1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/scripts/ltxvideo.py
Vladimir Mandic e8b5ea3847 major refactor: remove backend original
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-07-05 13:16:46 -04:00

153 lines
7.5 KiB
Python

import os
import time
import torch
import gradio as gr
import diffusers
import transformers
from modules import scripts_manager, processing, shared, images, devices, sd_models, sd_checkpoint, model_quant, timer, sd_hijack_te
repos = {
'0.9.0': 'a-r-r-o-w/LTX-Video-diffusers',
'0.9.1': 'a-r-r-o-w/LTX-Video-0.9.1-diffusers',
'0.9.5': 'Lightricks/LTX-Video-0.9.5',
'custom': None,
}
def load_quants(kwargs, repo_id):
quant_args = model_quant.create_config()
if not quant_args:
return kwargs
model_quant.load_bnb(f'Load model: type=LTX quant={quant_args}')
if 'transformer' not in kwargs and ('Model' in shared.opts.bnb_quantization or 'Model' in shared.opts.torchao_quantization):
kwargs['transformer'] = diffusers.LTXVideoTransformer3DModel.from_pretrained(repo_id, subfolder="transformer", cache_dir=shared.opts.hfcache_dir, torch_dtype=devices.dtype, **quant_args)
shared.log.debug(f'Quantization: module=transformer type=bnb dtype={shared.opts.bnb_quantization_type} storage={shared.opts.bnb_quantization_storage}')
if 'text_encoder' not in kwargs and ('TE' in shared.opts.bnb_quantization or 'TE' in shared.opts.torchao_quantization):
kwargs['text_encoder'] = transformers.T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder", cache_dir=shared.opts.hfcache_dir, torch_dtype=devices.dtype, **quant_args)
shared.log.debug(f'Quantization: module=t5 type=bnb dtype={shared.opts.bnb_quantization_type} storage={shared.opts.bnb_quantization_storage}')
return kwargs
def hijack_decode(*args, **kwargs):
t0 = time.time()
shared.sd_model = sd_models.apply_balanced_offload(shared.sd_model, exclude=['vae'])
res = shared.sd_model.vae.orig_decode(*args, **kwargs)
t1 = time.time()
timer.process.add('vae', t1-t0)
shared.log.debug(f'Video: vae={shared.sd_model.vae.__class__.__name__} time={t1-t0:.2f}')
return res
class Script(scripts_manager.Script):
def title(self):
return 'Video: LTX Video (Legacy)'
def show(self, is_img2img):
return True
# return signature is array of gradio components
def ui(self, is_img2img):
def model_change(model):
return gr.update(visible=model == 'custom')
with gr.Row():
gr.HTML('<a href="https://www.ltxvideo.org/">&nbsp LTX Video</a><br>')
with gr.Row():
model = gr.Dropdown(label='LTX Model', choices=list(repos), value='0.9.1')
decode = gr.Dropdown(label='Decode', choices=['diffusers', 'native'], value='diffusers', visible=False)
with gr.Row():
num_frames = gr.Slider(label='Frames', minimum=9, maximum=257, step=1, value=41)
sampler = gr.Checkbox(label='Override sampler', value=True)
with gr.Row():
teacache_enable = gr.Checkbox(label='Enable TeaCache', value=False)
teacache_threshold = gr.Slider(label='Threshold', minimum=0.01, maximum=0.1, step=0.01, value=0.03)
with gr.Row():
model_custom = gr.Textbox(value='', label='Path to model file', visible=False)
with gr.Row():
from modules.ui_sections import create_video_inputs
video_type, duration, gif_loop, mp4_pad, mp4_interpolate = create_video_inputs(tab='img2img' if is_img2img else 'txt2img')
model.change(fn=model_change, inputs=[model], outputs=[model_custom])
return [model, model_custom, decode, sampler, num_frames, video_type, duration, gif_loop, mp4_pad, mp4_interpolate, teacache_enable, teacache_threshold]
