mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
419 lines
16 KiB
Python
419 lines
16 KiB
Python
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
NUM_ZERO = 0
|
|
ORTHO = False
|
|
ORTHO_v2 = False
|
|
|
|
|
|
class AttnProcessor(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
id_embedding=None,
|
|
id_scale=1.0,
|
|
):
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
hidden_states = torch.bmm(attention_probs, value)
|
|
hidden_states = attn.batch_to_head_dim(hidden_states)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class IDAttnProcessor(nn.Module):
|
|
r"""
|
|
Attention processor for ID-Adapater.
|
|
Args:
|
|
hidden_size (`int`):
|
|
The hidden size of the attention layer.
|
|
cross_attention_dim (`int`):
|
|
The number of channels in the `encoder_hidden_states`.
|
|
scale (`float`, defaults to 1.0):
|
|
the weight scale of image prompt.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None):
|
|
super().__init__()
|
|
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
|
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
id_embedding=None,
|
|
id_scale=1.0,
|
|
):
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
hidden_states = torch.bmm(attention_probs, value)
|
|
hidden_states = attn.batch_to_head_dim(hidden_states)
|
|
|
|
# for id-adapter
|
|
if id_embedding is not None:
|
|
if NUM_ZERO == 0:
|
|
id_key = self.id_to_k(id_embedding)
|
|
id_value = self.id_to_v(id_embedding)
|
|
else:
|
|
zero_tensor = torch.zeros(
|
|
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
|
|
dtype=id_embedding.dtype,
|
|
device=id_embedding.device,
|
|
)
|
|
id_key = self.id_to_k(torch.cat((id_embedding, zero_tensor), dim=1))
|
|
id_value = self.id_to_v(torch.cat((id_embedding, zero_tensor), dim=1))
|
|
|
|
id_key = attn.head_to_batch_dim(id_key).to(query.dtype)
|
|
id_value = attn.head_to_batch_dim(id_value).to(query.dtype)
|
|
|
|
id_attention_probs = attn.get_attention_scores(query, id_key, None)
|
|
id_hidden_states = torch.bmm(id_attention_probs, id_value)
|
|
id_hidden_states = attn.batch_to_head_dim(id_hidden_states)
|
|
|
|
if not ORTHO:
|
|
hidden_states = hidden_states + id_scale * id_hidden_states
|
|
else:
|
|
projection = (
|
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
|
* hidden_states
|
|
)
|
|
orthogonal = id_hidden_states - projection
|
|
hidden_states = hidden_states + id_scale * orthogonal
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class AttnProcessor2_0(nn.Module):
|
|
r"""
|
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
id_embedding=None,
|
|
id_scale=1.0,
|
|
):
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
# scaled_dot_product_attention expects attention_mask shape to be
|
|
# (batch, heads, source_length, target_length)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
hidden_states = F.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class IDAttnProcessor2_0(torch.nn.Module):
|
|
r"""
|
|
Attention processor for ID-Adapater for PyTorch 2.0.
|
|
Args:
|
|
hidden_size (`int`):
|
|
The hidden size of the attention layer.
|
|
cross_attention_dim (`int`):
|
|
The number of channels in the `encoder_hidden_states`.
|
|
"""
|
|
|
|
def __init__(self, hidden_size, cross_attention_dim=None):
|
|
super().__init__()
|
|
if not hasattr(F, "scaled_dot_product_attention"):
|
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
|
|
|
self.id_to_k = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
|
self.id_to_v = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
|
|
|
def __call__(
|
|
self,
|
|
attn,
|
|
hidden_states,
|
|
encoder_hidden_states=None,
|
|
attention_mask=None,
|
|
temb=None,
|
|
id_embedding=None,
|
|
id_scale=1.0,
|
|
):
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
# scaled_dot_product_attention expects attention_mask shape to be
|
|
# (batch, heads, source_length, target_length)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
hidden_states = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False)
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# for id embedding
|
|
if id_embedding is not None:
|
|
if NUM_ZERO == 0:
|
|
id_key = self.id_to_k(id_embedding).to(query.dtype)
|
|
id_value = self.id_to_v(id_embedding).to(query.dtype)
|
|
else:
|
|
zero_tensor = torch.zeros(
|
|
(id_embedding.size(0), NUM_ZERO, id_embedding.size(-1)),
|
|
dtype=id_embedding.dtype,
|
|
device=id_embedding.device,
|
|
)
|
|
id_cat = torch.cat((id_embedding, zero_tensor), dim=1)
|
|
id_key = self.id_to_k(id_cat).to(query.dtype)
|
|
id_value = self.id_to_v(id_cat).to(query.dtype)
|
|
|
|
id_key = id_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
id_value = id_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
id_hidden_states = F.scaled_dot_product_attention(query, id_key, id_value, attn_mask=None, dropout_p=0.0, is_causal=False)
|
|
id_hidden_states = id_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
id_hidden_states = id_hidden_states.to(query.dtype)
|
|
|
|
if not ORTHO and not ORTHO_v2:
|
|
hidden_states = hidden_states + id_scale * id_hidden_states
|
|
elif ORTHO_v2:
|
|
orig_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
id_hidden_states = id_hidden_states.to(torch.float32)
|
|
attn_map = query @ id_key.transpose(-2, -1)
|
|
attn_mean = attn_map.softmax(dim=-1).mean(dim=1)
|
|
attn_mean = attn_mean[:, :, :5].sum(dim=-1, keepdim=True)
|
|
projection = (
|
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
|
* hidden_states
|
|
)
|
|
orthogonal = id_hidden_states + (attn_mean - 1) * projection
|
|
hidden_states = hidden_states + id_scale * orthogonal
|
|
hidden_states = hidden_states.to(orig_dtype)
|
|
else:
|
|
orig_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
id_hidden_states = id_hidden_states.to(torch.float32)
|
|
projection = (
|
|
torch.sum((hidden_states * id_hidden_states), dim=-2, keepdim=True)
|
|
/ torch.sum((hidden_states * hidden_states), dim=-2, keepdim=True)
|
|
* hidden_states
|
|
)
|
|
orthogonal = id_hidden_states - projection
|
|
hidden_states = hidden_states + id_scale * orthogonal
|
|
hidden_states = hidden_states.to(orig_dtype)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|