1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/shared.py
Vladimir Mandic f2610c3936 ip adapter masking
2024-04-18 12:43:51 -04:00

1135 lines
67 KiB
Python

import io
import os
import sys
import time
import json
import threading
import contextlib
from types import SimpleNamespace
from urllib.parse import urlparse
from enum import Enum
import requests
import gradio as gr
import fasteners
import orjson
import diffusers
from rich.console import Console
from modules import errors, shared_items, shared_state, cmd_args, theme
from modules.paths import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # pylint: disable=W0611
from modules.dml import memory_providers, default_memory_provider, directml_do_hijack
from modules.onnx_impl import initialize_onnx, execution_providers
from modules.zluda import initialize_zluda
import modules.interrogate
import modules.memmon
import modules.styles
import modules.devices as devices # pylint: disable=R0402
import modules.paths as paths
from installer import print_dict
from installer import log as central_logger # pylint: disable=E0611
errors.install([gr])
demo: gr.Blocks = None
api = None
log = central_logger
progress_print_out = sys.stdout
parser = cmd_args.parser
url = 'https://github.com/vladmandic/automatic'
cmd_opts, _ = parser.parse_known_args()
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
xformers_available = False
locking_available = True
clip_model = None
interrogator = modules.interrogate.InterrogateModels("interrogate")
sd_upscalers = []
face_restorers = []
tab_names = []
extra_networks = []
options_templates = {}
hypernetworks = {}
loaded_hypernetworks = []
settings_components = None
latent_upscale_default_mode = "None"
latent_upscale_modes = {
"Latent Nearest": {"mode": "nearest", "antialias": False},
"Latent Nearest-exact": {"mode": "nearest-exact", "antialias": False},
"Latent Area": {"mode": "area", "antialias": False},
"Latent Bilinear": {"mode": "bilinear", "antialias": False},
"Latent Bicubic": {"mode": "bicubic", "antialias": False},
"Latent Bilinear antialias": {"mode": "bilinear", "antialias": True},
"Latent Bicubic antialias": {"mode": "bicubic", "antialias": True},
# "Latent Linear": {"mode": "linear", "antialias": False}, # not supported for latents with channels=4
# "Latent Trilinear": {"mode": "trilinear", "antialias": False}, # not supported for latents with channels=4
}
restricted_opts = {
"samples_filename_pattern",
"directories_filename_pattern",
"outdir_samples",
"outdir_txt2img_samples",
"outdir_img2img_samples",
"outdir_extras_samples",
"outdir_control_samples",
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
}
resize_modes = ["None", "Fixed", "Crop", "Fill", "Outpaint"]
compatibility_opts = ['clip_skip', 'uni_pc_lower_order_final', 'uni_pc_order']
console = Console(log_time=True, log_time_format='%H:%M:%S-%f')
dir_timestamps = {}
dir_cache = {}
class Backend(Enum):
ORIGINAL = 1
DIFFUSERS = 2
state = shared_state.State()
if not hasattr(cmd_opts, "use_openvino"):
cmd_opts.use_openvino = False
def readfile(filename, silent=False, lock=False):
global locking_available # pylint: disable=global-statement
data = {}
lock_file = None
locked = False
if lock and locking_available:
try:
lock_file = fasteners.InterProcessReaderWriterLock(f"{filename}.lock")
lock_file.logger.disabled = True
locked = lock_file.acquire_read_lock(blocking=True, timeout=3)
except Exception as e:
lock_file = None
locking_available = False
log.error(f'File read lock: file="{filename}" {e}')
locked = False
try:
# if not os.path.exists(filename):
# return {}
t0 = time.time()
with open(filename, "rb") as file:
b = file.read()
data = orjson.loads(b) # pylint: disable=no-member
# if type(data) is str:
# data = json.loads(data)
t1 = time.time()
if not silent:
log.debug(f'Read: file="{filename}" json={len(data)} bytes={os.path.getsize(filename)} time={t1-t0:.3f}')
except Exception as e:
if not silent:
log.error(f'Reading failed: {filename} {e}')
try:
if locking_available and lock_file is not None:
lock_file.release_read_lock()
if locked and os.path.exists(f"{filename}.lock"):
os.remove(f"{filename}.lock")
except Exception:
locking_available = False
return data
def writefile(data, filename, mode='w', silent=False, atomic=False):
import tempfile
global locking_available # pylint: disable=global-statement
lock_file = None
locked = False
def default(obj):
log.error(f'Saving: file="{filename}" not a valid object: {obj}')
return str(obj)
try:
t0 = time.time()
# skipkeys=True, ensure_ascii=True, check_circular=True, allow_nan=True
if type(data) == dict:
output = json.dumps(data, indent=2, default=default)
elif type(data) == list:
output = json.dumps(data, indent=2, default=default)
elif isinstance(data, object):
simple = {}
for k in data.__dict__:
if data.__dict__[k] is not None:
simple[k] = data.__dict__[k]
output = json.dumps(simple, indent=2, default=default)
else:
raise ValueError('not a valid object')
except Exception as e:
log.error(f'Saving failed: file="{filename}" {e}')
return
try:
if locking_available:
lock_file = fasteners.InterProcessReaderWriterLock(f"{filename}.lock") if locking_available else None
lock_file.logger.disabled = True
locked = lock_file.acquire_write_lock(blocking=True, timeout=3) if lock_file is not None else False
except Exception as e:
locking_available = False
lock_file = None
log.error(f'File write lock: file="{filename}" {e}')
locked = False
try:
if atomic:
with tempfile.NamedTemporaryFile(mode=mode, encoding="utf8", delete=False, dir=os.path.dirname(filename)) as f:
f.write(output)
f.flush()
os.fsync(f.fileno())
os.replace(f.name, filename)
else:
with open(filename, mode=mode, encoding="utf8") as file:
file.write(output)
t1 = time.time()
if not silent:
log.debug(f'Save: file="{filename}" json={len(data)} bytes={len(output)} time={t1-t0:.3f}')
except Exception as e:
log.error(f'Saving failed: file="{filename}" {e}')
try:
if locking_available and lock_file is not None:
lock_file.release_write_lock()
if locked and os.path.exists(f"{filename}.lock"):
os.remove(f"{filename}.lock")
except Exception:
locking_available = False
# early select backend
default_backend = 'diffusers'
early_opts = readfile(cmd_opts.config, silent=True)
early_backend = early_opts.get('sd_backend', default_backend)
backend = Backend.DIFFUSERS if early_backend.lower() == 'diffusers' else Backend.ORIGINAL
if cmd_opts.backend is not None: # override with args
backend = Backend.DIFFUSERS if cmd_opts.backend.lower() == 'diffusers' else Backend.ORIGINAL
if cmd_opts.use_openvino: # override for openvino
backend = Backend.DIFFUSERS
from modules.intel.openvino import get_device_list as get_openvino_device_list # pylint: disable=ungrouped-imports
class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, folder=None, submit=None, comment_before='', comment_after=''):
self.default = default
self.label = label
self.component = component
self.component_args = component_args
self.onchange = onchange
self.section = section
self.refresh = refresh
self.folder = folder
self.comment_before = comment_before # HTML text that will be added after label in UI
self.comment_after = comment_after # HTML text that will be added before label in UI
self.submit = submit
def link(self, label, uri):
self.comment_before += f"[<a href='{uri}' target='_blank'>{label}</a>]"
return self
def js(self, label, js_func):
