mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
177 lines
6.2 KiB
Python
177 lines
6.2 KiB
Python
import io
|
|
import os
|
|
import time
|
|
from PIL import Image
|
|
from installer import install, reload, log
|
|
|
|
|
|
image_size_buckets = {
|
|
'1K': 1024*1024,
|
|
'2K': 2048*1024,
|
|
'4K': 4096*1024,
|
|
}
|
|
aspect_ratios_buckets = {
|
|
'1:1': 1/1,
|
|
'2:3': 2/3,
|
|
'3:2': 3/2,
|
|
'4:3': 4/3,
|
|
'3:4': 3/4,
|
|
'4:5': 4/5,
|
|
'5:4': 5/4,
|
|
'16:9': 16/9,
|
|
'9:16': 9/16,
|
|
'21:9': 21/9,
|
|
'9:21': 9/21,
|
|
}
|
|
|
|
|
|
def google_requirements():
|
|
install('google-genai==1.52.0')
|
|
install('pydantic==2.11.7', ignore=True, quiet=True)
|
|
reload('pydantic', '2.11.7')
|
|
|
|
|
|
def get_size_buckets(width: int, height: int) -> str:
|
|
aspect_ratio = width / height
|
|
closest_aspect_ratio = min(aspect_ratios_buckets.items(), key=lambda x: abs(x[1] - aspect_ratio))[0]
|
|
pixel_count = width * height
|
|
closest_size = min(image_size_buckets.items(), key=lambda x: abs(x[1] - pixel_count))[0]
|
|
closest_aspect_ratio = min(aspect_ratios_buckets.items(), key=lambda x: abs(x[1] - aspect_ratio))[0]
|
|
return closest_size, closest_aspect_ratio
|
|
|
|
|
|
class GoogleNanoBananaPipeline():
|
|
def __init__(self, model_name: str):
|
|
self.model = model_name
|
|
self.client = None
|
|
self.config = None
|
|
google_requirements()
|
|
log.debug(f'Load model: type=NanoBanana model="{model_name}"')
|
|
|
|
def txt2img(self, prompt):
|
|
return self.client.models.generate_content(
|
|
model=self.model,
|
|
config=self.config,
|
|
contents=prompt,
|
|
)
|
|
|
|
def img2img(self, prompt, image):
|
|
from google import genai
|
|
image_bytes = io.BytesIO()
|
|
image.save(image_bytes, format='JPEG')
|
|
return self.client.models.generate_content(
|
|
model=self.model,
|
|
config=self.config,
|
|
contents=[
|
|
genai.types.Part.from_bytes(data=image_bytes.getvalue(), mime_type='image/jpeg'),
|
|
prompt,
|
|
],
|
|
)
|
|
|
|
def get_args(self):
|
|
from modules.shared import opts
|
|
# Use UI settings only - env vars are intentionally ignored
|
|
api_key = opts.google_api_key
|
|
project_id = opts.google_project_id
|
|
location_id = opts.google_location_id
|
|
use_vertexai = opts.google_use_vertexai
|
|
|
|
has_api_key = api_key and len(api_key) > 0
|
|
has_project = project_id and len(project_id) > 0
|
|
has_location = location_id and len(location_id) > 0
|
|
|
|
if use_vertexai:
|
|
if has_api_key and (has_project or has_location):
|
|
# Invalid: can't have both api_key AND project/location
|
|
log.error(f'Cloud: model="{self.model}" API key and project/location are mutually exclusive')
|
|
return None
|
|
elif has_api_key:
|
|
# Vertex AI Express Mode: api_key + vertexai, no project/location
|
|
args = {'api_key': api_key, 'vertexai': True}
|
|
elif has_project and has_location:
|
|
# Standard Vertex AI: project/location, no api_key
|
|
args = {'vertexai': True, 'project': project_id, 'location': location_id}
|
|
else:
|
|
log.error(f'Cloud: model="{self.model}" Vertex AI requires either API key (Express Mode) or project ID + location ID')
|
|
return None
|
|
else:
|
|
# Gemini Developer API: api_key only
|
|
if not has_api_key:
|
|
log.error(f'Cloud: model="{self.model}" API key not provided')
|
|
return None
|
|
args = {'api_key': api_key}
|
|
|
|
# Debug logging
|
|
args_log = args.copy()
|
|
if args_log.get('api_key'):
|
|
args_log['api_key'] = '...' + args_log['api_key'][-4:]
|
|
log.debug(f'Cloud: model="{self.model}" args={args_log}')
|
|
return args
|
|
|
|
def __call__(self, prompt: list[str], width: int, height: int, image: Image.Image = None):
|
|
from google import genai
|
|
if self.client is None:
|
|
args = self.get_args()
|
|
if args is None:
|
|
return None
|
|
self.client = genai.Client(**args)
|
|
|
|
image_size, aspect_ratio = get_size_buckets(width, height)
|
|
if 'gemini-3' in self.model:
|
|
image_config=genai.types.ImageConfig(aspect_ratio=aspect_ratio, image_size=image_size)
|
|
else:
|
|
image_config=genai.types.ImageConfig(aspect_ratio=aspect_ratio)
|
|
self.config=genai.types.GenerateContentConfig(
|
|
response_modalities=["IMAGE"],
|
|
image_config=image_config
|
|
)
|
|
log.debug(f'Cloud: model="{self.model}" prompt="{prompt}" size={image_size} ar={aspect_ratio} image={image}')
|
|
# log.debug(f'Cloud: config={self.config}')
|
|
|
|
try:
|
|
t0 = time.time()
|
|
if image is not None:
|
|
response = self.img2img(prompt, image)
|
|
else:
|
|
response = self.txt2img(prompt)
|
|
t1 = time.time()
|
|
try:
|
|
tokens = response.usage_metadata.total_token_count
|
|
except Exception:
|
|
tokens = 0
|
|
log.debug(f'Cloud: model="{self.model}" tokens={tokens} time={(t1 - t0):.2f}')
|
|
except Exception as e:
|
|
log.error(f'Cloud: model="{self.model}" {e}')
|
|
return None
|
|
|
|
image = None
|
|
if getattr(response, 'prompt_feedback', None) is not None:
|
|
log.error(f'Cloud: model="{self.model}" {response.prompt_feedback}')
|
|
|
|
parts = []
|
|
try:
|
|
for candidate in response.candidates:
|
|
parts.extend(candidate.content.parts)
|
|
except Exception:
|
|
log.error(f'Cloud: model="{self.model}" no images received')
|
|
return None
|
|
|
|
for part in parts:
|
|
if part.inline_data is not None:
|
|
image = Image.open(io.BytesIO(part.inline_data.data))
|
|
return image
|
|
|
|
|
|
def load_nanobanana(checkpoint_info, diffusers_load_config): # pylint: disable=unused-argument
|
|
pipe = GoogleNanoBananaPipeline(model_name = checkpoint_info.filename)
|
|
return pipe
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
|
log.info('test')
|
|
model = GoogleNanoBananaPipeline('gemini-3-pro-image-preview')
|
|
img = model(['A beautiful landscape with mountains and a river'], 1024, 1024)
|
|
img.save('test.png')
|