1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/ipadapter.py
Vladimir Mandic 0a0efa3fc1 fix upscale api
2024-02-04 10:14:10 -05:00

123 lines
5.0 KiB
Python

"""
Lightweight IP-Adapter applied to existing pipeline in Diffusers
- Downloads image_encoder or first usage (2.5GB)
- Introduced via: https://github.com/huggingface/diffusers/pull/5713
- IP adapters: https://huggingface.co/h94/IP-Adapter
TODO ipadapter items:
- SD/SDXL autodetect
"""
import os
import time
from modules import processing, shared, devices
base_repo = "h94/IP-Adapter"
clip_loaded = None
ADAPTERS = {
'None': 'none',
'Base': 'ip-adapter_sd15.safetensors',
'Base ViT-G': 'ip-adapter_sd15_vit-G.safetensors',
'Light': 'ip-adapter_sd15_light.safetensors',
'Plus': 'ip-adapter-plus_sd15.safetensors',
'Plus Face': 'ip-adapter-plus-face_sd15.safetensors',
'Full Face': 'ip-adapter-full-face_sd15.safetensors',
'Base SXDL': 'ip-adapter_sdxl.safetensors',
'Base ViT-H SXDL': 'ip-adapter_sdxl_vit-h.safetensors',
'Plus ViT-H SXDL': 'ip-adapter-plus_sdxl_vit-h.safetensors',
'Plus Face ViT-H SXDL': 'ip-adapter-plus-face_sdxl_vit-h.safetensors',
}
def unapply(pipe): # pylint: disable=arguments-differ
try:
if hasattr(pipe, 'set_ip_adapter_scale'):
pipe.set_ip_adapter_scale(0)
if hasattr(pipe, 'unet') and hasattr(pipe.unet, 'config')and pipe.unet.config.encoder_hid_dim_type == 'ip_image_proj':
pipe.unet.encoder_hid_proj = None
pipe.config.encoder_hid_dim_type = None
pipe.unet.set_default_attn_processor()
except Exception:
pass
def apply(pipe, p: processing.StableDiffusionProcessing, adapter_name='None', scale=1.0, image=None):
global clip_loaded # pylint: disable=global-statement
# overrides
if hasattr(p, 'ip_adapter_name'):
adapter = ADAPTERS.get(p.ip_adapter_name, None)
adapter_name = p.ip_adapter_name
else:
adapter = ADAPTERS.get(adapter_name, None)
if hasattr(p, 'ip_adapter_scale'):
scale = p.ip_adapter_scale
if hasattr(p, 'ip_adapter_image'):
image = p.ip_adapter_image
if adapter is None:
unapply(pipe)
return False
# init code
if pipe is None:
return False
if shared.backend != shared.Backend.DIFFUSERS:
shared.log.warning('IP adapter: not in diffusers mode')
return False
if image is None and adapter != 'none':
shared.log.error('IP adapter: no image provided')
adapter = 'none' # unload adapter if previously loaded as it will cause runtime errors
if adapter == 'none':
unapply(pipe)
return False
if not hasattr(pipe, 'load_ip_adapter'):
shared.log.error(f'IP adapter: pipeline not supported: {pipe.__class__.__name__}')
return False
if shared.sd_model_type != 'sd' and shared.sd_model_type != 'sdxl':
shared.log.error(f'IP adapter: unsupported model type: {shared.sd_model_type}')
return False
# which clip to use
if 'ViT' not in adapter_name:
clip_repo = base_repo
clip_subfolder = 'models/image_encoder' if shared.sd_model_type == 'sd' else 'sdxl_models/image_encoder' # defaults per model
elif 'ViT-H' in adapter_name:
clip_repo = base_repo
clip_subfolder = 'models/image_encoder' # this is vit-h
elif 'ViT-G' in adapter_name:
clip_repo = base_repo
clip_subfolder = 'sdxl_models/image_encoder' # this is vit-g
else:
shared.log.error(f'IP adapter: unknown model type: {adapter_name}')
return False
# load feature extractor used by ip adapter
if pipe.feature_extractor is None:
from transformers import CLIPImageProcessor
shared.log.debug('IP adapter load: feature extractor')
pipe.feature_extractor = CLIPImageProcessor()
# load image encoder used by ip adapter
if pipe.image_encoder is None or clip_loaded != f'{clip_repo}/{clip_subfolder}':
try:
from transformers import CLIPVisionModelWithProjection
shared.log.debug(f'IP adapter load: image encoder="{clip_repo}/{clip_subfolder}"')
pipe.image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_repo, subfolder=clip_subfolder, torch_dtype=devices.dtype, cache_dir=shared.opts.diffusers_dir, use_safetensors=True)
clip_loaded = f'{clip_repo}/{clip_subfolder}'
except Exception as e:
shared.log.error(f'IP adapter: failed to load image encoder: {e}')
return
pipe.image_encoder.to(devices.device)
# main code
t0 = time.time()
ip_subfolder = 'models' if shared.sd_model_type == 'sd' else 'sdxl_models'
pipe.load_ip_adapter(base_repo, subfolder=ip_subfolder, weight_name=adapter)
pipe.set_ip_adapter_scale(scale)
t1 = time.time()
shared.log.info(f'IP adapter: adapter="{ip_subfolder}/{adapter}" scale={scale} image={image} time={t1-t0:.2f}')
if isinstance(image, str):
from modules.api.api import decode_base64_to_image
image = decode_base64_to_image(image).convert("RGB")
p.task_args['ip_adapter_image'] = [image]
p.extra_generation_params["IP Adapter"] = f'{os.path.splitext(adapter)[0]}:{scale}'
return True