self.comment_before += f"[<a onclick='{js_func}(); return false'>{label}</a>]"
return self
def info(self, info):
self.comment_after += f"<span class='info'>({info})</span>"
return self
def html(self, info):
self.comment_after += f"<span class='info'>{info}</span>"
return self
def needs_restart(self):
self.comment_after += " <span class='info'>(requires restart)</span>"
return self
def options_section(section_identifier, options_dict):
for v in options_dict.values():
v.section = section_identifier
return options_dict
def list_checkpoint_tiles():
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.checkpoint_tiles()
default_checkpoint = list_checkpoint_tiles()[0] if len(list_checkpoint_tiles()) > 0 else "model.ckpt"
def is_url(string):
parsed_url = urlparse(string)
return all([parsed_url.scheme, parsed_url.netloc])
def reload_hypernetworks():
from modules.hypernetworks import hypernetwork
global hypernetworks # pylint: disable=W0603
hypernetworks = hypernetwork.list_hypernetworks(opts.hypernetwork_dir)
def refresh_checkpoints():
import modules.sd_models # pylint: disable=W0621
return modules.sd_models.list_models()
def refresh_vaes():
import modules.sd_vae # pylint: disable=W0621
modules.sd_vae.refresh_vae_list()
def refresh_upscalers():
import modules.modelloader # pylint: disable=W0621
modules.modelloader.load_upscalers()
def list_samplers():
import modules.sd_samplers # pylint: disable=W0621
modules.sd_samplers.set_samplers()
return modules.sd_samplers.all_samplers
def temp_disable_extensions():
disable_safe = ['sd-webui-controlnet', 'multidiffusion-upscaler-for-automatic1111', 'a1111-sd-webui-lycoris', 'sd-webui-agent-scheduler', 'clip-interrogator-ext', 'stable-diffusion-webui-rembg', 'sd-extension-chainner', 'stable-diffusion-webui-images-browser']
disable_diffusers = ['sd-webui-controlnet', 'multidiffusion-upscaler-for-automatic1111', 'a1111-sd-webui-lycoris', 'sd-webui-animatediff']
disable_themes = ['sd-webui-lobe-theme', 'cozy-nest', 'sdnext-ui-ux']
disable_original = []
disabled = []
if modules.shared.cmd_opts.theme is not None:
theme_name = modules.shared.cmd_opts.theme
else:
theme_name = f'{modules.shared.opts.theme_type.lower()}/{modules.shared.opts.gradio_theme}'
if theme_name == 'lobe':
disable_themes.remove('sd-webui-lobe-theme')
elif theme_name == 'cozy-nest' or theme_name == 'cozy':
disable_themes.remove('cozy-nest')
elif '/' not in theme_name: # set default themes per type
if theme_name == 'standard' or theme_name == 'default':
theme_name = 'standard/black-teal'
if theme_name == 'modern':
theme_name = 'modern/sdxl_alpha'
if theme_name == 'gradio':
theme_name = 'gradio/default'
if theme_name == 'huggingface':
theme_name = 'huggingface/blaaa'
if theme_name.startswith('standard'):
modules.shared.opts.data['theme_type'] = 'Standard'
modules.shared.opts.data['gradio_theme'] = theme_name[9:]
elif theme_name.startswith('modern'):
modules.shared.opts.data['theme_type'] = 'Modern'
modules.shared.opts.data['gradio_theme'] = theme_name[7:]
disable_themes.remove('sdnext-ui-ux')
elif theme_name.startswith('gradio'):
modules.shared.opts.data['theme_type'] = 'None'
modules.shared.opts.data['gradio_theme'] = theme_name
elif theme_name.startswith('huggingface'):
modules.shared.opts.data['theme_type'] = 'None'
modules.shared.opts.data['gradio_theme'] = theme_name
else:
modules.shared.opts.data['theme_type'] = 'None'
modules.shared.opts.data['gradio_theme'] = theme_name
for ext in disable_themes:
if ext.lower() not in opts.disabled_extensions:
disabled.append(ext)
if cmd_opts.safe:
for ext in disable_safe:
if ext.lower() not in opts.disabled_extensions:
disabled.append(ext)
if backend == Backend.DIFFUSERS:
for ext in disable_diffusers:
if ext.lower() not in opts.disabled_extensions:
disabled.append(ext)
if backend == Backend.ORIGINAL:
for ext in disable_original:
if ext.lower() not in opts.disabled_extensions:
disabled.append(ext)
cmd_opts.controlnet_loglevel = 'WARNING'
return disabled
if devices.backend == "cpu":
cross_attention_optimization_default = "Scaled-Dot-Product" if backend == Backend.DIFFUSERS else "Doggettx's"
elif devices.backend == "mps":
cross_attention_optimization_default = "Scaled-Dot-Product" if backend == Backend.DIFFUSERS else "Doggettx's"
elif devices.backend == "directml":
cross_attention_optimization_default = "Dynamic Attention BMM" if backend == Backend.DIFFUSERS else "Sub-quadratic"
else: # cuda, rocm, ipex
cross_attention_optimization_default ="Scaled-Dot-Product"
if devices.backend == "rocm":
sdp_options_default = ['Memory attention', 'Math attention']
#elif devices.backend == "zluda":
# sdp_options_default = ['Math attention']
else:
sdp_options_default = ['Flash attention', 'Memory attention', 'Math attention']
options_templates.update(options_section(('sd', "Execution & Models"), {
"sd_backend": OptionInfo(default_backend, "Execution backend", gr.Radio, {"choices": ["original", "diffusers"] }),
"sd_model_checkpoint": OptionInfo(default_checkpoint, "Base model", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_model_refiner": OptionInfo('None', "Refiner model", gr.Dropdown, lambda: {"choices": ['None'] + list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_vae": OptionInfo("Automatic", "VAE model", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
"sd_checkpoint_autoload": OptionInfo(True, "Model autoload on start"),
"sd_model_dict": OptionInfo('None', "Use separate base dict", gr.Dropdown, lambda: {"choices": ['None'] + list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"stream_load": OptionInfo(False, "Load models using stream loading method", gr.Checkbox, {"visible": backend == Backend.ORIGINAL }),
"model_reuse_dict": OptionInfo(False, "Reuse loaded model dictionary", gr.Checkbox, {"visible": False}),
"prompt_attention": OptionInfo("Full parser", "Prompt attention parser", gr.Radio, {"choices": ["Full parser", "Compel parser", "A1111 parser", "Fixed attention"] }),
"prompt_mean_norm": OptionInfo(True, "Prompt attention normalization", gr.Checkbox, {"visible": backend == Backend.ORIGINAL }),
"comma_padding_backtrack": OptionInfo(20, "Prompt padding", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1, "visible": backend == Backend.ORIGINAL }),
"sd_checkpoint_cache": OptionInfo(0, "Cached models", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1, "visible": backend == Backend.ORIGINAL }),
"sd_vae_checkpoint_cache": OptionInfo(0, "Cached VAEs", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1, "visible": False}),
"sd_disable_ckpt": OptionInfo(False, "Disallow models in ckpt format", gr.Checkbox, {"visible": False}),
}))
options_templates.update(options_section(('cuda', "Compute Settings"), {
"math_sep": OptionInfo("<h2>Execution precision</h2>", "", gr.HTML),
"precision": OptionInfo("Autocast", "Precision type", gr.Radio, {"choices": ["Autocast", "Full"]}),
"cuda_dtype": OptionInfo("FP32" if sys.platform == "darwin" or cmd_opts.use_openvino else "BF16" if devices.backend == "ipex" else "FP16", "Device precision type", gr.Radio, {"choices": ["FP32", "FP16", "BF16"]}),
"no_half": OptionInfo(False if not cmd_opts.use_openvino else True, "Full precision for model (--no-half)", None, None, None),
"no_half_vae": OptionInfo(False if not cmd_opts.use_openvino else True, "Full precision for VAE (--no-half-vae)"),
"upcast_sampling": OptionInfo(False if sys.platform != "darwin" else True, "Upcast sampling"),
