mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
983 lines
47 KiB
Python
983 lines
47 KiB
Python
from dataclasses import dataclass
|
||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
||
import torch
|
||
from torch import nn
|
||
from torch.nn import functional as F
|
||
|
||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
||
from diffusers.utils import BaseOutput, logging
|
||
from diffusers.models.attention_processor import (
|
||
ADDED_KV_ATTENTION_PROCESSORS,
|
||
CROSS_ATTENTION_PROCESSORS,
|
||
AttentionProcessor,
|
||
AttnAddedKVProcessor,
|
||
AttnProcessor,
|
||
)
|
||
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
|
||
from diffusers.models.modeling_utils import ModelMixin
|
||
from diffusers.models.unets.unet_2d_blocks import (
|
||
CrossAttnDownBlock2D,
|
||
DownBlock2D,
|
||
UNetMidBlock2D,
|
||
UNetMidBlock2DCrossAttn,
|
||
get_down_block,
|
||
)
|
||
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||
|
||
|
||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
||
|
||
class ZeroConv(nn.Module):
|
||
def __init__(self, label_nc, norm_nc, mask=False):
|
||
super().__init__()
|
||
self.zero_conv = zero_module(nn.Conv2d(label_nc+norm_nc, norm_nc, 1, 1, 0))
|
||
self.mask = mask
|
||
|
||
def forward(self, hidden_states, h_ori=None):
|
||
# with torch.cuda.amp.autocast(enabled=False, dtype=torch.float32):
|
||
c, h = hidden_states
|
||
if not self.mask:
|
||
h = self.zero_conv(torch.cat([c, h], dim=1))
|
||
else:
|
||
h = self.zero_conv(torch.cat([c, h], dim=1)) * torch.zeros_like(h)
|
||
if h_ori is not None:
|
||
h = torch.cat([h_ori, h], dim=1)
|
||
return h
|
||
|
||
|
||
class SFT(nn.Module):
|
||
def __init__(self, label_nc, norm_nc, mask=False):
|
||
super().__init__()
|
||
|
||
# param_free_norm_type = str(parsed.group(1))
|
||
ks = 3
|
||
pw = ks // 2
|
||
|
||
self.mask = mask
|
||
|
||
nhidden = 128
|
||
|
||
self.mlp_shared = nn.Sequential(
|
||
nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw),
|
||
nn.SiLU()
|
||
)
|
||
self.mul = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
|
||
self.add = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw)
|
||
|
||
def forward(self, hidden_states, mask=False):
|
||
|
||
c, h = hidden_states
|
||
mask = mask or self.mask
|
||
assert mask is False
|
||
|
||
actv = self.mlp_shared(c)
|
||
gamma = self.mul(actv)
|
||
beta = self.add(actv)
|
||
|
||
if self.mask:
|
||
gamma = gamma * torch.zeros_like(gamma)
|
||
beta = beta * torch.zeros_like(beta)
|
||
# gamma_ori, gamma_res = torch.split(gamma, [h_ori_c, h_c], dim=1)
|
||
# beta_ori, beta_res = torch.split(beta, [h_ori_c, h_c], dim=1)
|
||
# print(gamma_ori.mean(), gamma_res.mean(), beta_ori.mean(), beta_res.mean())
|
||
h = h * (gamma + 1) + beta
|
||
# sample_ori, sample_res = torch.split(h, [h_ori_c, h_c], dim=1)
|
||
# print(sample_ori.mean(), sample_res.mean())
|
||
|
||
return h
|
||
|
||
|
||
@dataclass
|
||
class AggregatorOutput(BaseOutput):
|
||
"""
|
||
The output of [`Aggregator`].
|
||
|
||
Args:
|
||
down_block_res_samples (`tuple[torch.Tensor]`):
|
||
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
||
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
||
used to condition the original UNet's downsampling activations.
|
||
mid_down_block_re_sample (`torch.Tensor`):
|
||
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
||
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
||
Output can be used to condition the original UNet's middle block activation.
|
||
"""
|
||
|
||
down_block_res_samples: Tuple[torch.Tensor]
|
||
mid_block_res_sample: torch.Tensor
|
||
|
||
|
||
class ConditioningEmbedding(nn.Module):
|
||
"""
|
||
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
||
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
||
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
||
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
||
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
||
model) to encode image-space conditions ... into feature maps ..."
