mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
195 lines
8.9 KiB
Python
195 lines
8.9 KiB
Python
# Copyright 2022 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2023 AttendAndExcite
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
# Copyright 2022 Google LLC
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Not a contribution
|
|
# Changes made by NVIDIA CORPORATION & AFFILIATES enabling ConsiStory or otherwise documented as NVIDIA-proprietary
|
|
# are not a contribution and subject to the license under the LICENSE file located at the root directory.
|
|
|
|
import torch
|
|
from collections import defaultdict
|
|
import numpy as np
|
|
from typing import Union, List
|
|
from PIL import Image
|
|
|
|
from modules.consistory.utils.general_utils import attn_map_to_binary
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class AttentionStore:
|
|
def __init__(self, attention_store_kwargs):
|
|
"""
|
|
Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion
|
|
process
|
|
"""
|
|
self.attn_res = attention_store_kwargs.get('attn_res', (32,32))
|
|
self.token_indices = attention_store_kwargs['token_indices']
|
|
bsz = self.token_indices.size(1)
|
|
self.mask_background_query = attention_store_kwargs.get('mask_background_query', False)
|
|
self.original_attn_masks = attention_store_kwargs.get('original_attn_masks', None)
|
|
self.extended_mapping = attention_store_kwargs.get('extended_mapping', torch.ones(bsz, bsz).bool())
|
|
self.mask_dropout = attention_store_kwargs.get('mask_dropout', 0.0)
|
|
torch.manual_seed(0) # For dropout mask reproducibility
|
|
|
|
self.curr_iter = 0
|
|
self.ALL_RES = [32, 64]
|
|
self.step_store = defaultdict(list)
|
|
self.attn_masks = {res: None for res in self.ALL_RES}
|
|
self.last_mask = {res: None for res in self.ALL_RES}
|
|
self.last_mask_dropout = {res: None for res in self.ALL_RES}
|
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str, attn_heads: int):
|
|
if is_cross and attn.shape[1] == np.prod(self.attn_res):
|
|
guidance_attention = attn[attn.size(0)//2:]
|
|
batched_guidance_attention = guidance_attention.reshape([guidance_attention.shape[0]//attn_heads, attn_heads, *guidance_attention.shape[1:]])
|
|
batched_guidance_attention = batched_guidance_attention.mean(dim=1)
|
|
self.step_store[place_in_unet].append(batched_guidance_attention)
|
|
|
|
def reset(self):
|
|
self.step_store = defaultdict(list)
|
|
self.attn_masks = {res: None for res in self.ALL_RES}
|
|
self.last_mask = {res: None for res in self.ALL_RES}
|
|
self.last_mask_dropout = {res: None for res in self.ALL_RES}
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
def aggregate_last_steps_attention(self) -> torch.Tensor:
|
|
"""Aggregates the attention across the different layers and heads at the specified resolution."""