"upcast_attn": OptionInfo(False, "Upcast attention layer"),
"cuda_cast_unet": OptionInfo(False, "Fixed UNet precision"),
"disable_nan_check": OptionInfo(True, "Disable NaN check", gr.Checkbox, {"visible": False}),
"nan_skip": OptionInfo(False, "Skip Generation if NaN found in latents", gr.Checkbox, {"visible": True}),
"rollback_vae": OptionInfo(False, "Attempt VAE roll back for NaN values"),
"cross_attention_sep": OptionInfo("<h2>Attention</h2>", "", gr.HTML),
"cross_attention_optimization": OptionInfo(cross_attention_optimization_default, "Attention optimization method", gr.Radio, lambda: {"choices": shared_items.list_crossattention(diffusers=backend == Backend.DIFFUSERS) }),
"sdp_options": OptionInfo(sdp_options_default, "SDP options", gr.CheckboxGroup, {"choices": ['Flash attention', 'Memory attention', 'Math attention'] }),
"xformers_options": OptionInfo(['Flash attention'], "xFormers options", gr.CheckboxGroup, {"choices": ['Flash attention'] }),
"dynamic_attention_slice_rate": OptionInfo(4, "Dynamic Attention slicing rate in GB", gr.Slider, {"minimum": 0.1, "maximum": 16, "step": 0.1, "visible": backend == Backend.DIFFUSERS}),
"sub_quad_sep": OptionInfo("<h3>Sub-quadratic options</h3>", "", gr.HTML, {"visible": backend == Backend.ORIGINAL}),
"sub_quad_q_chunk_size": OptionInfo(512, "Attention query chunk size", gr.Slider, {"minimum": 16, "maximum": 8192, "step": 8, "visible": backend == Backend.ORIGINAL}),
"sub_quad_kv_chunk_size": OptionInfo(512, "Attention kv chunk size", gr.Slider, {"minimum": 0, "maximum": 8192, "step": 8, "visible": backend == Backend.ORIGINAL}),
"sub_quad_chunk_threshold": OptionInfo(80, "Attention chunking threshold", gr.Slider, {"minimum": 0, "maximum": 100, "step": 1, "visible": backend == Backend.ORIGINAL}),
"other_sep": OptionInfo("<h2>Execution precision</h2>", "", gr.HTML),
"opt_channelslast": OptionInfo(False, "Use channels last "),
"cudnn_benchmark": OptionInfo(False, "Full-depth cuDNN benchmark feature"),
"cudnn_deterministic": OptionInfo(False, "Use deterministic options for cuDNN"),
"diffusers_fuse_projections": OptionInfo(False, "Fused projections"),
"torch_gc_threshold": OptionInfo(80, "Memory usage threshold for GC", gr.Slider, {"minimum": 0, "maximum": 100, "step": 1}),
"cuda_compile_sep": OptionInfo("<h2>Model Compile</h2>", "", gr.HTML),
"cuda_compile": OptionInfo([] if not cmd_opts.use_openvino else ["Model", "VAE", "Upscaler"], "Compile Model", gr.CheckboxGroup, {"choices": ["Model", "VAE", "Text Encoder", "Upscaler"]}),
"cuda_compile_backend": OptionInfo("none" if not cmd_opts.use_openvino else "openvino_fx", "Model compile backend", gr.Radio, {"choices": ['none', 'inductor', 'cudagraphs', 'aot_ts_nvfuser', 'hidet', 'migraphx', 'ipex', 'onediff', 'stable-fast', 'deep-cache', 'olive-ai', 'openvino_fx']}),
"cuda_compile_mode": OptionInfo("default", "Model compile mode", gr.Radio, {"choices": ['default', 'reduce-overhead', 'max-autotune', 'max-autotune-no-cudagraphs']}),
"cuda_compile_fullgraph": OptionInfo(True if not cmd_opts.use_openvino else False, "Model compile fullgraph"),
"cuda_compile_precompile": OptionInfo(False, "Model compile precompile"),
"cuda_compile_verbose": OptionInfo(False, "Model compile verbose mode"),
"cuda_compile_errors": OptionInfo(True, "Model compile suppress errors"),
"diffusers_quantization": OptionInfo(False, "Dynamic quantization with TorchAO"),
"deep_cache_interval": OptionInfo(3, "DeepCache cache interval", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"nncf_compress_weights": OptionInfo([], "Compress Model weights with NNCF", gr.CheckboxGroup, {"choices": ["Model", "VAE", "Text Encoder"], "visible": backend == Backend.DIFFUSERS}),
"ipex_sep": OptionInfo("<h2>IPEX</h2>", "", gr.HTML, {"visible": devices.backend == "ipex"}),
"ipex_optimize": OptionInfo([], "IPEX Optimize for Intel GPUs", gr.CheckboxGroup, {"choices": ["Model", "VAE", "Text Encoder", "Upscaler"], "visible": devices.backend == "ipex"}),
"openvino_sep": OptionInfo("<h2>OpenVINO</h2>", "", gr.HTML, {"visible": cmd_opts.use_openvino}),
"openvino_devices": OptionInfo([], "OpenVINO devices to use", gr.CheckboxGroup, {"choices": get_openvino_device_list() if cmd_opts.use_openvino else [], "visible": cmd_opts.use_openvino}),
"nncf_quantize": OptionInfo([], "OpenVINO Quantize Models with NNCF", gr.CheckboxGroup, {"choices": ["Model", "VAE", "Text Encoder"], "visible": cmd_opts.use_openvino}),
"nncf_quant_mode": OptionInfo("INT8", "OpenVINO quantization mode for NNCF", gr.Radio, {"choices": ['INT8', 'FP8_E4M3', 'FP8_E5M2'], "visible": cmd_opts.use_openvino}),
"nncf_compress_weights_mode": OptionInfo("INT8", "OpenVINO compress mode for NNCF", gr.Radio, {"choices": ['INT8', 'INT8_SYM', 'INT4_ASYM', 'INT4_SYM', 'NF4'], "visible": cmd_opts.use_openvino}),
"nncf_compress_weights_raito": OptionInfo(1.0, "OpenVINO compress ratio for NNCF", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01, "visible": cmd_opts.use_openvino}),
"openvino_disable_model_caching": OptionInfo(False, "OpenVINO disable model caching", gr.Checkbox, {"visible": cmd_opts.use_openvino}),
"openvino_disable_memory_cleanup": OptionInfo(True, "OpenVINO disable memory cleanup after compile", gr.Checkbox, {"visible": cmd_opts.use_openvino}),
"directml_sep": OptionInfo("<h2>DirectML</h2>", "", gr.HTML, {"visible": devices.backend == "directml"}),
"directml_memory_provider": OptionInfo(default_memory_provider, 'DirectML memory stats provider', gr.Radio, {"choices": memory_providers, "visible": devices.backend == "directml"}),
"directml_catch_nan": OptionInfo(False, "DirectML retry ops for NaN", gr.Checkbox, {"visible": devices.backend == "directml"}),
"zluda_sep": OptionInfo("<h2>ZLUDA</h2>", "", gr.HTML, {"visible": devices.backend == "cuda"}),
"zluda_enable_dnn": OptionInfo(False, "Enable ZLUDA DNN (please read wiki, restart required)", gr.Checkbox, {"visible": devices.backend == "cuda"}),
"olive_sep": OptionInfo("<h2>Olive</h2>", "", gr.HTML),
"olive_float16": OptionInfo(True, 'Olive use FP16 on optimization'),
"olive_vae_encoder_float32": OptionInfo(False, 'Olive force FP32 for VAE Encoder'),
"olive_static_dims": OptionInfo(True, 'Olive use static dimensions'),
"olive_cache_optimized": OptionInfo(True, 'Olive cache optimized models'),
}))
options_templates.update(options_section(('advanced', "Inference Settings"), {
"token_merging_sep": OptionInfo("<h2>Token merging</h2>", "", gr.HTML),
"token_merging_ratio": OptionInfo(0.0, "Token merging ratio for txt2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for hires", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}),
"freeu_sep": OptionInfo("<h2>FreeU</h2>", "", gr.HTML),
"freeu_enabled": OptionInfo(False, "FreeU"),
"freeu_b1": OptionInfo(1.2, "1st stage backbone factor", gr.Slider, {"minimum": 1.0, "maximum": 2.0, "step": 0.01}),
"freeu_b2": OptionInfo(1.4, "2nd stage backbone factor", gr.Slider, {"minimum": 1.0, "maximum": 2.0, "step": 0.01}),
"freeu_s1": OptionInfo(0.9, "1st stage skip factor", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"freeu_s2": OptionInfo(0.2, "2nd stage skip factor", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"hypertile_sep": OptionInfo("<h2>HyperTile</h2>", "", gr.HTML),
"hypertile_hires_only": OptionInfo(False, "HyperTile hires pass only"),
"hypertile_unet_enabled": OptionInfo(False, "HyperTile UNet"),
"hypertile_unet_tile": OptionInfo(0, "HyperTile UNet tile size", gr.Slider, {"minimum": 0, "maximum": 1024, "step": 8}),
"hypertile_unet_swap_size": OptionInfo(1, "HyperTile UNet swap size", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"hypertile_unet_depth": OptionInfo(0, "HyperTile UNet depth", gr.Slider, {"minimum": 0, "maximum": 4, "step": 1}),
"hypertile_vae_enabled": OptionInfo(False, "HyperTile VAE", gr.Checkbox),
"hypertile_vae_tile": OptionInfo(128, "HyperTile VAE tile size", gr.Slider, {"minimum": 0, "maximum": 1024, "step": 8}),
"hypertile_vae_swap_size": OptionInfo(1, "HyperTile VAE swap size", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"inference_batch_sep": OptionInfo("<h2>Batch</h2>", "", gr.HTML),
"sequential_seed": OptionInfo(True, "Batch mode uses sequential seeds"),
"batch_frame_mode": OptionInfo(False, "Parallel process images in batch"),
"inference_other_sep": OptionInfo("<h2>Other</h2>", "", gr.HTML),
"inference_mode": OptionInfo("no-grad", "Torch inference mode", gr.Radio, {"choices": ["no-grad", "inference-mode", "none"]}),
"sd_vae_sliced_encode": OptionInfo(False, "VAE sliced encode"),
}))
options_templates.update(options_section(('diffusers', "Diffusers Settings"), {
"diffusers_pipeline": OptionInfo('Autodetect', 'Diffusers pipeline', gr.Dropdown, lambda: {"choices": list(shared_items.get_pipelines()) }),
"diffusers_move_base": OptionInfo(False, "Move base model to CPU when using refiner"),
"diffusers_move_unet": OptionInfo(False, "Move base model to CPU when using VAE"),
"diffusers_move_refiner": OptionInfo(False, "Move refiner model to CPU when not in use"),
"diffusers_extract_ema": OptionInfo(True, "Use model EMA weights when possible"),
"diffusers_generator_device": OptionInfo("GPU", "Generator device", gr.Radio, {"choices": ["GPU", "CPU", "Unset"]}),
"diffusers_model_cpu_offload": OptionInfo(False, "Model CPU offload (--medvram)"),
"diffusers_seq_cpu_offload": OptionInfo(False, "Sequential CPU offload (--lowvram)"),
"diffusers_vae_upcast": OptionInfo("default", "VAE upcasting", gr.Radio, {"choices": ['default', 'true', 'false']}),
"diffusers_vae_slicing": OptionInfo(True, "VAE slicing"),
"diffusers_vae_tiling": OptionInfo(False, "VAE tiling"),
"diffusers_model_load_variant": OptionInfo("default", "Preferred Model variant", gr.Radio, {"choices": ['default', 'fp32', 'fp16']}),
"diffusers_vae_load_variant": OptionInfo("default", "Preferred VAE variant", gr.Radio, {"choices": ['default', 'fp32', 'fp16']}),
"custom_diffusers_pipeline": OptionInfo('', 'Load custom Diffusers pipeline'),
"diffusers_eval": OptionInfo(True, "Force model eval"),
"diffusers_to_gpu": OptionInfo(False, "Load model directly to GPU"),
"disable_accelerate": OptionInfo(False, "Disable accelerate"),
"diffusers_force_zeros": OptionInfo(False, "Force zeros for prompts when empty", gr.Checkbox, {"visible": False}),
"diffusers_pooled": OptionInfo("default", "Diffusers SDXL pooled embeds", gr.Radio, {"choices": ['default', 'weighted']}),
"huggingface_token": OptionInfo('', 'HuggingFace token'),
"onnx_sep": OptionInfo("<h2>ONNX Runtime</h2>", "", gr.HTML),
"onnx_execution_provider": OptionInfo(execution_providers.get_default_execution_provider().value, 'Execution Provider', gr.Dropdown, lambda: {"choices": execution_providers.available_execution_providers }),
"onnx_cpu_fallback": OptionInfo(True, 'ONNX allow fallback to CPU'),
"onnx_cache_converted": OptionInfo(True, 'ONNX cache converted models'),
"onnx_unload_base": OptionInfo(False, 'ONNX unload base model when processing refiner'),
}))
options_templates.update(options_section(('system-paths', "System Paths"), {
"models_paths_sep_options": OptionInfo("<h2>Models paths</h2>", "", gr.HTML),
"models_dir": OptionInfo('models', "Base path where all models are stored", folder=True),
"ckpt_dir": OptionInfo(os.path.join(paths.models_path, 'Stable-diffusion'), "Folder with stable diffusion models", folder=True),
"diffusers_dir": OptionInfo(os.path.join(paths.models_path, 'Diffusers'), "Folder with Huggingface models", folder=True),
"hfcache_dir": OptionInfo(os.path.join(os.path.expanduser('~'), '.cache', 'huggingface', 'hub'), "Folder for Huggingface cache", folder=True),
"vae_dir": OptionInfo(os.path.join(paths.models_path, 'VAE'), "Folder with VAE files", folder=True),
"sd_lora": OptionInfo("", "Add LoRA to prompt", gr.Textbox, {"visible": False}),
"lora_dir": OptionInfo(os.path.join(paths.models_path, 'Lora'), "Folder with LoRA network(s)", folder=True),
"lyco_dir": OptionInfo(os.path.join(paths.models_path, 'LyCORIS'), "Folder with LyCORIS network(s)", gr.Text, {"visible": False}),
"styles_dir": OptionInfo(os.path.join(paths.data_path, 'styles.csv'), "File or Folder with user-defined styles", folder=True),
"embeddings_dir": OptionInfo(os.path.join(paths.models_path, 'embeddings'), "Folder with textual inversion embeddings", folder=True),
"hypernetwork_dir": OptionInfo(os.path.join(paths.models_path, 'hypernetworks'), "Folder with Hypernetwork models", folder=True),
"control_dir": OptionInfo(os.path.join(paths.models_path, 'control'), "Folder with Control models", folder=True),
"codeformer_models_path": OptionInfo(os.path.join(paths.models_path, 'Codeformer'), "Folder with codeformer models", folder=True),
"gfpgan_models_path": OptionInfo(os.path.join(paths.models_path, 'GFPGAN'), "Folder with GFPGAN models", folder=True),
"esrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'ESRGAN'), "Folder with ESRGAN models", folder=True),
"bsrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'BSRGAN'), "Folder with BSRGAN models", folder=True),
"realesrgan_models_path": OptionInfo(os.path.join(paths.models_path, 'RealESRGAN'), "Folder with RealESRGAN models", folder=True),
"scunet_models_path": OptionInfo(os.path.join(paths.models_path, 'SCUNet'), "Folder with SCUNet models", folder=True),
"swinir_models_path": OptionInfo(os.path.join(paths.models_path, 'SwinIR'), "Folder with SwinIR models", folder=True),
"ldsr_models_path": OptionInfo(os.path.join(paths.models_path, 'LDSR'), "Folder with LDSR models", folder=True),
"clip_models_path": OptionInfo(os.path.join(paths.models_path, 'CLIP'), "Folder with CLIP models", folder=True),
"other_paths_sep_options": OptionInfo("<h2>Other paths</h2>", "", gr.HTML),
"openvino_cache_path": OptionInfo('cache', "Directory for OpenVINO cache", folder=True),
"onnx_cached_models_path": OptionInfo(os.path.join(paths.models_path, 'ONNX', 'cache'), "Folder with ONNX cached models", folder=True),
"onnx_temp_dir": OptionInfo(os.path.join(paths.models_path, 'ONNX', 'temp'), "Directory for ONNX conversion and Olive optimization process", folder=True),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default", folder=True),
"clean_temp_dir_at_start": OptionInfo(True, "Cleanup non-default temporary directory when starting webui"),
}))
options_templates.update(options_section(('saving-images', "Image Options"), {
"keep_incomplete": OptionInfo(True, "Keep incomplete images"),
"samples_save": OptionInfo(True, "Save all generated images"),
"samples_format": OptionInfo('jpg', 'File format', gr.Dropdown, {"choices": ["jpg", "png", "webp", "tiff", "jp2"]}),
"jpeg_quality": OptionInfo(90, "Image quality", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"img_max_size_mp": OptionInfo(250, "Maximum image size (MP)", gr.Slider, {"minimum": 100, "maximum": 2000, "step": 1}),
"webp_lossless": OptionInfo(False, "WebP lossless compression"),
"save_selected_only": OptionInfo(True, "Save only saves selected image"),
"include_mask": OptionInfo(False, "Include mask in outputs"),
"samples_save_zip": OptionInfo(True, "Create ZIP archive"),
"image_background": OptionInfo("#000000", "Resize background color", gr.ColorPicker, {}),
"image_sep_metadata": OptionInfo("<h2>Metadata/Logging</h2>", "", gr.HTML),
"image_metadata": OptionInfo(True, "Include metadata"),
"save_txt": OptionInfo(False, "Create info file per image"),
"save_log_fn": OptionInfo("", "Update JSON log file per image", component_args=hide_dirs),
"image_sep_grid": OptionInfo("<h2>Grid Options</h2>", "", gr.HTML),
"grid_save": OptionInfo(True, "Save all generated image grids"),
"grid_format": OptionInfo('jpg', 'File format', gr.Dropdown, {"choices": ["jpg", "png", "webp", "tiff", "jp2"]}),
"n_rows": OptionInfo(-1, "Row count", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
"grid_background": OptionInfo("#000000", "Grid background color", gr.ColorPicker, {}),
"font": OptionInfo("", "Font file"),
"font_color": OptionInfo("#FFFFFF", "Font color", gr.ColorPicker, {}),
"image_sep_browser": OptionInfo("<h2>Image Gallery</h2>", "", gr.HTML),
"browser_cache": OptionInfo(True, "Use image gallery cache"),
"browser_folders": OptionInfo("", "Additional image browser folders"),
"browser_fixed_width": OptionInfo(False, "Use fixed width thumbnails"),
"viewer_show_metadata": OptionInfo(True, "Show metadata in full screen image browser"),
"save_sep_options": OptionInfo("<h2>Intermediate Image Saving</h2>", "", gr.HTML),
"save_init_img": OptionInfo(False, "Save init images"),
"save_images_before_highres_fix": OptionInfo(False, "Save image before hires"),
"save_images_before_refiner": OptionInfo(False, "Save image before refiner"),
"save_images_before_face_restoration": OptionInfo(False, "Save image before face restoration"),
"save_images_before_color_correction": OptionInfo(False, "Save image before color correction"),
"save_mask": OptionInfo(False, "Save inpainting mask"),
"save_mask_composite": OptionInfo(False, "Save inpainting masked composite"),
"image_sep_watermark": OptionInfo("<h2>Watermarking</h2>", "", gr.HTML),
"image_watermark_enabled": OptionInfo(False, "Include invisible watermark"),
"image_watermark": OptionInfo('', "Invisible watermark string"),
"image_watermark_position": OptionInfo('none', 'Image watermark position', gr.Dropdown, {"choices": ["none", "top/left", "top/right", "bottom/left", "bottom/right", "center", "random"]}),
"image_watermark_image": OptionInfo('', "Image watermark file"),
}))
options_templates.update(options_section(('saving-paths', "Image Naming & Paths"), {
"saving_sep_images": OptionInfo("<h2>Save options</h2>", "", gr.HTML),
"save_images_add_number": OptionInfo(True, "Numbered filenames", component_args=hide_dirs),
"use_original_name_batch": OptionInfo(True, "Batch uses original name"),
"use_upscaler_name_as_suffix": OptionInfo(True, "Use upscaler as suffix", gr.Checkbox, {"visible": False}),
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
"samples_filename_pattern": OptionInfo("[seq]-[model_name]-[prompt_words]", "Images filename pattern", component_args=hide_dirs),
"directories_max_prompt_words": OptionInfo(8, "Max words per pattern", gr.Slider, {"minimum": 1, "maximum": 99, "step": 1, **hide_dirs}),
"use_save_to_dirs_for_ui": OptionInfo(False, "Save images to a subdirectory when using Save button", gr.Checkbox, {"visible": False}),
"outdir_sep_dirs": OptionInfo("<h2>Folders</h2>", "", gr.HTML),
"outdir_samples": OptionInfo("", "Images folder", component_args=hide_dirs, folder=True),
"outdir_txt2img_samples": OptionInfo("outputs/text", 'Folder for text generate', component_args=hide_dirs, folder=True),
"outdir_img2img_samples": OptionInfo("outputs/image", 'Folder for image generate', component_args=hide_dirs, folder=True),
"outdir_control_samples": OptionInfo("outputs/control", 'Folder for control generate', component_args=hide_dirs, folder=True),
"outdir_extras_samples": OptionInfo("outputs/extras", 'Folder for processed images', component_args=hide_dirs, folder=True),
"outdir_save": OptionInfo("outputs/save", "Folder for manually saved images", component_args=hide_dirs, folder=True),
"outdir_video": OptionInfo("outputs/video", "Folder for videos", component_args=hide_dirs, folder=True),
"outdir_init_images": OptionInfo("outputs/init-images", "Folder for init images", component_args=hide_dirs, folder=True),
"outdir_sep_grids": OptionInfo("<h2>Grids</h2>", "", gr.HTML),
"grid_extended_filename": OptionInfo(True, "Add extended info to filename when saving grid", gr.Checkbox, {"visible": False}),
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory", gr.Checkbox, {"visible": False}),
"outdir_grids": OptionInfo("", "Grids folder", component_args=hide_dirs, folder=True),
"outdir_txt2img_grids": OptionInfo("outputs/grids", 'Folder for txt2img grids', component_args=hide_dirs, folder=True),
"outdir_img2img_grids": OptionInfo("outputs/grids", 'Folder for img2img grids', component_args=hide_dirs, folder=True),
"outdir_control_grids": OptionInfo("outputs/grids", 'Folder for control grids', component_args=hide_dirs, folder=True),
}))
options_templates.update(options_section(('ui', "User Interface Options"), {
"theme_type": OptionInfo("Standard", "Theme type", gr.Radio, {"choices": ["Modern", "Standard", "None"]}),
"theme_style": OptionInfo("Auto", "Theme mode", gr.Radio, {"choices": ["Auto", "Dark", "Light"]}),
"gradio_theme": OptionInfo("black-teal", "UI theme", gr.Dropdown, lambda: {"choices": theme.list_themes()}, refresh=theme.refresh_themes),
"font_size": OptionInfo(14, "Font size", gr.Slider, {"minimum": 8, "maximum": 32, "step": 1, "visible": True}),
"tooltips": OptionInfo("UI Tooltips", "UI tooltips", gr.Radio, {"choices": ["None", "Browser default", "UI tooltips"], "visible": False}),
"aspect_ratios": OptionInfo("1:1, 4:3, 16:9, 16:10, 21:9, 3:4, 9:16, 10:16, 9:21", "Allowed aspect ratios"),
"motd": OptionInfo(True, "Show MOTD"),
"compact_view": OptionInfo(False, "Compact view"),
"return_grid": OptionInfo(True, "Show grid in results"),
"return_mask": OptionInfo(False, "Inpainting include greyscale mask in results"),
"return_mask_composite": OptionInfo(False, "Inpainting include masked composite in results"),
"disable_weights_auto_swap": OptionInfo(True, "Do not change selected model when reading generation parameters"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001, "visible": False}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001, "visible": False}),
"keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters", gr.Textbox, { "visible": False }),
"quicksettings_list": OptionInfo(["sd_model_checkpoint"] if backend == Backend.ORIGINAL else ["sd_model_checkpoint", "sd_model_refiner"], "Quicksettings list", gr.Dropdown, lambda: {"multiselect":True, "choices": list(opts.data_labels.keys())}),
"ui_scripts_reorder": OptionInfo("", "UI scripts order", gr.Textbox, { "visible": False }),
}))
options_templates.update(options_section(('live-preview', "Live Previews"), {
"show_progressbar": OptionInfo(True, "Show progressbar", gr.Checkbox, {"visible": False}),
"live_previews_enable": OptionInfo(True, "Show live previews", gr.Checkbox, {"visible": False}),
"show_progress_grid": OptionInfo(True, "Show previews as a grid", gr.Checkbox, {"visible": False}),
"notification_audio_enable": OptionInfo(False, "Play a notification upon completion"),
"notification_audio_path": OptionInfo("html/notification.mp3","Path to notification sound", component_args=hide_dirs, folder=True),
"show_progress_every_n_steps": OptionInfo(1, "Live preview display period", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Approximate", "Live preview method", gr.Radio, {"choices": ["Simple", "Approximate", "TAESD", "Full VAE"]}),
"live_preview_content": OptionInfo("Combined", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"], "visible": False}),
"live_preview_refresh_period": OptionInfo(500, "Progress update period", gr.Slider, {"minimum": 0, "maximum": 5000, "step": 25}),
"logmonitor_show": OptionInfo(True, "Show log view"),
"logmonitor_refresh_period": OptionInfo(5000, "Log view update period", gr.Slider, {"minimum": 0, "maximum": 30000, "step": 25}),
}))
options_templates.update(options_section(('sampler-params', "Sampler Settings"), {
"show_samplers": OptionInfo([], "Show samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
'eta_noise_seed_delta': OptionInfo(0, "Noise seed delta (eta)", gr.Number, {"precision": 0}),
"scheduler_eta": OptionInfo(1.0, "Noise multiplier (eta)", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"schedulers_solver_order": OptionInfo(2, "Solver order (where applicable)", gr.Slider, {"minimum": 1, "maximum": 5, "step": 1}),
# managed from ui.py for backend original
"schedulers_brownian_noise": OptionInfo(True, "Use Brownian noise", gr.Checkbox, {"visible": False}),
"schedulers_discard_penultimate": OptionInfo(True, "Discard penultimate sigma", gr.Checkbox, {"visible": False}),
"schedulers_sigma": OptionInfo("default", "Sigma algorithm", gr.Radio, {"choices": ['default', 'karras', 'exponential', 'polyexponential'], "visible": False}),
"schedulers_use_karras": OptionInfo(True, "Use Karras sigmas", gr.Checkbox, {"visible": False}),
"schedulers_use_thresholding": OptionInfo(False, "Use dynamic thresholding", gr.Checkbox, {"visible": False}),
"schedulers_use_loworder": OptionInfo(True, "Use simplified solvers in final steps", gr.Checkbox, {"visible": False}),
"schedulers_prediction_type": OptionInfo("default", "Override model prediction type", gr.Radio, {"choices": ['default', 'epsilon', 'sample', 'v_prediction']}),
# managed from ui.py for backend diffusers
"schedulers_sep_diffusers": OptionInfo("<h2>Diffusers specific config</h2>", "", gr.HTML),
"schedulers_dpm_solver": OptionInfo("sde-dpmsolver++", "DPM solver algorithm", gr.Radio, {"choices": ['dpmsolver++', 'sde-dpmsolver++']}),
"schedulers_beta_schedule": OptionInfo("default", "Beta schedule", gr.Radio, {"choices": ['default', 'linear', 'scaled_linear', 'squaredcos_cap_v2']}),
'schedulers_beta_start': OptionInfo(0, "Beta start", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.00001}),
'schedulers_beta_end': OptionInfo(0, "Beta end", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.00001}),
"schedulers_timestep_spacing": OptionInfo("default", "Timestep spacing", gr.Radio, {"choices": ['default', 'linspace', 'leading', 'trailing']}),
'schedulers_timesteps_range': OptionInfo(1000, "Timesteps range", gr.Slider, {"minimum": 250, "maximum": 4000, "step": 1}),
"schedulers_rescale_betas": OptionInfo(False, "Rescale betas with zero terminal SNR", gr.Checkbox),
# managed from ui.py for backend original k-diffusion
"schedulers_sep_kdiffusers": OptionInfo("<h2>K-Diffusion specific config</h2>", "", gr.HTML),
"always_batch_cond_uncond": OptionInfo(False, "Disable conditional batching"),
"enable_quantization": OptionInfo(True, "Use quantization"),
's_churn': OptionInfo(0.0, "Sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0.0, "Sigma negative guidance minimum ", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "Sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "Sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min': OptionInfo(0.0, "Sigma min", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_max': OptionInfo(0.0, "Sigma max", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 1.0}),
"schedulers_sep_compvis": OptionInfo("<h2>CompVis specific config</h2>", "", gr.HTML),
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
"ddim_discretize": OptionInfo('uniform', "DDIM discretize img2img", gr.Radio, {"choices": ['uniform', 'quad']}),
"pad_cond_uncond": OptionInfo(True, "Pad prompt and negative prompt to be same length", gr.Checkbox, {"visible": False}),
"batch_cond_uncond": OptionInfo(True, "Do conditional and unconditional denoising in one batch", gr.Checkbox, {"visible": False}),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Additional postprocessing operations", gr.Dropdown, lambda: {"multiselect":True, "choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", gr.Dropdown, lambda: {"multiselect":True, "choices": [x.name for x in shared_items.postprocessing_scripts()]}),
"postprocessing_sep_img2img": OptionInfo("<h2>Img2Img & Inpainting</h2>", "", gr.HTML),
"img2img_color_correction": OptionInfo(False, "Apply color correction"),
"mask_apply_overlay": OptionInfo(True, "Apply mask as overlay"),
"img2img_fix_steps": OptionInfo(False, "For image processing do exact number of steps as specified", gr.Checkbox, { "visible": False }),
"img2img_background_color": OptionInfo("#ffffff", "Image transparent color fill", gr.ColorPicker, {}),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for image processing", gr.Slider, {"minimum": 0.1, "maximum": 1.5, "step": 0.01}),
"img2img_extra_noise": OptionInfo(0.0, "Extra noise multiplier for img2img", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 8, "step": 1, "visible": False}),
"postprocessing_sep_face_restoration": OptionInfo("<h2>Face Restoration</h2>", "", gr.HTML),
"face_restoration_model": OptionInfo("Face HiRes", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"facehires_strength": OptionInfo(0.0, "Face HiRes strength", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"code_former_weight": OptionInfo(0.2, "CodeFormer weight parameter", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move model to CPU when complete"),
"postprocessing_sep_upscalers": OptionInfo("<h2>Upscaling</h2>", "", gr.HTML),
"upscaler_unload": OptionInfo(False, "Unload upscaler after processing"),
"upscaler_for_img2img": OptionInfo("None", "Default upscaler for image resize operations", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers], "visible": False}, refresh=refresh_upscalers),
"upscaler_tile_size": OptionInfo(192, "Upscaler tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"upscaler_tile_overlap": OptionInfo(8, "Upscaler tile overlap", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('control', "Control Options"), {
"control_max_units": OptionInfo(4, "Maximum number of units", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
"control_move_processor": OptionInfo(False, "Processor move to CPU after use"),
"control_unload_processor": OptionInfo(False, "Processor unload after use"),
}))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training"),
"pin_memory": OptionInfo(True, "Pin training dataset to memory"),
"save_optimizer_state": OptionInfo(False, "Save resumable optimizer state when training"),