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
conditioning_embedding_channels: int,
|
||
conditioning_channels: int = 3,
|
||
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
||
):
|
||
super().__init__()
|
||
|
||
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
||
|
||
self.blocks = nn.ModuleList([])
|
||
|
||
for i in range(len(block_out_channels) - 1):
|
||
channel_in = block_out_channels[i]
|
||
channel_out = block_out_channels[i + 1]
|
||
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
|
||
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
||
|
||
self.conv_out = zero_module(
|
||
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
||
)
|
||
|
||
def forward(self, conditioning):
|
||
embedding = self.conv_in(conditioning)
|
||
embedding = F.silu(embedding)
|
||
|
||
for block in self.blocks:
|
||
embedding = block(embedding)
|
||
embedding = F.silu(embedding)
|
||
|
||
embedding = self.conv_out(embedding)
|
||
|
||
return embedding
|
||
|
||
|
||
class Aggregator(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
||
"""
|
||
Aggregator model.
|
||
|
||
Args:
|
||
in_channels (`int`, defaults to 4):
|
||
The number of channels in the input sample.
|
||
flip_sin_to_cos (`bool`, defaults to `True`):
|
||
Whether to flip the sin to cos in the time embedding.
|
||
freq_shift (`int`, defaults to 0):
|
||
The frequency shift to apply to the time embedding.
|
||
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
||
The tuple of downsample blocks to use.
|
||
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
|
||
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
|
||
The tuple of output channels for each block.
|
||
layers_per_block (`int`, defaults to 2):
|
||
The number of layers per block.
|
||
downsample_padding (`int`, defaults to 1):
|
||
The padding to use for the downsampling convolution.
|
||
mid_block_scale_factor (`float`, defaults to 1):
|
||
The scale factor to use for the mid block.
|
||
act_fn (`str`, defaults to "silu"):
|
||
The activation function to use.
|
||
norm_num_groups (`int`, *optional*, defaults to 32):
|
||
The number of groups to use for the normalization. If None, normalization and activation layers is skipped
|
||
in post-processing.
|
||
norm_eps (`float`, defaults to 1e-5):
|
||
The epsilon to use for the normalization.
|
||
cross_attention_dim (`int`, defaults to 1280):
|
||
The dimension of the cross attention features.
|
||
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
||
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
||
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
||
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
||
encoder_hid_dim (`int`, *optional*, defaults to None):
|
||
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
||
dimension to `cross_attention_dim`.
|
||
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
||
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
||
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
||
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
|
||
The dimension of the attention heads.
|
||
use_linear_projection (`bool`, defaults to `False`):
|
||
class_embed_type (`str`, *optional*, defaults to `None`):
|
||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
|
||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||
addition_embed_type (`str`, *optional*, defaults to `None`):
|
||
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
||
"text". "text" will use the `TextTimeEmbedding` layer.
|
||
num_class_embeds (`int`, *optional*, defaults to 0):
|
||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||
class conditioning with `class_embed_type` equal to `None`.
|
||
upcast_attention (`bool`, defaults to `False`):
|
||
resnet_time_scale_shift (`str`, defaults to `"default"`):
|
||
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
|
||
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
|
||
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
|
||
`class_embed_type="projection"`.
|
||
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
|
||
The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
|
||
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
|
||
The tuple of output channel for each block in the `conditioning_embedding` layer.
|
||
global_pool_conditions (`bool`, defaults to `False`):
|
||
TODO(Patrick) - unused parameter.
|
||
addition_embed_type_num_heads (`int`, defaults to 64):
|
||
The number of heads to use for the `TextTimeEmbedding` layer.
