1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-29 05:02:09 +03:00
Files
sdnext/modules/prompt_parser_diffusers.py
2023-08-06 07:24:20 +00:00

69 lines
3.0 KiB
Python

import torch
import modules.shared as shared
import modules.prompt_parser as prompt_parser
from compel import Compel, ReturnedEmbeddingsType
import diffusers
import typing
def convert_to_compel(prompt: str):
if prompt is None:
return None
all_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt, 100)[0] #100 should be steps, but doesn't actually matter because we can't schedule yet
output_list = prompt_parser.parse_prompt_attention(all_schedules[0][1])
converted_prompt = []
for subprompt, weight in output_list:
if subprompt != " ":
if weight == 1:
converted_prompt.append(subprompt)
else:
converted_prompt.append(f"({subprompt}){weight}")
converted_prompt = " ".join(converted_prompt)
return converted_prompt
def compel_encode_prompt(pipeline: typing.Any, *args, **kwargs):
compel_encode_fn = COMPEL_ENCODE_FN_DICT.get(type(pipeline), None)
if compel_encode_fn is None:
raise TypeError(f"Compel encoding not yet supported for {type(pipeline).__name__}.")
return compel_encode_fn(pipeline, *args, **kwargs)
def compel_encode_prompt_sdxl(pipeline: diffusers.StableDiffusionXLPipeline, prompt: str, negative_prompt: str, prompt_2: typing.Optional[str]=None, negative_prompt_2: typing.Optional[str]=None, is_refiner: bool = None):
if shared.opts.data['prompt_attention'] != 'Compel parser':
prompt = convert_to_compel(prompt)
negative_prompt = convert_to_compel(negative_prompt)
prompt_2 = convert_to_compel(prompt_2)
negative_prompt_2 = convert_to_compel(negative_prompt_2)
compel_te1 = Compel(
tokenizer=pipeline.tokenizer,
text_encoder=pipeline.text_encoder,
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=False,
)
compel_te2 = Compel(
tokenizer=pipeline.tokenizer_2,
text_encoder=pipeline.text_encoder_2,
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=True,
)
if not is_refiner:
positive_te1 = compel_te1(prompt)
positive_te2, positive_pooled = compel_te2(prompt_2)
positive = torch.cat((positive_te1, positive_te2), dim=-1)
negative_te1 = compel_te1(negative_prompt)
negative_te2, negative_pooled = compel_te2(negative_prompt_2)
negative = torch.cat((negative_te1, negative_te2), dim=-1)
else:
positive, positive_pooled = compel_te2(prompt)
negative, negative_pooled = compel_te2(negative_prompt)
shared.log.debug(compel_te1.parse_prompt_string(prompt))
[prompt_embed, negative_embed] = compel_te2.pad_conditioning_tensors_to_same_length([positive, negative])
return prompt_embed, positive_pooled, negative_embed, negative_pooled
COMPEL_ENCODE_FN_DICT = {
diffusers.StableDiffusionXLPipeline: compel_encode_prompt_sdxl,
diffusers.StableDiffusionImg2ImgPipeline: compel_encode_prompt_sdxl,
}