mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
497 lines
21 KiB
Python
497 lines
21 KiB
Python
# Original: <https://github.com/Thanos-DB/Pixelsmith/blob/main/autoencoder_kl.py>
|
|
|
|
from typing import Dict, Optional, Tuple, Union
|
|
import gc
|
|
import torch
|
|
import torch.nn as nn
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
|
from diffusers.utils.accelerate_utils import apply_forward_hook
|
|
from diffusers.models.attention_processor import (
|
|
ADDED_KV_ATTENTION_PROCESSORS,
|
|
CROSS_ATTENTION_PROCESSORS,
|
|
Attention,
|
|
AttentionProcessor,
|
|
AttnAddedKVProcessor,
|
|
AttnProcessor,
|
|
)
|
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
|
|
|
|
|
|
class PixelSmithVAE(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
|
r"""
|
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
|
for all models (such as downloading or saving).
|
|
|
|
Parameters:
|
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
|
Tuple of downsample block types.
|
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
|
Tuple of upsample block types.
|
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
|
Tuple of block output channels.
|
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
|
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
|
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
|
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
|
force_upcast (`bool`, *optional*, default to `True`):
|
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
|
block_out_channels: Tuple[int] = (64,),
|
|
layers_per_block: int = 1,
|
|
act_fn: str = "silu",
|
|
latent_channels: int = 4,
|
|
norm_num_groups: int = 32,
|
|
sample_size: int = 32,
|
|
scaling_factor: float = 0.18215,
|
|
force_upcast: float = True,
|
|
):
|
|
super().__init__()
|
|
|
|
# pass init params to Encoder
|
|
self.encoder = Encoder(
|
|
in_channels=in_channels,
|
|
out_channels=latent_channels,
|
|
down_block_types=down_block_types,
|
|
block_out_channels=block_out_channels,
|
|
layers_per_block=layers_per_block,
|
|
act_fn=act_fn,
|
|
norm_num_groups=norm_num_groups,
|
|
double_z=True,
|
|
)
|
|
|
|
# pass init params to Decoder
|
|
self.decoder = Decoder(
|
|
in_channels=latent_channels,
|
|
out_channels=out_channels,
|
|
up_block_types=up_block_types,
|
|
block_out_channels=block_out_channels,
|
|
layers_per_block=layers_per_block,
|
|
norm_num_groups=norm_num_groups,
|
|
act_fn=act_fn,
|
|
)
|
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
|
|
|
self.use_slicing = False
|
|
self.use_tiling = False
|
|
|
|
# only relevant if vae tiling is enabled
|
|
self.tile_sample_min_size = self.config.sample_size
|
|
sample_size = (
|
|
self.config.sample_size[0]
|
|
if isinstance(self.config.sample_size, (list, tuple))
|
|
else self.config.sample_size
|
|
)
|
|
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
|
self.tile_overlap_factor = 0.25
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if isinstance(module, (Encoder, Decoder)):
|
|
module.gradient_checkpointing = value
|
|
|
|
def enable_tiling(self, use_tiling: bool = True):
|
|
r"""
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
processing larger images.
|
|
"""
|
|
self.use_tiling = use_tiling
|
|
|
|
def disable_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
|
decoding in one step.
|
|
"""
|
|
self.enable_tiling(False)
|
|
|
|
def enable_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.use_slicing = True
|
|
|
|
def disable_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
|
decoding in one step.
|
|
"""
|
|
self.use_slicing = False
|
|
|
|
@property
|
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
|
r"""
|
|
Returns:
|
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
|
indexed by its weight name.
|
|
"""
|
|
# set recursively
|
|
processors = {}
|
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
|
if hasattr(module, "get_processor"):
|
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
|
|
|
return processors
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_add_processors(name, module, processors)
|
|
|
|
return processors
|
|
|
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
|
def set_attn_processor(
|
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
|
):
|
|
r"""
|
|
Sets the attention processor to use to compute attention.
|
|
|
|
Parameters:
|
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
|
for **all** `Attention` layers.
|
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
|
processor. This is strongly recommended when setting trainable attention processors.
|
|
|
|
"""
|
|
count = len(self.attn_processors.keys())
|
|
|
|
if isinstance(processor, dict) and len(processor) != count:
|
|
raise ValueError(
|
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
|
)
|
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
|
if hasattr(module, "set_processor"):
|
|
if not isinstance(processor, dict):
|
|
module.set_processor(processor, _remove_lora=_remove_lora)
|
|
else:
|
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
|
|
|
for sub_name, child in module.named_children():
|
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
|
|
|
for name, module in self.named_children():
|
|
fn_recursive_attn_processor(name, module, processor)
|
|
|
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
|
def set_default_attn_processor(self):
|
|
"""
|
|
Disables custom attention processors and sets the default attention implementation.
|
|
"""
|
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
|
processor = AttnAddedKVProcessor()
|
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
|
processor = AttnProcessor()
|
|
else:
|
|
raise ValueError(
|
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
|
)
|
|
|
|
self.set_attn_processor(processor, _remove_lora=True)
|
|
|
|
@apply_forward_hook
|
|
def encode(
|
|
self, x: torch.FloatTensor, return_dict: bool = True
|
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
|
"""
|
|
Encode a batch of images into latents.
