1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sd_unet.py
2025-12-17 16:43:54 -08:00

103 lines
4.6 KiB
Python

import os
from modules import shared, devices, files_cache, sd_models, model_quant
unet_dict = {}
loaded_unet = None
failed_unet = []
debug = os.environ.get('SD_LOAD_DEBUG', None) is not None
dit_models = ['Flux', 'StableDiffusion3', 'HiDream', 'Lumina2', 'Chroma', 'Wan', 'Qwen']
def load_unet_sdxl_nunchaku(repo_id):
try:
from nunchaku.models.unets.unet_sdxl import NunchakuSDXLUNet2DConditionModel
except Exception:
shared.log.error(f'Load module: quant=Nunchaku module=unet repo="{repo_id}" low nunchaku version')
return None
if 'turbo' in repo_id.lower():
nunchaku_repo = 'nunchaku-tech/nunchaku-sdxl-turbo/svdq-int4_r32-sdxl-turbo.safetensors'
else:
nunchaku_repo = 'nunchaku-tech/nunchaku-sdxl/svdq-int4_r32-sdxl.safetensors'
shared.log.debug(f'Load module: quant=Nunchaku module=unet repo="{nunchaku_repo}" offload={shared.opts.nunchaku_offload}')
unet = NunchakuSDXLUNet2DConditionModel.from_pretrained(
nunchaku_repo,
offload=shared.opts.nunchaku_offload,
torch_dtype=devices.dtype,
cache_dir=shared.opts.hfcache_dir,
)
unet.quantization_method = 'SVDQuant'
return unet
def load_unet(model, repo_id:str=None):
global loaded_unet # pylint: disable=global-statement
if ("StableDiffusionXLPipeline" in model.__class__.__name__) and (('stable-diffusion-xl-base' in repo_id) or ('sdxl-turbo' in repo_id)):
if model_quant.check_nunchaku('Model'):
unet = load_unet_sdxl_nunchaku(repo_id)
if unet is not None:
model.unet = unet
return
if shared.opts.sd_unet == 'Default' or shared.opts.sd_unet == 'None':
return
if shared.opts.sd_unet not in list(unet_dict):
shared.log.error(f'Load module: type=UNet not found: {shared.opts.sd_unet}')
return
config_file = os.path.splitext(unet_dict[shared.opts.sd_unet])[0] + '.json'
if os.path.exists(config_file):
config = shared.readfile(config_file, as_type="dict")
else:
config = None
config_file = 'default'
try:
if shared.opts.sd_unet == loaded_unet or shared.opts.sd_unet in failed_unet:
pass
elif "StableCascade" in model.__class__.__name__:
from pipelines.model_stablecascade import load_prior
prior_unet, prior_text_encoder = load_prior(unet_dict[shared.opts.sd_unet], config_file=config_file)
loaded_unet = shared.opts.sd_unet
if prior_unet is not None:
model.prior_pipe.prior = None # Prevent OOM
model.prior_pipe.prior = prior_unet.to(devices.device, dtype=devices.dtype_unet)
if prior_text_encoder is not None:
model.prior_pipe.text_encoder = None # