mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
522 lines
20 KiB
Python
522 lines
20 KiB
Python
import torch.nn as nn
|
|
import torch
|
|
import cv2
|
|
import numpy as np
|
|
|
|
import einops
|
|
from tqdm import tqdm
|
|
from typing import Optional, Tuple, Union
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.autoencoders.vae import DecoderOutput
|
|
from diffusers.models.attention_processor import Attention, AttnProcessor
|
|
try:
|
|
from diffusers.models.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
|
except Exception:
|
|
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
class LatentTransparencyOffsetEncoder(torch.nn.Module):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.blocks = torch.nn.Sequential(
|
|
torch.nn.Conv2d(4, 32, kernel_size=3, padding=1, stride=1),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
|
|
nn.SiLU(),
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
nn.SiLU(),
|
|
zero_module(torch.nn.Conv2d(256, 4, kernel_size=3, padding=1, stride=1)),
|
|
)
|
|
|
|
def __call__(self, x):
|
|
return self.blocks(x)
|
|
|
|
|
|
# 1024 * 1024 * 3 -> 16 * 16 * 512 -> 1024 * 1024 * 3
|
|
class UNet1024(ModelMixin, ConfigMixin):
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
down_block_types: Tuple[str] = ("DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types: Tuple[str] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D"),
|
|
block_out_channels: Tuple[int] = (32, 32, 64, 128, 256, 512, 512),
|
|
layers_per_block: int = 2,
|
|
mid_block_scale_factor: float = 1,
|
|
downsample_padding: int = 1,
|
|
downsample_type: str = "conv",
|
|
upsample_type: str = "conv",
|
|
dropout: float = 0.0,
|
|
act_fn: str = "silu",
|
|
attention_head_dim: Optional[int] = 8,
|
|
norm_num_groups: int = 4,
|
|
norm_eps: float = 1e-5,
|
|
):
|
|
super().__init__()
|
|
|
|
# input
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
|
self.latent_conv_in = zero_module(nn.Conv2d(4, block_out_channels[2], kernel_size=1))
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
self.mid_block = None
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
# down
|
|
output_channel = block_out_channels[0]
|
|
for i, down_block_type in enumerate(down_block_types):
|
|
input_channel = output_channel
|
|
output_channel = block_out_channels[i]
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
down_block = get_down_block(
|
|
down_block_type,
|
|
num_layers=layers_per_block,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
temb_channels=None,
|
|
add_downsample=not is_final_block,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
resnet_groups=norm_num_groups,
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift="default",
|
|
downsample_type=downsample_type,
|
|
dropout=dropout,
|
|
)
|
|
self.down_blocks.append(down_block)
|
|
|
|
# mid
|
|
self.mid_block = UNetMidBlock2D(
|
|
in_channels=block_out_channels[-1],
|
|
temb_channels=None,
|
|
dropout=dropout,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
output_scale_factor=mid_block_scale_factor,
|
|
resnet_time_scale_shift="default",
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
|
resnet_groups=norm_num_groups,
|
|
attn_groups=None,
|
|
add_attention=True,
|
|
)
|
|
|
|
# up
|
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
|
output_channel = reversed_block_out_channels[0]
|
|
for i, up_block_type in enumerate(up_block_types):
|
|
prev_output_channel = output_channel
|
|
output_channel = reversed_block_out_channels[i]
|
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
|
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
up_block = get_up_block(
|
|
up_block_type,
|
|
num_layers=layers_per_block + 1,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=None,
|
|
add_upsample=not is_final_block,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
resnet_groups=norm_num_groups,