|
|
|
|
Args:
|
|
x (`torch.FloatTensor`): Input batch of images.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
The latent representations of the encoded images. If `return_dict` is True, a
|
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
|
"""
|
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
|
return self.tiled_encode(x, return_dict=return_dict)
|
|
|
|
if self.use_slicing and x.shape[0] > 1:
|
|
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
|
h = torch.cat(encoded_slices)
|
|
else:
|
|
h = self.encoder(x)
|
|
|
|
moments = self.quant_conv(h)
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
|
|
if not return_dict:
|
|
return (posterior,)
|
|
|
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
|
|
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
|
return self.tiled_decode(z, return_dict=return_dict)
|
|
|
|
z = self.post_quant_conv(z)
|
|
dec = self.decoder(z)
|
|
|
|
if not return_dict:
|
|
return (dec,)
|
|
|
|
return DecoderOutput(sample=dec)
|
|
|
|
@apply_forward_hook
|
|
def decode(
|
|
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
"""
|
|
Decode a batch of images.
|
|
|
|
Args:
|
|
z (`torch.FloatTensor`): Input batch of latent vectors.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~models.vae.DecoderOutput`] or `tuple`:
|
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
|
returned.
|
|
|
|
"""
|
|
if self.use_slicing and z.shape[0] > 1:
|
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
|
decoded = torch.cat(decoded_slices)
|
|
else:
|
|
decoded = self._decode(z).sample
|
|
|
|
if not return_dict:
|
|
return (decoded,)
|
|
|
|
return DecoderOutput(sample=decoded)
|
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
|
for y in range(blend_extent):
|
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
|
|
return b
|
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
|
for x in range(blend_extent):
|
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
|
return b
|
|
|
|
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
|
r"""Encode a batch of images using a tiled encoder.
|
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
|
output, but they should be much less noticeable.
|
|
|
|
Args:
|
|
x (`torch.FloatTensor`): Input batch of images.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
|
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
|
`tuple` is returned.
|
|
"""
|
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
|
row_limit = self.tile_latent_min_size - blend_extent
|
|
|
|
# Split the image into 512x512 tiles and encode them separately.
|
|
rows = []
|
|
for i in range(0, x.shape[2], overlap_size):
|
|
row = []
|
|
for j in range(0, x.shape[3], overlap_size):
|
|
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
|
tile = self.encoder(tile.to("cuda"))
|
|
tile = self.quant_conv(tile)
|
|
row.append(tile)
|
|
rows.append(row)
|
|
#
|
|
del row
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
#
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
# blend the above tile and the left tile
|
|
# to the current tile and add the current tile to the result row
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=3))
|
|
#
|
|
del result_row
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
#
|
|
|
|
moments = torch.cat(result_rows, dim=2)
|
|
#
|
|
del result_rows
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
#
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
#
|
|
del moments
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
#
|
|
if not return_dict:
|
|
return (posterior,)
|
|
|
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
|
|
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
r"""
|
|
Decode a batch of images using a tiled decoder.
|
|
|
|
Args:
|
|
z (`torch.FloatTensor`): Input batch of latent vectors.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~models.vae.DecoderOutput`] or `tuple`:
|
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
|
returned.
|
|
"""
|
|
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
|
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
|
row_limit = self.tile_sample_min_size - blend_extent
|
|
|
|
# Split z into overlapping 64x64 tiles and decode them separately.
|
|
# The tiles have an overlap to avoid seams between tiles.
|
|
rows = []
|
|
for i in range(0, z.shape[2], overlap_size):
|
|
row = []
|
|
for j in range(0, z.shape[3], overlap_size):
|
|
tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
|
|
tile = self.post_quant_conv(tile)
|
|
decoded = self.decoder(tile).to("cpu")
|
|
row.append(decoded)
|
|
rows.append(row)
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
# blend the above tile and the left tile
|
|
# to the current tile and add the current tile to the result row
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=3))
|
|
|
|
dec = torch.cat(result_rows, dim=2)
|
|
if not return_dict:
|
|
return (dec,)
|
|
|
|
return DecoderOutput(sample=dec)
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.FloatTensor,
|
|
sample_posterior: bool = False,
|
|
return_dict: bool = True,
|
|
generator: Optional[torch.Generator] = None,
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
r"""
|
|
Args:
|
|
sample (`torch.FloatTensor`): Input sample.
|
|
sample_posterior (`bool`, *optional*, defaults to `False`):
|
|
Whether to sample from the posterior.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
|
"""
|
|
x = sample
|
|
posterior = self.encode(x).latent_dist
|
|
if sample_posterior:
|
|
z = posterior.sample(generator=generator)
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z).sample
|
|
|
|
if not return_dict:
|
|
return (dec,)
|
|
|
|
return DecoderOutput(sample=dec)
|
|
|
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
|
def fuse_qkv_projections(self):
|
|
"""
|
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
|
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
"""
|
|
self.original_attn_processors = None
|
|
|
|
for _, attn_processor in self.attn_processors.items():
|
|
if "Added" in str(attn_processor.__class__.__name__):
|
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
|
|
|
self.original_attn_processors = self.attn_processors
|
|
|
|
for module in self.modules():
|
|
if isinstance(module, Attention):
|
|
module.fuse_projections(fuse=True)
|
|
|
|
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
|
def unfuse_qkv_projections(self):
|
|
"""Disables the fused QKV projection if enabled.
|
|
|
|
<Tip warning={true}>
|
|
|
|
This API is 🧪 experimental.
|
|
|
|
</Tip>
|
|
|
|
"""
|
|
if self.original_attn_processors is not None:
|
|
self.set_attn_processor(self.original_attn_processors)
|