1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/processing_diffusers.py
Vladimir Mandic 496bdf7c55 fix backend switch
2023-09-15 08:39:25 -04:00

462 lines
26 KiB
Python

import time
import inspect
import typing
import torch
import torchvision.transforms.functional as TF
import modules.devices as devices
import modules.shared as shared
import modules.sd_samplers as sd_samplers
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
import modules.taesd.sd_vae_taesd as sd_vae_taesd
import modules.images as images
from modules.lora_diffusers import lora_state, unload_diffusers_lora
from modules.processing import StableDiffusionProcessing
import modules.prompt_parser_diffusers as prompt_parser_diffusers
try:
import diffusers
except Exception as ex:
shared.log.error(f'Failed to import diffusers: {ex}')
def process_diffusers(p: StableDiffusionProcessing, seeds, prompts, negative_prompts):
results = []
if p.enable_hr and p.hr_upscaler != 'None' and p.denoising_strength > 0 and len(getattr(p, 'init_images', [])) == 0:
p.is_hr_pass = True
is_refiner_enabled = p.enable_hr and p.refiner_steps > 0 and p.refiner_start > 0 and p.refiner_start < 1 and shared.sd_refiner is not None
def hires_resize(latents): # input=latents output=pil
latent_upscaler = shared.latent_upscale_modes.get(p.hr_upscaler, None)
shared.log.info(f'Hires: upscaler={p.hr_upscaler} width={p.hr_upscale_to_x} height={p.hr_upscale_to_y} images={latents.shape[0]}')
if latent_upscaler is not None:
latents = torch.nn.functional.interpolate(latents, size=(p.hr_upscale_to_y // 8, p.hr_upscale_to_x // 8), mode=latent_upscaler["mode"], antialias=latent_upscaler["antialias"])
first_pass_images = vae_decode(latents=latents, model=shared.sd_model, full_quality=p.full_quality, output_type='pil')
p.init_images = []
for first_pass_image in first_pass_images:
if latent_upscaler is None:
init_image = images.resize_image(1, first_pass_image, p.hr_upscale_to_x, p.hr_upscale_to_y, upscaler_name=p.hr_upscaler)
else:
init_image = first_pass_image
# if is_refiner_enabled:
# init_image = vae_encode(init_image, model=shared.sd_model, full_quality=p.full_quality)
p.init_images.append(init_image)
return p.init_images
def save_intermediate(latents, suffix):
for i in range(len(latents)):
from modules.processing import create_infotext
info=create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, [], iteration=p.iteration, position_in_batch=i)
decoded = vae_decode(latents=latents, model=shared.sd_model, output_type='pil', full_quality=p.full_quality)
for j in range(len(decoded)):
images.save_image(decoded[j], path=p.outpath_samples, basename="", seed=seeds[i], prompt=prompts[i], extension=shared.opts.samples_format, info=info, p=p, suffix=suffix)
def diffusers_callback(_step: int, _timestep: int, latents: torch.FloatTensor):
shared.state.sampling_step += 1
shared.state.sampling_steps = p.steps
if p.is_hr_pass:
shared.state.sampling_steps += p.hr_second_pass_steps
shared.state.current_latent = latents
if shared.state.interrupted or shared.state.skipped:
raise AssertionError('Interrupted...')
if shared.state.paused:
shared.log.debug('Sampling paused')
while shared.state.paused:
if shared.state.interrupted or shared.state.skipped:
raise AssertionError('Interrupted...')