|
||
"""
|
||
|
||
_supports_gradient_checkpointing = True
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
in_channels: int = 4,
|
||
conditioning_channels: int = 3,
|
||
flip_sin_to_cos: bool = True,
|
||
freq_shift: int = 0,
|
||
down_block_types: Tuple[str, ...] = (
|
||
"CrossAttnDownBlock2D",
|
||
"CrossAttnDownBlock2D",
|
||
"CrossAttnDownBlock2D",
|
||
"DownBlock2D",
|
||
),
|
||
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
||
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
||
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
|
||
layers_per_block: int = 2,
|
||
downsample_padding: int = 1,
|
||
mid_block_scale_factor: float = 1,
|
||
act_fn: str = "silu",
|
||
norm_num_groups: Optional[int] = 32,
|
||
norm_eps: float = 1e-5,
|
||
cross_attention_dim: int = 1280,
|
||
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
|
||
encoder_hid_dim: Optional[int] = None,
|
||
encoder_hid_dim_type: Optional[str] = None,
|
||
attention_head_dim: Union[int, Tuple[int, ...]] = 8,
|
||
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
|
||
use_linear_projection: bool = False,
|
||
class_embed_type: Optional[str] = None,
|
||
addition_embed_type: Optional[str] = None,
|
||
addition_time_embed_dim: Optional[int] = None,
|
||
num_class_embeds: Optional[int] = None,
|
||
upcast_attention: bool = False,
|
||
resnet_time_scale_shift: str = "default",
|
||
projection_class_embeddings_input_dim: Optional[int] = None,
|
||
controlnet_conditioning_channel_order: str = "rgb",
|
||
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
||
global_pool_conditions: bool = False,
|
||
addition_embed_type_num_heads: int = 64,
|
||
pad_concat: bool = False,
|
||
):
|
||
super().__init__()
|
||
|
||
# If `num_attention_heads` is not defined (which is the case for most models)
|
||
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||
# which is why we correct for the naming here.
|
||
num_attention_heads = num_attention_heads or attention_head_dim
|
||
self.pad_concat = pad_concat
|
||
|
||
# Check inputs
|
||
if len(block_out_channels) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if isinstance(transformer_layers_per_block, int):
|
||
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
||
|
||
# input
|
||
conv_in_kernel = 3
|
||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||
self.conv_in = nn.Conv2d(
|
||
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
||
)
|
||
|
||
# time
|
||
time_embed_dim = block_out_channels[0] * 4
|
||
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||
timestep_input_dim = block_out_channels[0]
|
||
self.time_embedding = TimestepEmbedding(
|
||
timestep_input_dim,
|
||
time_embed_dim,
|
||
act_fn=act_fn,
|
||
)
|
||
|
||
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
||
encoder_hid_dim_type = "text_proj"
|
||
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
||
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
||
|
||
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
||
raise ValueError(
|
||
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
||
)
|
||
|
||
if encoder_hid_dim_type == "text_proj":
|
||
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
||
elif encoder_hid_dim_type == "text_image_proj":
|
||
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
||
self.encoder_hid_proj = TextImageProjection(
|
||
text_embed_dim=encoder_hid_dim,
|
||
image_embed_dim=cross_attention_dim,
|
||
cross_attention_dim=cross_attention_dim,
|
||
)
|
||
|
||
elif encoder_hid_dim_type is not None:
|
||
raise ValueError(
|
||
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
||
)
|
||
else:
|
||
self.encoder_hid_proj = None
|
||
|
||
# class embedding
|
||
if class_embed_type is None and num_class_embeds is not None:
|
||
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||
elif class_embed_type == "timestep":
|
||
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
||
elif class_embed_type == "identity":
|
||
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
||
elif class_embed_type == "projection":
|
||
if projection_class_embeddings_input_dim is None:
|
||
raise ValueError(
|
||
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
||
)
