1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/cli/modules/preview-models.py
2023-03-06 20:29:10 -05:00

223 lines
9.2 KiB
Python
Executable File

#!/bin/env python
import os
import sys
import json
import time
import asyncio
import argparse
from pathlib import Path
from util import Map, log
from sdapi import get, post, close
from grid import grid
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from generate import sd, generate
default = 'sd-v15-runwayml.ckpt [cc6cb27103]'
embeddings = ['blonde', 'bruntette', 'sexy', 'naked', 'ti-mia', 'ti-lin', 'ti-kelly', 'ti-hanna', 'ti-rreid-random']
exclude = ['sd-v20', 'sd-v21', 'inpainting', 'pix2pix']
prompt = "photo of <keyword> <embedding>, photograph, posing, pose, high detailed, intricate, elegant, sharp focus, skin texture, looking forward, facing camera, 135mm, shot on dslr, canon 5d, 4k, modelshoot style, cinematic lighting"
options = Map({
'generate': {
'restore_faces': True,
'prompt': '',
'negative_prompt': 'digital art, cgi, render, foggy, blurry, blurred, duplicate, ugly, mutilated, mutation, mutated, out of frame, bad anatomy, disfigured, deformed, censored, low res, low resolution, watermark, text, poorly drawn face, poorly drawn hands, signature',
'steps': 30,
'batch_size': 4,
'n_iter': 1,
'seed': -1,
'sampler_name': 'DPM2 Karras',
'cfg_scale': 7,
'width': 512,
'height': 512,
},
'format': '.jpg',
'paths': {
"root": "/mnt/c/Users/mandi/OneDrive/Generative/Generate",
"generate": "image",
"upscale": "upscale",
"grid": "grid",
},
'options': {
"sd_model_checkpoint": "sd-v15-runwayml",
"sd_vae": "vae-ft-mse-840000-ema-pruned.ckpt",
},
'lora': {
'strength': 1.0,
},
'hypernetwork': {
'keyword': 'beautiful sexy woman',
'strength': 1.0,
},
})
async def models(params):
global sd
data = await get('/sdapi/v1/sd-models')
all = [m['title'] for m in data]
models = []
excluded = []
for m in all: # loop through all registered models
ok = True
for e in exclude: # check if model is excluded
if e in m:
excluded.append(m)
ok = False
break
if ok:
short = m.split(' [')[0]
short = short.replace('.ckpt', '').replace('.safetensors', '')
models.append(short)
if len(params.input) > 0: # check if model is included in cmd line
filtered = []
for m in params.input:
if m in models:
filtered.append(m)
else:
log.error({ 'model not found': m })
return
models = filtered
log.info({ 'models preview' })
log.info({ 'models': len(models), 'excluded': len(excluded) })
log.info({ 'embeddings': embeddings })
cmdflags = await get('/sdapi/v1/cmd-flags')
opt = await get('/sdapi/v1/options')
if params.output != '':
dir = params.output
else:
dir = os.path.abspath(os.path.join(cmdflags['hypernetwork_dir'], '..', 'Stable-diffusion'))
log.info({ 'output directory': dir })
log.info({ 'total jobs': len(models) * len(embeddings) * options.generate.batch_size, 'per-model': len(embeddings) * options.generate.batch_size })
log.info(json.dumps(options, indent=2))
for model in models:
fn = os.path.join(dir, model + options.format)
if os.path.exists(fn) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'model preview exists': model })
continue
log.info({ 'model load': model })
opt['sd_model_checkpoint'] = model
await post('/sdapi/v1/options', opt)
opt = await get('/sdapi/v1/options')
images = []
labels = []
t0 = time.time()
for embedding in embeddings:
options.generate.prompt = prompt.replace('<embedding>', f'\"{embedding}\"')
options.generate.prompt = options.generate.prompt.replace('<keyword>', 'beautiful woman')
log.info({ 'model generating': model, 'embedding': embedding, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(embedding)
else:
log.error({ 'model': model, 'embedding': embedding, 'error': data })
t1 = time.time()
image = grid(images = images, labels = labels, border = 8)
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'model preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
opt = await get('/sdapi/v1/options')
if opt['sd_model_checkpoint'] != default and not params.fixed:
log.info({ 'model set default': default })
opt['sd_model_checkpoint'] = default
await post('/sdapi/v1/options', opt)
async def lora(params):
cmdflags = await get('/sdapi/v1/cmd-flags')
dir = cmdflags['lora_dir']
if not os.path.exists(dir):
log.error({ 'lora directory not found': dir })
return
models1 = [f for f in Path(dir).glob('*.safetensors')]
models2 = [f for f in Path(dir).glob('*.ckpt')]
models = [f.stem for f in models1 + models2]
log.info({ 'loras': len(models) })
for model in models:
fn = os.path.join(dir, model + options.format)
if os.path.exists(fn) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'lora preview exists': model })
continue
images = []
labels = []
t0 = time.time()
import re
keywords = re.sub('\d', '', model)
keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ')
keyword = '\"' + '\" \"'.join(keywords) + '\"'
options.generate.prompt = prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt += f' <lora:{model}:{options.lora.strength}>'
log.info({ 'lora generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'lora': model, 'keyword': keyword, 'error': data })
t1 = time.time()
image = grid(images = images, labels = labels, border = 8)
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'lora preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def hypernetwork(params):
cmdflags = await get('/sdapi/v1/cmd-flags')
dir = cmdflags['hypernetwork_dir']
if not os.path.exists(dir):
log.error({ 'hypernetwork directory not found': dir })
return
models = [f.stem for f in Path(dir).glob('*.pt')]
log.info({ 'loras': len(models) })
for model in models:
fn = os.path.join(dir, model + options.format)
if os.path.exists(fn) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'hypernetwork preview exists': model })
continue
images = []
labels = []
t0 = time.time()
keyword = options.hypernetwork.keyword
options.generate.prompt = prompt.replace('<keyword>', options.hypernetwork.keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt = f' <hypernet:{model}:{options.hypernetwork.strength}> ' + options.generate.prompt
log.info({ 'hypernetwork generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'hypernetwork': model, 'keyword': keyword, 'error': data })
t1 = time.time()
image = grid(images = images, labels = labels, border = 8)
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'hypernetwork preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def create_previews(params):
await models(params)
await lora(params)
await hypernetwork(params)
await close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'generate model previews')
parser.add_argument('--output', type = str, default = '', required = False, help = 'output directory')
parser.add_argument('--fixed', default = False, action='store_true', help = "do not change model")
parser.add_argument('input', type = str, nargs = '*')
params = parser.parse_args()
asyncio.run(create_previews(params))