time.sleep(0.1)
def full_vae_decode(latents, model):
t0 = time.time()
if shared.opts.diffusers_move_unet and not model.has_accelerate:
shared.log.debug('Moving to CPU: model=UNet')
unet_device = model.unet.device
model.unet.to(devices.cpu)
devices.torch_gc()
if not shared.cmd_opts.lowvram and not shared.opts.diffusers_seq_cpu_offload:
model.vae.to(devices.device)
latents.to(model.vae.device)
upcast = (model.vae.dtype == torch.float16) and model.vae.config.force_upcast and hasattr(model, 'upcast_vae')
if upcast: # this is done by diffusers automatically if output_type != 'latent'
model.upcast_vae()
latents = latents.to(next(iter(model.vae.post_quant_conv.parameters())).dtype)
decoded = model.vae.decode(latents / model.vae.config.scaling_factor, return_dict=False)[0]
if shared.opts.diffusers_move_unet and not model.has_accelerate:
model.unet.to(unet_device)
t1 = time.time()
shared.log.debug(f'VAE decode: name={sd_vae.loaded_vae_file if sd_vae.loaded_vae_file is not None else "baked"} dtype={model.vae.dtype} upcast={upcast} images={latents.shape[0]} latents={latents.shape} time={round(t1-t0, 3)}s')
return decoded
def full_vae_encode(image, model):
shared.log.debug(f'VAE encode: name={sd_vae.loaded_vae_file if sd_vae.loaded_vae_file is not None else "baked"} dtype={model.vae.dtype} upcast={model.vae.config.get("force_upcast", None)}')
if shared.opts.diffusers_move_unet and not model.has_accelerate:
shared.log.debug('Moving to CPU: model=UNet')
unet_device = model.unet.device
model.unet.to(devices.cpu)
devices.torch_gc()
if not shared.cmd_opts.lowvram and not shared.opts.diffusers_seq_cpu_offload:
model.vae.to(devices.device)
encoded = model.vae.encode(image.to(model.vae.device, model.vae.dtype))
if shared.opts.diffusers_move_unet and not model.has_accelerate:
model.unet.to(unet_device)
return encoded
def taesd_vae_decode(latents):
shared.log.debug(f'VAE decode: name=TAESD images={len(latents)} latents={latents.shape}')
if len(latents) == 0:
return []
decoded = torch.zeros((len(latents), 3, latents.shape[2] * 8, latents.shape[3] * 8), dtype=devices.dtype_vae, device=devices.device)
for i in range(len(output.images)):
decoded[i] = (sd_vae_taesd.decode(latents[i]) * 2.0) - 1.0
return decoded
def taesd_vae_encode(image):
shared.log.debug(f'VAE encode: name=TAESD image={image.shape}')
encoded = sd_vae_taesd.encode(image)
return encoded
def vae_decode(latents, model, output_type='np', full_quality=True):
if not torch.is_tensor(latents): # already decoded
return latents
if latents.shape[0] == 0:
shared.log.error(f'VAE nothing to decode: {latents.shape}')
return []
if shared.state.interrupted or shared.state.skipped:
return []
if not hasattr(model, 'vae'):
shared.log.error('VAE not found in model')
return []
if len(latents.shape) == 3: # lost a batch dim in hires
latents = latents.unsqueeze(0)
if full_quality:
decoded = full_vae_decode(latents=latents, model=shared.sd_model)
else:
decoded = taesd_vae_decode(latents=latents)
imgs = model.image_processor.postprocess(decoded, output_type=output_type)
return imgs
def vae_encode(image, model, full_quality=True): # pylint: disable=unused-variable
if shared.state.interrupted or shared.state.skipped:
return []
if not hasattr(model, 'vae'):
shared.log.error('VAE not found in model')
return []
tensor = TF.to_tensor(image.convert("RGB")).unsqueeze(0).to(devices.device, devices.dtype_vae)
if full_quality:
latents = full_vae_encode(image=tensor, model=shared.sd_model)
else:
latents = taesd_vae_encode(image=tensor)
return latents
def fix_prompts(prompts, negative_prompts, prompts_2, negative_prompts_2):
if type(prompts) is str:
prompts = [prompts]
if type(negative_prompts) is str:
negative_prompts = [negative_prompts]
while len(negative_prompts) < len(prompts):
negative_prompts.append(negative_prompts[-1])
if type(prompts_2) is str:
prompts_2 = [prompts_2]
if type(prompts_2) is list:
while len(prompts_2) < len(prompts):
prompts_2.append(prompts_2[-1])
if type(negative_prompts_2) is str:
negative_prompts_2 = [negative_prompts_2]
if type(negative_prompts_2) is list:
while len(negative_prompts_2) < len(prompts_2):
negative_prompts_2.append(negative_prompts_2[-1])
return prompts, negative_prompts, prompts_2, negative_prompts_2
def set_pipeline_args(model, prompts: list, negative_prompts: list, prompts_2: typing.Optional[list]=None, negative_prompts_2: typing.Optional[list]=None, desc:str='', **kwargs):
try:
is_refiner = model.text_encoder.__class__.__name__ != 'CLIPTextModel'
except Exception:
is_refiner = False
if hasattr(model, "set_progress_bar_config"):
model.set_progress_bar_config(bar_format='Progress {rate_fmt}{postfix} {bar} {percentage:3.0f}% {n_fmt}/{total_fmt} {elapsed} {remaining} ' + '\x1b[38;5;71m' + desc, ncols=80, colour='#327fba')
args = {}
signature = inspect.signature(type(model).__call__)
possible = signature.parameters.keys()
generator_device = devices.cpu if shared.opts.diffusers_generator_device == "cpu" else shared.device
generator = [torch.Generator(generator_device).manual_seed(s) for s in seeds]
prompt_embed = None
pooled = None
negative_embed = None
negative_pooled = None
prompts, negative_prompts, prompts_2, negative_prompts_2 = fix_prompts(prompts, negative_prompts, prompts_2, negative_prompts_2)
if shared.opts.prompt_attention in {'Compel parser', 'Full parser'} and 'StableDiffusion' in model.__class__.__name__:
prompt_embed, pooled, negative_embed, negative_pooled = prompt_parser_diffusers.compel_encode_prompts(model, prompts, negative_prompts, prompts_2, negative_prompts_2, is_refiner, kwargs.pop("clip_skip", None))
if 'prompt' in possible:
if hasattr(model, 'text_encoder') and 'prompt_embeds' in possible and prompt_embed is not None:
if type(pooled) == list:
pooled = pooled[0]
if type(negative_pooled) == list:
negative_pooled = negative_pooled[0]
args['prompt_embeds'] = prompt_embed
if 'XL' in model.__class__.__name__:
args['pooled_prompt_embeds'] = pooled
else:
args['prompt'] = prompts
if 'negative_prompt' in possible:
if hasattr(model, 'text_encoder') and 'negative_prompt_embeds' in possible and negative_embed is not None:
args['negative_prompt_embeds'] = negative_embed
if 'XL' in model.__class__.__name__:
args['negative_pooled_prompt_embeds'] = negative_pooled
else:
args['negative_prompt'] = negative_prompts
if 'guidance_scale' in possible:
args['guidance_scale'] = p.cfg_scale
if 'generator' in possible:
args['generator'] = generator
if 'output_type' in possible:
args['output_type'] = 'np'
if 'callback_steps' in possible:
args['callback_steps'] = 1
if 'callback' in possible:
args['callback'] = diffusers_callback
for arg in kwargs:
if arg in possible:
args[arg] = kwargs[arg]
else:
pass
# shared.log.debug(f'Diffuser not supported: pipeline={pipeline.__class__.__name__} task={sd_models.get_diffusers_task(model)} arg={arg}')
# shared.log.debug(f'Diffuser pipeline: {pipeline.__class__.__name__} possible={possible}')
clean = args.copy()
clean.pop('callback', None)
clean.pop('callback_steps', None)
if 'image' in clean:
clean['image'] = type(clean['image'])
if 'mask_image' in clean:
clean['mask_image'] = type(clean['mask_image'])
if 'prompt' in clean:
clean['prompt'] = len(clean['prompt'])
if 'negative_prompt' in clean:
clean['negative_prompt'] = len(clean['negative_prompt'])
if 'prompt_embeds' in clean:
clean['prompt_embeds'] = clean['prompt_embeds'].shape if torch.is_tensor(clean['prompt_embeds']) else type(clean['prompt_embeds'])
if 'pooled_prompt_embeds' in clean:
clean['pooled_prompt_embeds'] = clean['pooled_prompt_embeds'].shape if torch.is_tensor(clean['pooled_prompt_embeds']) else type(clean['pooled_prompt_embeds'])