|
||
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
||
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
||
# 2. it projects from an arbitrary input dimension.
|
||
#
|
||
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
||
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||
else:
|
||
self.class_embedding = None
|
||
|
||
if addition_embed_type == "text":
|
||
if encoder_hid_dim is not None:
|
||
text_time_embedding_from_dim = encoder_hid_dim
|
||
else:
|
||
text_time_embedding_from_dim = cross_attention_dim
|
||
|
||
self.add_embedding = TextTimeEmbedding(
|
||
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
||
)
|
||
elif addition_embed_type == "text_image":
|
||
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
||
self.add_embedding = TextImageTimeEmbedding(
|
||
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
||
)
|
||
elif addition_embed_type == "text_time":
|
||
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
||
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||
|
||
elif addition_embed_type is not None:
|
||
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
||
|
||
# control net conditioning embedding
|
||
self.ref_conv_in = nn.Conv2d(
|
||
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
||
)
|
||
|
||
self.down_blocks = nn.ModuleList([])
|
||
self.controlnet_down_blocks = nn.ModuleList([])
|
||
|
||
if isinstance(only_cross_attention, bool):
|
||
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
||
|
||
if isinstance(attention_head_dim, int):
|
||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||
|
||
if isinstance(num_attention_heads, int):
|
||
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||
|
||
# down
|
||
output_channel = block_out_channels[0]
|
||
|
||
# controlnet_block = ZeroConv(output_channel, output_channel)
|
||
controlnet_block = nn.Sequential(
|
||
SFT(output_channel, output_channel),
|
||
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
||
)
|
||
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
||
for i, down_block_type in enumerate(down_block_types):
|
||
input_channel = output_channel
|
||
output_channel = block_out_channels[i]
|
||
is_final_block = i == len(block_out_channels) - 1
|
||
|
||
down_block = get_down_block(
|
||
down_block_type,
|
||
num_layers=layers_per_block,
|
||
transformer_layers_per_block=transformer_layers_per_block[i],
|
||
in_channels=input_channel,
|
||
out_channels=output_channel,
|
||
temb_channels=time_embed_dim,
|
||
add_downsample=not is_final_block,
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
resnet_groups=norm_num_groups,
|
||
cross_attention_dim=cross_attention_dim,
|
||
num_attention_heads=num_attention_heads[i],
|
||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||
downsample_padding=downsample_padding,
|
||
use_linear_projection=use_linear_projection,
|
||
only_cross_attention=only_cross_attention[i],
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
)
|
||
self.down_blocks.append(down_block)
|
||
|
||
for _ in range(layers_per_block):
|
||
# controlnet_block = ZeroConv(output_channel, output_channel)
|
||
controlnet_block = nn.Sequential(
|
||
SFT(output_channel, output_channel),
|
||
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
||
)
|
||
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
||
if not is_final_block:
|
||
# controlnet_block = ZeroConv(output_channel, output_channel)
|
||
controlnet_block = nn.Sequential(
|
||
SFT(output_channel, output_channel),
|
||
zero_module(nn.Conv2d(output_channel, output_channel, kernel_size=1))
|
||
)
|
||
self.controlnet_down_blocks.append(controlnet_block)
|
||
|
||
# mid
|
||
mid_block_channel = block_out_channels[-1]
|
||
|
||
# controlnet_block = ZeroConv(mid_block_channel, mid_block_channel)
|
||
controlnet_block = nn.Sequential(
|
||
SFT(mid_block_channel, mid_block_channel),
|
||
zero_module(nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1))
|
||
)
|
||
self.controlnet_mid_block = controlnet_block
|
||
|
||
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
||
self.mid_block = UNetMidBlock2DCrossAttn(
|
||
transformer_layers_per_block=transformer_layers_per_block[-1],
|
||
in_channels=mid_block_channel,
|
||
temb_channels=time_embed_dim,
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
output_scale_factor=mid_block_scale_factor,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
cross_attention_dim=cross_attention_dim,
|
||
num_attention_heads=num_attention_heads[-1],
|
||
resnet_groups=norm_num_groups,
|
||
use_linear_projection=use_linear_projection,
|
||
upcast_attention=upcast_attention,
|
||
)
|
||
elif mid_block_type == "UNetMidBlock2D":
|
||
self.mid_block = UNetMidBlock2D(
|
||
in_channels=block_out_channels[-1],
|
||
temb_channels=time_embed_dim,
|
||
num_layers=0,
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
output_scale_factor=mid_block_scale_factor,
|
||
resnet_groups=norm_num_groups,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
add_attention=False,
|
||
)
|
||
else:
|
||
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
||
|
||
@classmethod
|
||
def from_unet(
|
||
cls,
|
||
unet: UNet2DConditionModel,
|
||
controlnet_conditioning_channel_order: str = "rgb",
|
||
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
|
||
load_weights_from_unet: bool = True,
|
||
conditioning_channels: int = 3,
|
||
):
|
||
r"""
|
||
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
|
||
|
||
Parameters:
|
||
unet (`UNet2DConditionModel`):
|
||
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
|
||
where applicable.