def run(self, p: processing.StableDiffusionProcessing, model, model_custom, decode, sampler, num_frames, video_type, duration, gif_loop, mp4_pad, mp4_interpolate, teacache_enable, teacache_threshold): # pylint: disable=arguments-differ, unused-argument
# set params
image = getattr(p, 'init_images', None)
image = None if image is None or len(image) == 0 else image[0]
if (p.width == 0 or p.height == 0) and image is not None:
p.width = image.width
p.height = image.height
num_frames = 8 * int(num_frames // 8) + 1
p.width = 32 * int(p.width // 32)
p.height = 32 * int(p.height // 32)
processing.fix_seed(p)
if image:
image = images.resize_image(resize_mode=2, im=image, width=p.width, height=p.height, upscaler_name=None, output_type='pil')
p.task_args['image'] = image
p.task_args['output_type'] = 'latent' if decode == 'native' else 'pil'
p.task_args['generator'] = torch.Generator(devices.device).manual_seed(p.seed)
p.task_args['num_frames'] = num_frames
p.do_not_save_grid = True
if sampler:
p.sampler_name = 'Default'
p.ops.append('video')
# load model
cls = diffusers.LTXPipeline if image is None else diffusers.LTXImageToVideoPipeline
diffusers.LTXTransformer3DModel = diffusers.LTXVideoTransformer3DModel
diffusers.AutoencoderKLLTX = diffusers.AutoencoderKLLTXVideo
repo_id = repos[model]
if repo_id is None:
repo_id = model_custom
if shared.sd_model.__class__ != cls:
sd_models.unload_model_weights()
kwargs = model_quant.create_config()
if os.path.isfile(repo_id):
shared.sd_model = cls.from_single_file(
repo_id,
cache_dir = shared.opts.hfcache_dir,
torch_dtype=devices.dtype,
**kwargs
)
else:
kwargs = load_quants(kwargs, repo_id)
shared.sd_model = cls.from_pretrained(
repo_id,
cache_dir = shared.opts.hfcache_dir,
torch_dtype=devices.dtype,
**kwargs
)
sd_models.set_diffuser_options(shared.sd_model)
shared.sd_model.vae.orig_decode = shared.sd_model.vae.decode
shared.sd_model.orig_encode_prompt = shared.sd_model.encode_prompt
shared.sd_model.vae.decode = hijack_decode
shared.sd_model.sd_checkpoint_info = sd_checkpoint.CheckpointInfo(repo_id)
shared.sd_model.sd_model_hash = None
sd_hijack_te.init_hijack(shared.sd_model)
shared.sd_model = sd_models.apply_balanced_offload(shared.sd_model)
shared.sd_model.vae.enable_slicing()
shared.sd_model.vae.enable_tiling()
shared.sd_model.vae.use_framewise_decoding = True
devices.torch_gc(force=True)
shared.sd_model.transformer.cnt = 0
shared.sd_model.transformer.accumulated_rel_l1_distance = 0
shared.sd_model.transformer.previous_modulated_input = None
shared.sd_model.transformer.previous_residual = None
shared.sd_model.transformer.enable_teacache = teacache_enable
shared.sd_model.transformer.rel_l1_thresh = teacache_threshold
shared.sd_model.transformer.num_steps = p.steps
shared.log.debug(f'Video: cls={shared.sd_model.__class__.__name__} args={p.task_args} steps={p.steps} teacache={teacache_enable} threshold={teacache_threshold}')
# run processing
t0 = time.time()
processed = processing.process_images(p)
t1 = time.time()
if processed is not None and len(processed.images) > 0:
shared.log.info(f'Video: frames={len(processed.images)} time={t1-t0:.2f}')
if video_type != 'None':
images.save_video(p, filename=None, images=processed.images, video_type=video_type, duration=duration, loop=gif_loop, pad=mp4_pad, interpolate=mp4_interpolate)
return processed