if 'negative_prompt_embeds' in clean:
clean['negative_prompt_embeds'] = clean['negative_prompt_embeds'].shape if torch.is_tensor(clean['negative_prompt_embeds']) else type(clean['negative_prompt_embeds'])
if 'negative_pooled_prompt_embeds' in clean:
clean['negative_pooled_prompt_embeds'] = clean['negative_pooled_prompt_embeds'].shape if torch.is_tensor(clean['negative_pooled_prompt_embeds']) else type(clean['negative_pooled_prompt_embeds'])
clean['generator'] = generator_device
shared.log.debug(f'Diffuser pipeline: {model.__class__.__name__} task={sd_models.get_diffusers_task(model)} set={clean}')
return args
def recompile_model(hires=False):
if shared.opts.cuda_compile and shared.opts.cuda_compile_backend != 'none':
if shared.opts.cuda_compile_backend == "openvino_fx":
compile_height = p.height if not hires else p.hr_upscale_to_y
compile_width = p.width if not hires else p.hr_upscale_to_x
if (not hasattr(shared.sd_model, "compiled_model_state") or (not shared.sd_model.compiled_model_state.first_pass
and (shared.sd_model.compiled_model_state.height != compile_height or shared.sd_model.compiled_model_state.width != compile_width
or shared.sd_model.compiled_model_state.batch_size != p.batch_size))):
shared.log.info("OpenVINO: Resolution change detected")
shared.log.info("OpenVINO: Recompiling base model")
sd_models.unload_model_weights(op='model')
sd_models.reload_model_weights(op='model')
if is_refiner_enabled:
shared.log.info("OpenVINO: Recompiling refiner")
sd_models.unload_model_weights(op='refiner')
sd_models.reload_model_weights(op='refiner')
shared.sd_model.compiled_model_state.height = compile_height
shared.sd_model.compiled_model_state.width = compile_width
shared.sd_model.compiled_model_state.batch_size = p.batch_size
shared.sd_model.compiled_model_state.first_pass = False
else:
pass #Can be implemented for TensorRT or Olive
else:
pass #Do nothing if compile is disabled
is_karras_compatible = shared.sd_model.__class__.__init__.__annotations__.get("scheduler", None) == diffusers.schedulers.scheduling_utils.KarrasDiffusionSchedulers
use_sampler = p.sampler_name if not p.is_hr_pass else p.latent_sampler
if (not hasattr(shared.sd_model.scheduler, 'name')) or (shared.sd_model.scheduler.name != use_sampler) and (use_sampler != 'Default') and is_karras_compatible:
sampler = sd_samplers.all_samplers_map.get(use_sampler, None)
if sampler is None:
sampler = sd_samplers.all_samplers_map.get("UniPC")
sd_samplers.create_sampler(sampler.name, shared.sd_model) # TODO(Patrick): For wrapped pipelines this is currently a no-op
sampler_options = f'type:{shared.opts.schedulers_prediction_type} ' if shared.opts.schedulers_prediction_type != 'default' else ''
sampler_options += 'no_karras ' if not shared.opts.schedulers_use_karras else ''
sampler_options += 'no_low_order' if not shared.opts.schedulers_use_loworder else ''
sampler_options += 'dynamic_thresholding' if shared.opts.schedulers_use_thresholding else ''
sampler_options += f'solver:{shared.opts.schedulers_dpm_solver}' if shared.opts.schedulers_dpm_solver != 'sde-dpmsolver++' else ''
sampler_options += f'beta:{shared.opts.schedulers_beta_schedule}:{shared.opts.schedulers_beta_start}:{shared.opts.schedulers_beta_end}' if shared.opts.schedulers_beta_schedule != 'default' else ''
p.extra_generation_params['Sampler options'] = sampler_options if len(sampler_options) > 0 else None
p.extra_generation_params['Pipeline'] = shared.sd_model.__class__.__name__
cross_attention_kwargs={}
if len(getattr(p, 'init_images', [])) > 0:
while len(p.init_images) < len(prompts):
p.init_images.append(p.init_images[-1])
if lora_state['active']:
cross_attention_kwargs['scale'] = lora_state['multiplier']
task_specific_kwargs={}
if sd_models.get_diffusers_task(shared.sd_model) == sd_models.DiffusersTaskType.TEXT_2_IMAGE:
p.ops.append('txt2img')
task_specific_kwargs = {"height": p.height, "width": p.width}
elif sd_models.get_diffusers_task(shared.sd_model) == sd_models.DiffusersTaskType.IMAGE_2_IMAGE:
p.ops.append('img2img')
task_specific_kwargs = {"image": p.init_images, "strength": p.denoising_strength}
elif sd_models.get_diffusers_task(shared.sd_model) == sd_models.DiffusersTaskType.INPAINTING:
p.ops.append('inpaint')
task_specific_kwargs = {"image": p.init_images, "mask_image": p.mask, "strength": p.denoising_strength, "height": p.height, "width": p.width}
if shared.state.interrupted or shared.state.skipped:
unload_diffusers_lora()
return results
recompile_model()
if shared.opts.diffusers_move_base and not shared.sd_model.has_accelerate:
shared.sd_model.to(devices.device)
is_img2img = bool(sd_models.get_diffusers_task(shared.sd_model) == sd_models.DiffusersTaskType.IMAGE_2_IMAGE or sd_models.get_diffusers_task(shared.sd_model) == sd_models.DiffusersTaskType.INPAINTING)
use_refiner_start = bool(is_refiner_enabled and not p.is_hr_pass and not is_img2img and p.refiner_start > 0 and p.refiner_start < 1)
use_denoise_start = bool(is_img2img and p.refiner_start > 0 and p.refiner_start < 1)
def calculate_base_steps():
if use_refiner_start:
return int(p.steps // p.refiner_start + 1) if shared.sd_model_type == 'sdxl' else p.steps
elif use_denoise_start and shared.sd_model_type == 'sdxl':
return int(p.steps // (1 - p.refiner_start))
elif is_img2img:
return int(p.steps // p.denoising_strength + 1)
else:
return p.steps
base_args = set_pipeline_args(
model=shared.sd_model,
prompts=prompts,
negative_prompts=negative_prompts,
prompts_2=[p.refiner_prompt] if len(p.refiner_prompt) > 0 else prompts,
negative_prompts_2=[p.refiner_negative] if len(p.refiner_negative) > 0 else negative_prompts,
num_inference_steps=calculate_base_steps(),
eta=shared.opts.eta_ddim,
guidance_rescale=p.diffusers_guidance_rescale,
denoising_start=0 if use_refiner_start else p.refiner_start if use_denoise_start else None,
denoising_end=p.refiner_start if use_refiner_start else 1 if use_denoise_start else None,
output_type='latent' if hasattr(shared.sd_model, 'vae') else 'np',
clip_skip=p.clip_skip,
desc='Base',
**task_specific_kwargs
)
p.extra_generation_params['CFG rescale'] = p.diffusers_guidance_rescale
p.extra_generation_params["Eta DDIM"] = shared.opts.eta_ddim if shared.opts.eta_ddim is not None and shared.opts.eta_ddim > 0 else None
try:
output = shared.sd_model(**base_args) # pylint: disable=not-callable
except AssertionError as e:
shared.log.info(e)
if hasattr(shared.sd_model, 'embedding_db') and len(shared.sd_model.embedding_db.embeddings_used) > 0:
p.extra_generation_params['Embeddings'] = ', '.join(shared.sd_model.embedding_db.embeddings_used)
if lora_state['active']:
p.extra_generation_params['LoRA method'] = shared.opts.diffusers_lora_loader
unload_diffusers_lora()
if shared.state.interrupted or shared.state.skipped:
return results
# optional hires pass
latent_scale_mode = shared.latent_upscale_modes.get(p.hr_upscaler, None) if (hasattr(p, "hr_upscaler") and p.hr_upscaler is not None) else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "None")
if p.is_hr_pass:
p.init_hr()
if p.width != p.hr_upscale_to_x or p.height != p.hr_upscale_to_y:
p.ops.append('upscale')
if shared.opts.save and not p.do_not_save_samples and shared.opts.save_images_before_highres_fix and hasattr(shared.sd_model, 'vae'):
save_intermediate(latents=output.images, suffix="-before-hires")
output.images = hires_resize(latents=output.images)
if latent_scale_mode is not None or p.hr_force:
p.ops.append('hires')
recompile_model(hires=True)
sd_models.set_diffuser_pipe(shared.sd_model, sd_models.DiffusersTaskType.IMAGE_2_IMAGE)
hires_args = set_pipeline_args(
model=shared.sd_model,