|
||
"""
|
||
transformer_layers_per_block = (
|
||
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
|
||
)
|
||
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
|
||
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
|
||
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
|
||
addition_time_embed_dim = (
|
||
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
|
||
)
|
||
|
||
controlnet = cls(
|
||
encoder_hid_dim=encoder_hid_dim,
|
||
encoder_hid_dim_type=encoder_hid_dim_type,
|
||
addition_embed_type=addition_embed_type,
|
||
addition_time_embed_dim=addition_time_embed_dim,
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
in_channels=unet.config.in_channels,
|
||
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
||
freq_shift=unet.config.freq_shift,
|
||
down_block_types=unet.config.down_block_types,
|
||
only_cross_attention=unet.config.only_cross_attention,
|
||
block_out_channels=unet.config.block_out_channels,
|
||
layers_per_block=unet.config.layers_per_block,
|
||
downsample_padding=unet.config.downsample_padding,
|
||
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
||
act_fn=unet.config.act_fn,
|
||
norm_num_groups=unet.config.norm_num_groups,
|
||
norm_eps=unet.config.norm_eps,
|
||
cross_attention_dim=unet.config.cross_attention_dim,
|
||
attention_head_dim=unet.config.attention_head_dim,
|
||
num_attention_heads=unet.config.num_attention_heads,
|
||
use_linear_projection=unet.config.use_linear_projection,
|
||
class_embed_type=unet.config.class_embed_type,
|
||
num_class_embeds=unet.config.num_class_embeds,
|
||
upcast_attention=unet.config.upcast_attention,
|
||
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
||
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
||
mid_block_type=unet.config.mid_block_type,
|
||
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
||
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
||
conditioning_channels=conditioning_channels,
|
||
)
|
||
|
||
if load_weights_from_unet:
|
||
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
|
||
controlnet.ref_conv_in.load_state_dict(unet.conv_in.state_dict())
|
||
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
|
||
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
|
||
|
||
if controlnet.class_embedding:
|
||
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
|
||
|
||
if hasattr(controlnet, "add_embedding"):
|
||
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
|
||
|
||
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
|
||
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
|
||
|
||
return controlnet
|
||
|
||
@property
|
||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||
r"""
|
||
Returns:
|
||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||
indexed by its weight name.
|
||
"""
|
||
# set recursively
|
||
processors = {}
|
||
|
||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||
if hasattr(module, "get_processor"):
|
||
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
||
|
||
for sub_name, child in module.named_children():
|
||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||
|
||
return processors
|
||
|
||
for name, module in self.named_children():
|
||
fn_recursive_add_processors(name, module, processors)
|
||
|
||
return processors
|
||
|
||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||
r"""
|
||
Sets the attention processor to use to compute attention.
|
||
|
||
Parameters:
|
||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||
for **all** `Attention` layers.
|
||
|
||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||
processor. This is strongly recommended when setting trainable attention processors.