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
|
resnet_time_scale_shift="default",
|
|
upsample_type=upsample_type,
|
|
dropout=dropout,
|
|
)
|
|
self.up_blocks.append(up_block)
|
|
prev_output_channel = output_channel
|
|
|
|
# out
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
|
self.conv_act = nn.SiLU()
|
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
|
|
|
def forward(self, x, latent):
|
|
sample_latent = self.latent_conv_in(latent)
|
|
sample = self.conv_in(x)
|
|
emb = None
|
|
|
|
down_block_res_samples = (sample,)
|
|
for i, downsample_block in enumerate(self.down_blocks):
|
|
if i == 3:
|
|
sample = sample + sample_latent
|
|
|
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
|
down_block_res_samples += res_samples
|
|
|
|
sample = self.mid_block(sample, emb)
|
|
|
|
for upsample_block in self.up_blocks:
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
|
sample = upsample_block(sample, res_samples, emb)
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
return sample
|
|
|
|
|
|
def checkerboard(shape):
|
|
return np.indices(shape).sum(axis=0) % 2
|
|
|
|
|
|
class TransparentVAEDecoder(AutoencoderKL):
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
|
block_out_channels: Tuple[int] = (64,),
|
|
layers_per_block: int = 1,
|
|
act_fn: str = "silu",
|
|
latent_channels: int = 4,
|
|
norm_num_groups: int = 32,
|
|
sample_size: int = 32,
|
|
scaling_factor: float = 0.18215,
|
|
latents_mean: Optional[Tuple[float]] = None,
|
|
latents_std: Optional[Tuple[float]] = None,
|
|
force_upcast: float = True,
|
|
):
|
|
super().__init__(in_channels, out_channels, down_block_types, up_block_types, block_out_channels, layers_per_block, act_fn, latent_channels, norm_num_groups, sample_size, scaling_factor, latents_mean, latents_std, force_upcast)
|
|
|
|
def set_transparent_decoder(self, sd, mod_number=1):
|
|
model = UNet1024(in_channels=3, out_channels=4)
|
|
model.load_state_dict(sd, strict=True)
|
|
model.to(device=self.device, dtype=self.dtype)
|
|
model.eval()
|
|
|
|
self.transparent_decoder = model
|
|
self.mod_number = mod_number
|
|
|
|
def estimate_single_pass(self, pixel, latent):
|
|
y = self.transparent_decoder(pixel, latent)
|
|
return y
|
|
|
|
def estimate_augmented(self, pixel, latent):
|
|
args = [
|
|
[False, 0], [False, 1], [False, 2], [False, 3], [True, 0], [True, 1], [True, 2], [True, 3],
|
|
]
|
|
|
|
result = []
|
|
|
|
for flip, rok in tqdm(args):
|
|
feed_pixel = pixel.clone()
|
|
feed_latent = latent.clone()
|
|
|
|
if flip:
|
|
feed_pixel = torch.flip(feed_pixel, dims=(3,))
|
|
feed_latent = torch.flip(feed_latent, dims=(3,))
|
|
|
|
feed_pixel = torch.rot90(feed_pixel, k=rok, dims=(2, 3))
|
|
feed_latent = torch.rot90(feed_latent, k=rok, dims=(2, 3))
|
|
|
|
eps = self.estimate_single_pass(feed_pixel, feed_latent).clip(0, 1)
|
|
eps = torch.rot90(eps, k=-rok, dims=(2, 3))
|
|
|
|
if flip:
|
|
eps = torch.flip(eps, dims=(3,))
|
|
|
|
result += [eps]
|
|
|
|
result = torch.stack(result, dim=0)
|
|
median = torch.median(result, dim=0).values
|
|
return median
|
|
|
|
def decode(self, z: torch.Tensor, return_dict: bool = True, generator=None) -> Union[DecoderOutput, torch.Tensor]:
|
|
pixel = super().decode(z, return_dict=False, generator=generator)[0]
|
|
pixel = pixel / 2 + 0.5
|
|
|
|
|
|
result_pixel = []
|
|
for i in range(int(z.shape[0])):
|
|
if self.mod_number != 1 and i % self.mod_number != 0:
|
|
img = torch.cat((pixel[i:i+1], torch.ones_like(pixel[i:i+1,:1,:,:])), dim=1)
|
|
result_pixel.append(img)
|
|
continue
|
|
|
|
y = self.estimate_augmented(pixel[i:i+1], z[i:i+1])
|
|
|
|
y = y.clip(0, 1).movedim(1, -1)
|
|
alpha = y[..., :1]
|
|
fg = y[..., 1:]
|
|
|
|
B, H, W, C = fg.shape
|
|
cb = checkerboard(shape=(H // 64, W // 64))
|
|
cb = cv2.resize(cb, (W, H), interpolation=cv2.INTER_NEAREST)
|
|
cb = (0.5 + (cb - 0.5) * 0.1)[None, ..., None]
|
|
cb = torch.from_numpy(cb).to(fg)
|
|
|
|
png = torch.cat([fg, alpha], dim=3)
|
|
png = png.permute(0, 3, 1, 2)
|
|
result_pixel.append(png)
|
|
|
|
result_pixel = torch.cat(result_pixel, dim=0)
|
|
result_pixel = (result_pixel - 0.5) * 2
|
|
|
|
if not return_dict:
|
|
return (result_pixel, )
|
|
return DecoderOutput(sample=result_pixel)
|
|
|
|
|
|
class TransparentVAEEncoder:
|
|
def __init__(self, sd, device="cpu", torch_dtype=torch.float32):
|
|
self.load_device = device
|
|
self.dtype = torch_dtype
|
|
|
|
model = LatentTransparencyOffsetEncoder()
|
|
model.load_state_dict(sd, strict=True)
|
|
model.to(device=self.offload_device, dtype=self.dtype)
|
|
model.eval()
|
|
|
|
|
|
class HookerLayers(torch.nn.Module):
|
|
def __init__(self, layer_list):
|
|
super().__init__()
|
|
self.layers = torch.nn.ModuleList(layer_list)
|
|
|
|
|
|
class AdditionalAttentionCondsEncoder(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
self.blocks_0 = torch.nn.Sequential(
|
|
torch.nn.Conv2d(3, 32, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(32, 32, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(32, 64, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(64, 64, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(128, 128, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
) # 64*64*256
|
|
|
|
self.blocks_1 = torch.nn.Sequential(
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
) # 32*32*256
|
|
|
|
self.blocks_2 = torch.nn.Sequential(
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
) # 16*16*256
|
|
|
|
self.blocks_3 = torch.nn.Sequential(
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=2),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
) # 8*8*256
|
|
|
|
self.blks = [self.blocks_0, self.blocks_1, self.blocks_2, self.blocks_3]
|
|
|
|
def __call__(self, h):
|
|
results = {}
|
|
for b in self.blks:
|
|
h = b(h)
|
|
results[int(h.shape[2]) * int(h.shape[3])] = h
|
|
return results
|
|
|
|
|
|
class LoraLoader(torch.nn.Module):
|
|
def __init__(self, layer_list, use_control=False):
|
|
super().__init__()
|
|
self.hookers = HookerLayers(layer_list)
|
|
|
|
if use_control:
|
|
self.kwargs_encoder = AdditionalAttentionCondsEncoder()
|
|
else:
|
|
self.kwargs_encoder = None
|
|
|
|
|
|
class LoRALinearLayer(torch.nn.Module):
|
|
def __init__(self, in_features: int, out_features: int, rank: int = 256):
|
|
super().__init__()
|
|
self.down = torch.nn.Linear(in_features, rank, bias=False)
|
|
self.up = torch.nn.Linear(rank, out_features, bias=False)
|
|
|
|
def forward(self, h, org):
|
|
org_weight = org.weight.to(h)
|
|
org_bias = org.bias.to(h) if org.bias is not None else None
|
|
down_weight = self.down.weight
|
|
up_weight = self.up.weight
|
|
final_weight = org_weight + torch.mm(up_weight, down_weight)
|
|
return torch.nn.functional.linear(h, final_weight, org_bias)
|
|
|
|
|
|
class AttentionSharingProcessor(nn.Module):
|
|
def __init__(self, module, frames=2, use_control=True, rank=256):
|
|
super().__init__()
|
|
|
|
self.heads = module.heads
|
|
self.frames = frames
|
|
self.original_module = [module]
|
|
q_in_channels, q_out_channels = module.to_q.in_features, module.to_q.out_features
|
|
k_in_channels, k_out_channels = module.to_k.in_features, module.to_k.out_features
|
|
v_in_channels, v_out_channels = module.to_v.in_features, module.to_v.out_features
|
|
o_in_channels, o_out_channels = module.to_out[0].in_features, module.to_out[0].out_features
|
|
|
|
hidden_size = k_out_channels
|
|
|
|
self.to_q_lora = [LoRALinearLayer(q_in_channels, q_out_channels, rank) for _ in range(self.frames)]
|
|
self.to_k_lora = [LoRALinearLayer(k_in_channels, k_out_channels, rank) for _ in range(self.frames)]
|
|
self.to_v_lora = [LoRALinearLayer(v_in_channels, v_out_channels, rank) for _ in range(self.frames)]
|
|
self.to_out_lora = [LoRALinearLayer(o_in_channels, o_out_channels, rank) for _ in range(self.frames)]
|
|
|
|
