1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/pipelines/model_hidream.py
Vladimir Mandic 3ae10dd0e1 add nvidia-chronoedit
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-10-30 19:52:29 -04:00

86 lines
3.8 KiB
Python

import transformers
import diffusers
from modules import shared, devices, sd_models, model_quant, sd_hijack_te, sd_hijack_vae
from pipelines import generic
def load_llama(diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
load_args, quant_args = model_quant.get_dit_args(diffusers_load_config, module='TE', device_map=True)
llama_repo = shared.opts.model_h1_llama_repo if shared.opts.model_h1_llama_repo != 'Default' else 'meta-llama/Meta-Llama-3.1-8B-Instruct'
shared.log.debug(f'Load model: type=HiDream te4="{llama_repo}" quant="{model_quant.get_quant_type(quant_args)}" args={load_args}')
sd_models.hf_auth_check(llama_repo)
text_encoder_4 = transformers.LlamaForCausalLM.from_pretrained(
llama_repo,
output_hidden_states=True,
output_attentions=True,
cache_dir=shared.opts.hfcache_dir,
**load_args,
**quant_args,
)
tokenizer_4 = transformers.PreTrainedTokenizerFast.from_pretrained(
llama_repo,
cache_dir=shared.opts.hfcache_dir,
**load_args,
)
if shared.opts.diffusers_offload_mode != 'none' and text_encoder_4 is not None:
sd_models.move_model(text_encoder_4, devices.cpu)
return text_encoder_4, tokenizer_4
def load_hidream(checkpoint_info, diffusers_load_config=None):
if diffusers_load_config is None:
diffusers_load_config = {}
repo_id = sd_models.path_to_repo(checkpoint_info)
sd_models.hf_auth_check(checkpoint_info)
load_args, _quant_args = model_quant.get_dit_args(diffusers_load_config, allow_quant=False)
shared.log.debug(f'Load model: type=HiDream repo="{repo_id}" config={diffusers_load_config} offload={shared.opts.diffusers_offload_mode} dtype={devices.dtype} args={load_args}')
transformer = generic.load_transformer(repo_id, cls_name=diffusers.HiDreamImageTransformer2DModel, load_config=diffusers_load_config, subfolder="transformer")
text_encoder_3 = generic.load_text_encoder(repo_id, cls_name=transformers.T5EncoderModel, load_config=diffusers_load_config, subfolder="text_encoder_3")
text_encoder_4, tokenizer_4 = load_llama(diffusers_load_config)
if shared.opts.teacache_enabled:
from modules import teacache
shared.log.debug(f'Transformers cache: type=teacache patch=forward cls={diffusers.HiDreamImageTransformer2DModel.__name__}')
diffusers.HiDreamImageTransformer2DModel.forward = teacache.teacache_hidream_forward # patch must be done before transformer is loaded
if 'I1' in repo_id:
cls = diffusers.HiDreamImagePipeline
elif 'E1' in repo_id:
from pipelines.hidream.pipeline_hidream_image_editing import HiDreamImageEditingPipeline
cls = HiDreamImageEditingPipeline
diffusers.pipelines.auto_pipeline.AUTO_TEXT2IMAGE_PIPELINES_MAPPING["hidream-e1"] = diffusers.HiDreamImagePipeline
diffusers.pipelines.auto_pipeline.AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["hidream-e1"] = HiDreamImageEditingPipeline
diffusers.pipelines.auto_pipeline.AUTO_INPAINT_PIPELINES_MAPPING["hidream-e1"] = HiDreamImageEditingPipeline
if transformer and 'E1-1' in repo_id:
transformer.max_seq = 8192
elif transformer and 'E1' in repo_id:
transformer.max_seq = 4608
else:
shared.log.error(f'Load model: type=HiDream model="{checkpoint_info.name}" repo="{repo_id}" not recognized')
return False
pipe = cls.from_pretrained(
repo_id,
transformer=transformer,
text_encoder_3=text_encoder_3,
text_encoder_4=text_encoder_4,
tokenizer_4=tokenizer_4,
cache_dir=shared.opts.diffusers_dir,
**load_args,
)
del text_encoder_3
del text_encoder_4
del tokenizer_4
del transformer
sd_hijack_te.init_hijack(pipe)
sd_hijack_vae.init_hijack(pipe)
devices.torch_gc()
return pipe