|
||
|
||
"""
|
||
count = len(self.attn_processors.keys())
|
||
|
||
if isinstance(processor, dict) and len(processor) != count:
|
||
raise ValueError(
|
||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||
)
|
||
|
||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||
if hasattr(module, "set_processor"):
|
||
if not isinstance(processor, dict):
|
||
module.set_processor(processor)
|
||
else:
|
||
module.set_processor(processor.pop(f"{name}.processor"))
|
||
|
||
for sub_name, child in module.named_children():
|
||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||
|
||
for name, module in self.named_children():
|
||
fn_recursive_attn_processor(name, module, processor)
|
||
|
||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
||
def set_default_attn_processor(self):
|
||
"""
|
||
Disables custom attention processors and sets the default attention implementation.
|
||
"""
|
||
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
||
processor = AttnAddedKVProcessor()
|
||
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
||
processor = AttnProcessor()
|
||
else:
|
||
raise ValueError(
|
||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||
)
|
||
|
||
self.set_attn_processor(processor)
|
||
|
||
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
||
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
|
||
r"""
|
||
Enable sliced attention computation.
|
||
|
||
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
||
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
||
|
||
Args:
|
||
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
||
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
||
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
||
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
||
must be a multiple of `slice_size`.
|
||
"""
|
||
sliceable_head_dims = []
|
||
|
||
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
||
if hasattr(module, "set_attention_slice"):
|
||
sliceable_head_dims.append(module.sliceable_head_dim)
|
||
|
||
for child in module.children():
|
||
fn_recursive_retrieve_sliceable_dims(child)
|
||
|
||
# retrieve number of attention layers
|
||
for module in self.children():
|
||
fn_recursive_retrieve_sliceable_dims(module)
|
||
|
||
num_sliceable_layers = len(sliceable_head_dims)
|
||
|
||
if slice_size == "auto":
|
||
# half the attention head size is usually a good trade-off between
|
||
# speed and memory
|
||
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
||
elif slice_size == "max":
|
||
# make smallest slice possible
|
||
slice_size = num_sliceable_layers * [1]
|
||
|
||
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
||
|
||
if len(slice_size) != len(sliceable_head_dims):
|
||
raise ValueError(
|
||
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
||
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
||
)
|
||
|
||
for i in range(len(slice_size)):
|
||
size = slice_size[i]
|
||
dim = sliceable_head_dims[i]
|
||
if size is not None and size > dim:
|
||
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
||
|
||
# Recursively walk through all the children.
|
||
# Any children which exposes the set_attention_slice method
|
||
# gets the message
|
||
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
||
if hasattr(module, "set_attention_slice"):
|
||
module.set_attention_slice(slice_size.pop())
|
||
|
||
for child in module.children():
|
||
fn_recursive_set_attention_slice(child, slice_size)
|
||
|
||
reversed_slice_size = list(reversed(slice_size))
|
||
for module in self.children():
|
||
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
||
|
||
def process_encoder_hidden_states(
|
||
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
||
) -> torch.Tensor:
|
||
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
||
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
||
# Kandinsky 2.1 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
||
)
|
||
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
||
# Kandinsky 2.2 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
||
)
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
||
)
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
image_embeds = self.encoder_hid_proj(image_embeds)
|
||
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
||
return encoder_hidden_states
|
||
|
||
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
||
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
||
module.gradient_checkpointing = value
|
||
|
||
def forward(
|
||
self,
|
||
sample: torch.FloatTensor,
|
||
timestep: Union[torch.Tensor, float, int],
|
||
encoder_hidden_states: torch.Tensor,
|
||
controlnet_cond: torch.FloatTensor,
|
||
cat_dim: int = -2,
|
||
conditioning_scale: float = 1.0,
|
||
class_labels: Optional[torch.Tensor] = None,
|
||
timestep_cond: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
return_dict: bool = True,
|
||
) -> Union[AggregatorOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
|
||
"""
|
||
The [`Aggregator`] forward method.
|
||
|
||
Args:
|
||
sample (`torch.FloatTensor`):
|
||
The noisy input tensor.