prompts=prompts,
negative_prompts=negative_prompts,
prompts_2=[p.refiner_prompt] if len(p.refiner_prompt) > 0 else prompts,
negative_prompts_2=[p.refiner_negative] if len(p.refiner_negative) > 0 else negative_prompts,
num_inference_steps=int(p.hr_second_pass_steps // p.denoising_strength + 1),
eta=shared.opts.eta_ddim,
guidance_scale=p.image_cfg_scale if p.image_cfg_scale is not None else p.cfg_scale,
guidance_rescale=p.diffusers_guidance_rescale,
output_type='latent' if hasattr(shared.sd_model, 'vae') else 'np',
clip_skip=p.clip_skip,
image=p.init_images,
strength=p.denoising_strength,
desc='Hires',
)
try:
output = shared.sd_model(**hires_args) # pylint: disable=not-callable
except AssertionError as e:
shared.log.info(e)
# optional refiner pass or decode
if is_refiner_enabled:
if shared.opts.save and not p.do_not_save_samples and shared.opts.save_images_before_refiner and hasattr(shared.sd_model, 'vae'):
save_intermediate(latents=output.images, suffix="-before-refiner")
if shared.opts.diffusers_move_base and not shared.sd_model.has_accelerate:
shared.log.debug('Moving to CPU: model=base')
shared.sd_model.to(devices.cpu)
devices.torch_gc()
if (not hasattr(shared.sd_refiner.scheduler, 'name')) or (shared.sd_refiner.scheduler.name != p.latent_sampler) and (p.sampler_name != 'Default'):
sampler = sd_samplers.all_samplers_map.get(p.latent_sampler, None)
if sampler is None:
sampler = sd_samplers.all_samplers_map.get("UniPC")
sd_samplers.create_sampler(sampler.name, shared.sd_refiner) # TODO(Patrick): For wrapped pipelines this is currently a no-op
if shared.state.interrupted or shared.state.skipped:
return results
if shared.opts.diffusers_move_refiner and not shared.sd_refiner.has_accelerate:
shared.sd_refiner.to(devices.device)
refiner_is_sdxl = bool("StableDiffusionXL" in shared.sd_refiner.__class__.__name__)
p.ops.append('refine')
for i in range(len(output.images)):
image = output.images[i]
# if (image.shape[2] == 3) and (image.shape[0] % 8 != 0 or image.shape[1] % 8 != 0):
# shared.log.warning(f'Refiner requires image size to be divisible by 8: {image.shape}')
# results.append(image)
# return results
refiner_args = set_pipeline_args(
model=shared.sd_refiner,
prompts=[p.refiner_prompt] if len(p.refiner_prompt) > 0 else prompts[i],
negative_prompts=[p.refiner_negative] if len(p.refiner_negative) > 0 else negative_prompts[i],
num_inference_steps=int(p.refiner_steps // (1 - p.refiner_start)) if p.refiner_start > 0 and p.refiner_start < 1 and refiner_is_sdxl else int(p.refiner_steps // p.denoising_strength + 1) if refiner_is_sdxl else p.refiner_steps,
eta=shared.opts.eta_ddim,
strength=p.denoising_strength,
guidance_scale=p.image_cfg_scale if p.image_cfg_scale is not None else p.cfg_scale,
guidance_rescale=p.diffusers_guidance_rescale,
denoising_start=p.refiner_start if p.refiner_start > 0 and p.refiner_start < 1 else None,
denoising_end=1 if p.refiner_start > 0 and p.refiner_start < 1 else None,
image=image,
output_type='latent' if hasattr(shared.sd_refiner, 'vae') else 'np',
clip_skip=p.clip_skip,
desc='Refiner',
)
try:
refiner_output = shared.sd_refiner(**refiner_args) # pylint: disable=not-callable
except AssertionError as e:
shared.log.info(e)
if not shared.state.interrupted and not shared.state.skipped:
refiner_images = vae_decode(latents=refiner_output.images, model=shared.sd_refiner, full_quality=True)
for refiner_image in refiner_images:
results.append(refiner_image)
if shared.opts.diffusers_move_refiner and not shared.sd_refiner.has_accelerate:
shared.log.debug('Moving to CPU: model=refiner')
shared.sd_refiner.to(devices.cpu)
devices.torch_gc()
# final decode since there is no refiner
if not is_refiner_enabled:
results = vae_decode(latents=output.images, model=shared.sd_model, full_quality=p.full_quality)
return results