|
|
attention_maps = torch.cat([torch.stack(x[-20:]) for x in self.step_store.values()]).mean(dim=0)
|
|
bsz, wh, _ = attention_maps.shape
|
|
|
|
# Create attention maps for each concept token, for each batch item
|
|
agg_attn_maps = []
|
|
for i in range(bsz):
|
|
curr_prompt_indices = []
|
|
|
|
for concept_token_indices in self.token_indices:
|
|
if concept_token_indices[i] != -1:
|
|
curr_prompt_indices.append(attention_maps[i, :, concept_token_indices[i]].view(*self.attn_res))
|
|
|
|
agg_attn_maps.append(torch.stack(curr_prompt_indices))
|
|
|
|
# Upsample the attention maps to the target resolution
|
|
# and create the attention masks, unifying masks across the different concepts
|
|
for tgt_size in self.ALL_RES:
|
|
pixels = tgt_size ** 2
|
|
tgt_agg_attn_maps = [F.interpolate(x.unsqueeze(1), size=tgt_size, mode='bilinear').squeeze(1) for x in agg_attn_maps]
|
|
|
|
attn_masks = []
|
|
for batch_item_map in tgt_agg_attn_maps:
|
|
concept_attn_masks = []
|
|
|
|
for concept_maps in batch_item_map:
|
|
concept_attn_masks.append(torch.from_numpy(attn_map_to_binary(concept_maps, 1.)).to(attention_maps.device).bool().view(-1))
|
|
|
|
concept_attn_masks = torch.stack(concept_attn_masks, dim=0).max(dim=0).values
|
|
attn_masks.append(concept_attn_masks)
|
|
|
|
attn_masks = torch.stack(attn_masks)
|
|
self.last_mask[tgt_size] = attn_masks.clone()
|
|
|
|
# Add mask dropout
|
|
if self.curr_iter < 1000:
|
|
rand_mask = (torch.rand_like(attn_masks.float()) < self.mask_dropout)
|
|
attn_masks[rand_mask] = False
|
|
|
|
self.last_mask_dropout[tgt_size] = attn_masks.clone()
|
|
|
|
# # Create subject driven extended self attention masks
|
|
# output_attn_mask = torch.zeros((bsz, tgt_size**2, attn_masks.view(-1).size(0)), device=attn_masks.device).bool()
|
|
|
|
# for i in range(bsz):
|
|
# for j in range(bsz):
|
|
# if i==j:
|
|
# output_attn_mask[i, :, j*pixels:(j+1)*pixels] = 1
|
|
# else:
|
|
# if self.extended_mapping[i,j]:
|
|
# if not self.mask_background_query:
|
|
# output_attn_mask[i, :, j*pixels:(j+1)*pixels] = attn_masks[j].unsqueeze(0).expand(pixels, -1)
|
|
# else:
|
|
# output_attn_mask[i, attn_masks[i], j*pixels:(j+1)*pixels] = attn_masks[j].unsqueeze(0).expand(attn_masks[i].sum(), -1)
|
|
|
|
# self.attn_masks[tgt_size] = output_attn_mask
|
|
|
|
def get_attn_mask_bias(self, tgt_size, bsz=None):
|
|
attn_mask = self.attn_masks[tgt_size] if self.original_attn_masks is None else self.original_attn_masks[tgt_size]
|
|
|
|
if attn_mask is None:
|
|
return None
|
|
|
|
attn_bias = torch.zeros_like(attn_mask, dtype=torch.float16)
|
|
attn_bias[~attn_mask] = float('-inf')
|
|
|
|
if bsz and bsz != attn_bias.shape[0]:
|
|
attn_bias = attn_bias.repeat(bsz // attn_bias.shape[0], 1, 1)
|
|
|
|
return attn_bias
|
|
|
|
def get_extended_attn_mask_instance(self, width, i):
|
|
attn_mask = self.last_mask_dropout[width]
|
|
if attn_mask is None:
|
|
return None
|
|
|
|
n_patches = width**2
|
|
|
|
|
|
output_attn_mask = torch.zeros((attn_mask.shape[0] * attn_mask.shape[1],), device=attn_mask.device, dtype=torch.bool)
|
|
for j in range(attn_mask.shape[0]):
|
|
if i==j:
|
|
output_attn_mask[j*n_patches:(j+1)*n_patches] = 1
|
|
else:
|
|
if self.extended_mapping[i,j]:
|
|
if not self.mask_background_query:
|
|
output_attn_mask[j*n_patches:(j+1)*n_patches] = attn_mask[j].unsqueeze(0) #.expand(n_patches, -1)
|
|
else:
|
|
raise NotImplementedError('mask_background_query is not supported anymore')
|
|
output_attn_mask[0, attn_mask[i], k*n_patches:(k+1)*n_patches] = attn_mask[j].unsqueeze(0).expand(attn_mask[i].sum(), -1)
|
|
|
|
return output_attn_mask
|