|
||
timestep (`Union[torch.Tensor, float, int]`):
|
||
The number of timesteps to denoise an input.
|
||
encoder_hidden_states (`torch.Tensor`):
|
||
The encoder hidden states.
|
||
controlnet_cond (`torch.FloatTensor`):
|
||
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
||
conditioning_scale (`float`, defaults to `1.0`):
|
||
The scale factor for ControlNet outputs.
|
||
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
|
||
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
|
||
embeddings.
|
||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||
negative values to the attention scores corresponding to "discard" tokens.
|
||
added_cond_kwargs (`dict`):
|
||
Additional conditions for the Stable Diffusion XL UNet.
|
||
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
|
||
A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
|
||
return_dict (`bool`, defaults to `True`):
|
||
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
|
||
|
||
Returns:
|
||
[`~models.controlnet.ControlNetOutput`] **or** `tuple`:
|
||
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
|
||
returned where the first element is the sample tensor.
|
||
"""
|
||
# check channel order
|
||
channel_order = self.config.controlnet_conditioning_channel_order
|
||
|
||
if channel_order == "rgb":
|
||
# in rgb order by default
|
||
...
|
||
else:
|
||
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
|
||
|
||
# prepare attention_mask
|
||
if attention_mask is not None:
|
||
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||
attention_mask = attention_mask.unsqueeze(1)
|
||
|
||
# 1. time
|
||
timesteps = timestep
|
||
if not torch.is_tensor(timesteps):
|
||
# This would be a good case for the `match` statement (Python 3.10+)
|
||
is_mps = sample.device.type == "mps"
|
||
if isinstance(timestep, float):
|
||
dtype = torch.float32 if is_mps else torch.float64
|
||
else:
|
||
dtype = torch.int32 if is_mps else torch.int64
|
||
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
||
elif len(timesteps.shape) == 0:
|
||
timesteps = timesteps[None].to(sample.device)
|
||
|
||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||
timesteps = timesteps.expand(sample.shape[0])
|
||
|
||
t_emb = self.time_proj(timesteps)
|
||
|
||
# timesteps does not contain any weights and will always return f32 tensors
|
||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||
# there might be better ways to encapsulate this.
|
||
t_emb = t_emb.to(dtype=sample.dtype)
|
||
|
||
emb = self.time_embedding(t_emb, timestep_cond)
|
||
aug_emb = None
|
||
|
||
if self.class_embedding is not None:
|
||
if class_labels is None:
|
||
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
||
|
||
if self.config.class_embed_type == "timestep":
|
||
class_labels = self.time_proj(class_labels)
|
||
|
||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||
emb = emb + class_emb
|
||
|
||
if self.config.addition_embed_type is not None:
|
||
if self.config.addition_embed_type == "text":
|
||
aug_emb = self.add_embedding(encoder_hidden_states)
|
||
|
||
elif self.config.addition_embed_type == "text_time":
|
||
if "text_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
text_embeds = added_cond_kwargs.get("text_embeds")
|
||
if "time_ids" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
||
)
|
||
time_ids = added_cond_kwargs.get("time_ids")
|
||
time_embeds = self.add_time_proj(time_ids.flatten())
|
||
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
||
|
||
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
||
add_embeds = add_embeds.to(emb.dtype)
|
||
aug_emb = self.add_embedding(add_embeds)
|
||
|
||
emb = emb + aug_emb if aug_emb is not None else emb
|
||
|
||
encoder_hidden_states = self.process_encoder_hidden_states(
|
||
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
# 2. prepare input
|
||
cond_latent = self.conv_in(sample)
|
||
ref_latent = self.ref_conv_in(controlnet_cond)
|
||
batch_size, channel, height, width = cond_latent.shape
|
||
if self.pad_concat:
|
||
if cat_dim == -2 or cat_dim == 2:
|
||
concat_pad = torch.zeros(batch_size, channel, 1, width)
|
||
elif cat_dim == -1 or cat_dim == 3:
|
||
concat_pad = torch.zeros(batch_size, channel, height, 1)
|
||
else:
|
||
raise ValueError(f"Aggregator shall concat along spatial dimension, but is asked to concat dim: {cat_dim}.")