self.to_q_lora = torch.nn.ModuleList(self.to_q_lora)
|
|
self.to_k_lora = torch.nn.ModuleList(self.to_k_lora)
|
|
self.to_v_lora = torch.nn.ModuleList(self.to_v_lora)
|
|
self.to_out_lora = torch.nn.ModuleList(self.to_out_lora)
|
|
|
|
self.temporal_i = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size)
|
|
self.temporal_n = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
|
self.temporal_q = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size)
|
|
self.temporal_k = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size)
|
|
self.temporal_v = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size)
|
|
self.temporal_o = torch.nn.Linear(in_features=hidden_size, out_features=hidden_size)
|
|
|
|
self.control_convs = None
|
|
|
|
if use_control:
|
|
self.control_convs = [torch.nn.Sequential(
|
|
torch.nn.Conv2d(256, 256, kernel_size=3, padding=1, stride=1),
|
|
torch.nn.SiLU(),
|
|
torch.nn.Conv2d(256, hidden_size, kernel_size=1),
|
|
) for _ in range(self.frames)]
|
|
self.control_convs = torch.nn.ModuleList(self.control_convs)
|
|
|
|
self.control_signals = None
|
|
self.processor = AttnProcessor()
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
) -> torch.Tensor:
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
modified_hidden_states = einops.rearrange(hidden_states, '(b f) d c -> f b d c', f=self.frames)
|
|
|
|
if self.control_convs is not None:
|
|
context_dim = int(modified_hidden_states.shape[2])
|
|
control_outs = []
|
|
for f in range(self.frames):
|
|
control_signal = self.control_signals[context_dim].to(modified_hidden_states)
|
|
control = self.control_convs[f](control_signal)
|
|
control = einops.rearrange(control, 'b c h w -> b (h w) c')
|
|
control_outs.append(control)
|
|
control_outs = torch.stack(control_outs, dim=0)
|
|
modified_hidden_states = modified_hidden_states + control_outs.to(modified_hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
framed_context = modified_hidden_states
|
|
else:
|
|
framed_context = einops.rearrange(encoder_hidden_states, '(b f) d c -> f b d c', f=self.frames)
|
|
|
|
|
|
attn_outs = []
|
|
for f in range(self.frames):
|
|
fcf = framed_context[f]
|
|
|
|
if encoder_hidden_states is not None:
|
|
framed_cond_mark = einops.rearrange(torch.ones(batch_size*self.frames), '(b f) -> f b', f=self.frames).to(modified_hidden_states)
|
|
cond_overwrite = []
|
|
if len(cond_overwrite) > f:
|
|
cond_overwrite = cond_overwrite[f]
|
|
else:
|
|
cond_overwrite = None
|
|
if cond_overwrite is not None:
|
|
cond_mark = framed_cond_mark[f][:, None, None]
|
|
fcf = cond_overwrite.to(fcf) * (1.0 - cond_mark) + fcf * cond_mark
|
|
|
|
query = self.to_q_lora[f](modified_hidden_states[f], attn.to_q)
|
|
key = self.to_k_lora[f](fcf, attn.to_k)
|
|
value = self.to_v_lora[f](fcf, attn.to_v)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
output = torch.bmm(attention_probs, value)
|
|
output = attn.batch_to_head_dim(output)
|
|
output = self.to_out_lora[f](output, attn.to_out[0])
|
|
output = attn.to_out[1](output)
|
|
attn_outs.append(output)
|
|
|
|
attn_outs = torch.stack(attn_outs, dim=0)
|
|
modified_hidden_states = modified_hidden_states + attn_outs.to(modified_hidden_states)
|
|
modified_hidden_states = einops.rearrange(modified_hidden_states, 'f b d c -> (b f) d c', f=self.frames)
|
|
|
|
x = modified_hidden_states
|
|
x = self.temporal_n(x)
|
|
x = self.temporal_i(x)
|
|
d = x.shape[1]
|
|
|
|
x = einops.rearrange(x, "(b f) d c -> (b d) f c", f=self.frames)
|
|
|
|
query = self.temporal_q(x)
|
|
key = self.temporal_k(x)
|
|
value = self.temporal_v(x)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
x = torch.bmm(attention_probs, value)
|
|
x = attn.batch_to_head_dim(x)
|
|
|
|
x = self.temporal_o(x)
|
|
x = einops.rearrange(x, "(b d) f c -> (b f) d c", d=d)
|
|
|
|
modified_hidden_states = modified_hidden_states + x
|
|
|
|
return modified_hidden_states - hidden_states
|