"save_training_settings_to_txt": OptionInfo(True, "Save training settings to a text file"),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"embeddings_templates_dir": OptionInfo(os.path.join(paths.script_path, 'train', 'templates'), "Embeddings train templates directory", folder=True),
"training_image_repeats_per_epoch": OptionInfo(1, "Image repeats per epoch", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"training_write_csv_every": OptionInfo(0, "Save loss CSV file every n steps"),
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging"),
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard"),
"training_tensorboard_flush_every": OptionInfo(120, "Tensorboard flush period"),
}))
options_templates.update(options_section(('interrogate', "Interrogate"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_return_ranks": OptionInfo(True, "Interrogate: include ranks of model tags matches in results"),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(32, "Interrogate: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(192, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(2048, "CLIP: maximum number of lines in text file", gr.Slider, { "visible": False }),
"interrogate_clip_skip_categories": OptionInfo(["artists", "movements", "flavors"], "Interrogate: skip categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.65, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(False, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "Use spaces for tags in deepbooru"),
"deepbooru_escape": OptionInfo(True, "Escape brackets in deepbooru"),
"deepbooru_filter_tags": OptionInfo("", "Filter out tags from deepbooru output"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_sep1": OptionInfo("<h2>Extra networks UI</h2>", "", gr.HTML),
"extra_networks": OptionInfo(["All"], "Extra networks", gr.Dropdown, lambda: {"multiselect":True, "choices": ['All'] + [en.title for en in extra_networks]}),
"extra_networks_sort": OptionInfo("Default", "Sort order", gr.Dropdown, {"choices": ['Default', 'Name [A-Z]', 'Name [Z-A]', 'Date [Newest]', 'Date [Oldest]', 'Size [Largest]', 'Size [Smallest]']}),
"extra_networks_view": OptionInfo("gallery", "UI view", gr.Radio, {"choices": ["gallery", "list"]}),
"extra_networks_card_cover": OptionInfo("sidebar", "UI position", gr.Radio, {"choices": ["cover", "inline", "sidebar"]}),
"extra_networks_height": OptionInfo(53, "UI height (%)", gr.Slider, {"minimum": 10, "maximum": 100, "step": 1}),
"extra_networks_sidebar_width": OptionInfo(35, "UI sidebar width (%)", gr.Slider, {"minimum": 10, "maximum": 80, "step": 1}),
"extra_networks_card_size": OptionInfo(160, "UI card size (px)", gr.Slider, {"minimum": 20, "maximum": 2000, "step": 1}),
"extra_networks_card_square": OptionInfo(True, "UI disable variable aspect ratio"),
"extra_networks_card_fit": OptionInfo("cover", "UI image contain method", gr.Radio, {"choices": ["contain", "cover", "fill"], "visible": False}),
"extra_networks_sep2": OptionInfo("<h2>Extra networks general</h2>", "", gr.HTML),
"extra_network_reference": OptionInfo(False, "Use reference values when available", gr.Checkbox),
"extra_network_skip_indexing": OptionInfo(False, "Build info on first access", gr.Checkbox),
"extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"diffusers_convert_embed": OptionInfo(False, "Auto-convert SD 1.5 embeddings to SDXL ", gr.Checkbox, {"visible": backend==Backend.DIFFUSERS}),
"extra_networks_sep3": OptionInfo("<h2>Extra networks settings</h2>", "", gr.HTML),
"extra_networks_styles": OptionInfo(True, "Show built-in styles"),
"lora_preferred_name": OptionInfo("filename", "LoRA preferred name", gr.Radio, {"choices": ["filename", "alias"]}),
"lora_add_hashes_to_infotext": OptionInfo(True, "LoRA add hash info"),
"lora_force_diffusers": OptionInfo(False if not cmd_opts.use_openvino else True, "LoRA use alternative loading method"),
"lora_fuse_diffusers": OptionInfo(False if not cmd_opts.use_openvino else True, "LoRA use merge when using alternative method"),
"lora_in_memory_limit": OptionInfo(1 if not cmd_opts.use_openvino else 0, "LoRA memory cache", gr.Slider, {"minimum": 0, "maximum": 24, "step": 1}),
"lora_functional": OptionInfo(False, "Use Kohya method for handling multiple LoRA", gr.Checkbox, { "visible": False }),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, { "choices": ["None"], "visible": False }),
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable these extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "user", "all"]}),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
options_templates.update()
class Options:
data = None
data_labels = options_templates
filename = None
typemap = {int: float}
def __init__(self):
self.data = {k: v.default for k, v in self.data_labels.items()}
def __setattr__(self, key, value): # pylint: disable=inconsistent-return-statements
if self.data is not None:
if key in self.data or key in self.data_labels:
if cmd_opts.freeze:
log.warning(f'Settings are frozen: {key}')
return
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
log.warning(f'Settings key is restricted: {key}')
return
self.data[key] = value
return
return super(Options, self).__setattr__(key, value) # pylint: disable=super-with-arguments
def get(self, item):
if self.data is not None:
if item in self.data:
return self.data[item]
if item in self.data_labels:
return self.data_labels[item].default
return super(Options, self).__getattribute__(item) # pylint: disable=super-with-arguments
def __getattr__(self, item):
if self.data is not None:
if item in self.data:
return self.data[item]
if item in self.data_labels:
return self.data_labels[item].default
return super(Options, self).__getattribute__(item) # pylint: disable=super-with-arguments
def set(self, key, value):
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
oldval = self.data.get(key, None)
if oldval is None:
oldval = self.data_labels[key].default
if oldval == value:
return False
try:
setattr(self, key, value)
except RuntimeError:
return False
if self.data_labels[key].onchange is not None:
try:
self.data_labels[key].onchange()
except Exception as e:
log.error(f'Error in onchange callback: {key} {value} {e}')
errors.display(e, 'Error in onchange callback')
setattr(self, key, oldval)
return False
return True
def get_default(self, key):
"""returns the default value for the key"""
data_label = self.data_labels.get(key)
return data_label.default if data_label is not None else None
def save_atomic(self, filename=None, silent=False):
if filename is None:
filename = self.filename
if cmd_opts.freeze:
log.warning(f'Settings saving is disabled: {filename}')
return
try:
# output = json.dumps(self.data, indent=2)
diff = {}
unused_settings = []
if os.environ.get('SD_CONFIG_DEBUG', None) is not None:
log.debug('Config: user settings')
for k, v in self.data.items():
log.trace(f' Config: item={k} value={v} default={self.data_labels[k].default if k in self.data_labels else None}')
log.debug('Config: default settings')
for k in self.data_labels.keys():
log.trace(f' Config: item={k} default={self.data_labels[k].default}')
for k, v in self.data.items():
if k in self.data_labels:
if type(v) is list:
diff[k] = v
if self.data_labels[k].default != v:
diff[k] = v
else:
if k not in compatibility_opts:
unused_settings.append(k)
diff[k] = v
writefile(diff, filename, silent=silent)
if len(unused_settings) > 0:
log.debug(f"Unused settings: {unused_settings}")
except Exception as e:
log.error(f'Saving settings failed: {filename} {e}')
def save(self, filename=None, silent=False):
threading.Thread(target=self.save_atomic, args=(filename, silent)).start()
def same_type(self, x, y):
if x is None or y is None:
return True
type_x = self.typemap.get(type(x), type(x))
type_y = self.typemap.get(type(y), type(y))
return type_x == type_y
def load(self, filename=None):
if filename is None:
filename = self.filename
if not os.path.isfile(filename):
log.debug(f'Created default config: {filename}')
self.save(filename)
return
self.data = readfile(filename, lock=True)
if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
unknown_settings = []
for k, v in self.data.items():
info = self.data_labels.get(k, None)
if info is not None and not self.same_type(info.default, v):
log.error(f"Error: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})")
if info is None and k not in compatibility_opts:
unknown_settings.append(k)
if len(unknown_settings) > 0:
log.debug(f"Unknown settings: {unknown_settings}")
def onchange(self, key, func, call=True):
item = self.data_labels.get(key)
item.onchange = func
if call:
func()
def dumpjson(self):
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
metadata = {
k: {
"is_stored": k in self.data and self.data[k] != self.data_labels[k].default, # pylint: disable=unnecessary-dict-index-lookup
"tab_name": v.section[0]
} for k, v in self.data_labels.items()
}
return json.dumps({"values": d, "metadata": metadata})
def add_option(self, key, info):
self.data_labels[key] = info
def reorder(self):
"""reorder settings so that all items related to section always go together"""
section_ids = {}
settings_items = self.data_labels.items()
for _k, item in settings_items:
if item.section not in section_ids:
section_ids[item.section] = len(section_ids)
self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
"""
if value is None:
return None
default_value = self.data_labels[key].default
if default_value is None:
default_value = getattr(self, key, None)
if default_value is None:
return None
expected_type = type(default_value)
if expected_type == bool and value == "False":
value = False
elif expected_type == type(value):
pass
else:
value = expected_type(value)
return value
profiler = None
opts = Options()
config_filename = cmd_opts.config
opts.load(config_filename)
cmd_opts = cmd_args.compatibility_args(opts, cmd_opts)
if cmd_opts.use_xformers:
opts.data['cross_attention_optimization'] = 'xFormers'
opts.data['uni_pc_lower_order_final'] = opts.schedulers_use_loworder # compatibility
opts.data['uni_pc_order'] = opts.schedulers_solver_order # compatibility
log.info(f'Engine: backend={backend} compute={devices.backend} device={devices.get_optimal_device_name()} attention="{opts.cross_attention_optimization}" mode={devices.inference_context.__name__}')
try:
log.info(f'Device: {print_dict(devices.get_gpu_info())}')
except Exception as ex:
log.error(f'Device: {ex}')
prompt_styles = modules.styles.StyleDatabase(opts)
reference_models = readfile(os.path.join('html', 'reference.json'))
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or (cmd_opts.server_name or False)) and not cmd_opts.insecure
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
devices.onnx = [opts.onnx_execution_provider]
if opts.onnx_cpu_fallback and 'CPUExecutionProvider' not in devices.onnx:
devices.onnx.append('CPUExecutionProvider')
device = devices.device
batch_cond_uncond = opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram
mem_mon = modules.memmon.MemUsageMonitor("MemMon", devices.device)
max_workers = 4
if devices.backend == "directml":
directml_do_hijack()
elif devices.backend == "cuda":
initialize_zluda()
initialize_onnx()
class TotalTQDM: # compatibility with previous global-tqdm
# import tqdm
def __init__(self):
pass
def reset(self):
pass
def update(self):
pass
def updateTotal(self, new_total):
pass
def clear(self):
pass
total_tqdm = TotalTQDM()
def restart_server(restart=True):
if demo is None:
return
log.warning('Server shutdown requested')
try:
sys.tracebacklimit = 0
stdout = io.StringIO()
stderr = io.StringIO()
with contextlib.redirect_stdout(stdout), contextlib.redirect_stdout(stderr):
demo.server.wants_restart = restart
demo.server.should_exit = True
demo.server.force_exit = True
demo.close(verbose=False)
demo.server.close()
demo.fns = []
time.sleep(1)
sys.tracebacklimit = 100
# os._exit(0)
except (Exception, BaseException) as e:
log.error(f'Server shutdown error: {e}')
if restart:
log.info('Server will restart')
def restore_defaults(restart=True):
if os.path.exists(cmd_opts.config):
log.info('Restoring server defaults')
os.remove(cmd_opts.config)
restart_server(restart)
def listdir(path):
if not os.path.exists(path):
return []
mtime = os.path.getmtime(path)
if path in dir_timestamps and mtime == dir_timestamps[path]:
return dir_cache[path]
else:
dir_cache[path] = [os.path.join(path, f) for f in os.listdir(path)]
dir_timestamps[path] = mtime
return dir_cache[path]
def walk_files(path, allowed_extensions=None):
if not os.path.exists(path):
return
if allowed_extensions is not None:
allowed_extensions = set(allowed_extensions)
for root, _dirs, files in os.walk(path, followlinks=True):
for filename in files:
if allowed_extensions is not None:
_, ext = os.path.splitext(filename)
if ext not in allowed_extensions:
continue
yield os.path.join(root, filename)
def html_path(filename):
return os.path.join(paths.script_path, "html", filename)
def html(filename):
path = html_path(filename)
if os.path.exists(path):
with open(path, encoding="utf8") as file:
return file.read()
return ""
def get_version():
version = None
if version is None:
try:
import subprocess
res = subprocess.run('git log --pretty=format:"%h %ad" -1 --date=short', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
ver = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ' '
githash, updated = ver.split(' ')
res = subprocess.run('git remote get-url origin', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
origin = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ''
res = subprocess.run('git rev-parse --abbrev-ref HEAD', stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell=True, check=True)
branch = res.stdout.decode(encoding = 'utf8', errors='ignore') if len(res.stdout) > 0 else ''
version = {
'app': 'sd.next',
'updated': updated,
'hash': githash,
'url': origin.replace('\n', '') + '/tree/' + branch.replace('\n', '')
}
except Exception:
version = { 'app': 'sd.next' }
return version
def req(url_addr, headers = None, **kwargs):
if headers is None:
headers = { 'Content-type': 'application/json' }
try:
res = requests.get(url_addr, timeout=30, headers=headers, verify=False, allow_redirects=True, **kwargs)
except Exception as e:
log.error(f'HTTP request error: url={url_addr} {e}')
res = { 'status_code': 500, 'text': f'HTTP request error: url={url_addr} {e}' }
res = SimpleNamespace(**res)
return res
sd_model: diffusers.DiffusionPipeline = None # dummy and overwritten by class
sd_refiner: diffusers.DiffusionPipeline = None # dummy and overwritten by class
sd_model_type: str = '' # dummy and overwritten by class
sd_refiner_type: str = '' # dummy and overwritten by class
sd_loaded: bool = False # dummy and overwritten by class
compiled_model_state = None
listfiles = listdir
from modules.modeldata import Shared # pylint: disable=ungrouped-imports
sys.modules[__name__].__class__ = Shared