|
||
concat_pad = concat_pad.to(cond_latent.device, dtype=cond_latent.dtype)
|
||
sample = torch.cat([cond_latent, concat_pad, ref_latent], dim=cat_dim)
|
||
else:
|
||
sample = torch.cat([cond_latent, ref_latent], dim=cat_dim)
|
||
|
||
# 3. down
|
||
down_block_res_samples = (sample,)
|
||
for downsample_block in self.down_blocks:
|
||
sample, res_samples = downsample_block(
|
||
hidden_states=sample,
|
||
temb=emb,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
)
|
||
|
||
# rebuild sample: split and concat
|
||
if self.pad_concat:
|
||
batch_size, channel, height, width = sample.shape
|
||
if cat_dim == -2 or cat_dim == 2:
|
||
cond_latent = sample[:, :, :height//2, :]
|
||
ref_latent = sample[:, :, -(height//2):, :]
|
||
concat_pad = torch.zeros(batch_size, channel, 1, width)
|
||
elif cat_dim == -1 or cat_dim == 3:
|
||
cond_latent = sample[:, :, :, :width//2]
|
||
ref_latent = sample[:, :, :, -(width//2):]
|
||
concat_pad = torch.zeros(batch_size, channel, height, 1)
|
||
concat_pad = concat_pad.to(cond_latent.device, dtype=cond_latent.dtype)
|
||
sample = torch.cat([cond_latent, concat_pad, ref_latent], dim=cat_dim)
|
||
res_samples = res_samples[:-1] + (sample,)
|
||
|
||
down_block_res_samples += res_samples
|
||
|
||
# 4. mid
|
||
if self.mid_block is not None:
|
||
sample = self.mid_block(
|
||
sample,
|
||
emb,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
)
|
||
|
||
# 5. split samples and SFT.
|
||
controlnet_down_block_res_samples = ()
|
||
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
||
batch_size, channel, height, width = down_block_res_sample.shape
|
||
if cat_dim == -2 or cat_dim == 2:
|
||
cond_latent = down_block_res_sample[:, :, :height//2, :]
|
||
ref_latent = down_block_res_sample[:, :, -(height//2):, :]
|
||
elif cat_dim == -1 or cat_dim == 3:
|
||
cond_latent = down_block_res_sample[:, :, :, :width//2]
|
||
ref_latent = down_block_res_sample[:, :, :, -(width//2):]
|
||
down_block_res_sample = controlnet_block((cond_latent, ref_latent), )
|
||
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
||
|
||
down_block_res_samples = controlnet_down_block_res_samples
|
||
|
||
batch_size, channel, height, width = sample.shape
|
||
if cat_dim == -2 or cat_dim == 2:
|
||
cond_latent = sample[:, :, :height//2, :]
|
||
ref_latent = sample[:, :, -(height//2):, :]
|
||
elif cat_dim == -1 or cat_dim == 3:
|
||
cond_latent = sample[:, :, :, :width//2]
|
||
ref_latent = sample[:, :, :, -(width//2):]
|
||
mid_block_res_sample = self.controlnet_mid_block((cond_latent, ref_latent), )
|
||
|
||
# 6. scaling
|
||
down_block_res_samples = [sample*conditioning_scale for sample in down_block_res_samples]
|
||
mid_block_res_sample = mid_block_res_sample*conditioning_scale
|
||
|
||
if self.config.global_pool_conditions:
|
||
down_block_res_samples = [
|
||
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
||
]
|
||
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
||
|
||
if not return_dict:
|
||
return (down_block_res_samples, mid_block_res_sample)
|
||
|
||
return AggregatorOutput(
|
||
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
||
)
|
||
|
||
|
||
def zero_module(module):
|
||
for p in module.parameters():
|
||
nn.init.zeros_(p)
|
||
return module
|