=arguments-differ
|
|
if not enabled:
|
|
return
|
|
if shared.sd_model_type not in ['sdxl', 'sd', 'f1']:
|
|
shared.log.error(f'Differential-diffusion: incorrect base model: {shared.sd_model.__class__.__name__}')
|
|
return
|
|
if not hasattr(p, 'init_images') or len(p.init_images) == 0:
|
|
shared.log.error('Differential-diffusion: no input images')
|
|
return
|
|
|
|
image_init, image_map, image_mask = self.depthmap(p.init_images[0], image, model, strength, invert)
|
|
if image_map is None:
|
|
shared.log.error('Differential-diffusion: no image map')
|
|
return
|
|
|
|
orig_pipeline = shared.sd_model
|
|
pipe = None
|
|
try:
|
|
# shared.sd_model = diffusers.StableDiffusionPipeline.from_pipe(shared.sd_model, **{ 'custom_pipeline': 'kohya_hires_fix', 'high_res_fix': high_res_fix })
|
|
# from examples.community.pipeline_stable_diffusion_xl_differential_img2img import StableDiffusionXLDifferentialImg2ImgPipeline
|
|
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["StableDiffusionXLDiffImg2ImgPipeline"] = StableDiffusionXLDiffImg2ImgPipeline
|
|
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["StableDiffusionDiffImg2ImgPipeline"] = StableDiffusionDiffImg2ImgPipeline
|
|
if shared.sd_model_type == 'sdxl':
|
|
pipe = StableDiffusionXLDiffImg2ImgPipeline(
|
|
text_encoder=shared.sd_model.text_encoder,
|
|
text_encoder_2=shared.sd_model.text_encoder_2,
|
|
tokenizer=shared.sd_model.tokenizer,
|
|
tokenizer_2=shared.sd_model.tokenizer_2,
|
|
unet=shared.sd_model.unet,
|
|
vae=shared.sd_model.vae,
|
|
scheduler=shared.sd_model.scheduler,
|
|
)
|
|
elif shared.sd_model_type == 'sd':
|
|
pipe = StableDiffusionDiffImg2ImgPipeline(
|
|
text_encoder=shared.sd_model.text_encoder,
|
|
tokenizer=shared.sd_model.tokenizer,
|
|
unet=shared.sd_model.unet,
|
|
vae=shared.sd_model.vae,
|
|
scheduler=shared.sd_model.scheduler,
|
|
feature_extractor=getattr(shared.sd_model, 'feature_extractor', None),
|
|
safety_checker=None,
|
|
requires_safety_checker=False,
|
|
)
|
|
elif shared.sd_model_type == 'f1':
|
|
pipe = diffusers.StableDiffusionPipeline.from_pipe(shared.sd_model, **{ 'custom_pipeline': 'pipeline_flux_differential_img2img' })
|
|
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["FluxDifferentialImg2ImgPipeline"] = pipe.__class__
|
|
sd_models.copy_diffuser_options(pipe, shared.sd_model)
|
|
sd_models.set_diffuser_options(pipe)
|
|
p.task_args['image'] = image_init
|
|
p.task_args['map'] = image_map
|
|
if shared.sd_model_type == 'sdxl':
|
|
p.task_args['original_image'] = image_init
|
|
if p.batch_size > 1:
|
|
shared.log.warning(f'Differential-diffusion: batch-size={p.batch_size} parallel processing not supported')
|
|
p.batch_size = 1
|
|
shared.log.debug(f'Differential-diffusion: pipeline={pipe.__class__.__name__} strength={strength} model={model} auto={image is None}')
|
|
shared.sd_model = pipe
|
|
sd_models.move_model(pipe.vae, devices.device, force=True)
|
|
except Exception as e:
|
|
shared.log.error(f'Differential-diffusion: pipeline creation failed: {e}')
|
|
errors.display(e, 'Differential-diffusion: pipeline creation failed')
|
|
shared.sd_model = orig_pipeline
|
|
|
|
# run pipeline
|
|
processed: processing.Processed = processing.process_images(p) # runs processing using main loop
|
|
if shared.opts.include_mask:
|
|
p.image_mask = image_mask
|
|
if image_mask is not None and isinstance(image_mask, Image.Image):
|
|
processed.images.append(image_mask)
|
|
|
|
# restore pipeline and params
|
|
pipe = None
|
|
shared.sd_model = orig_pipeline
|
|
devices.torch_gc()
|
|
return processed
|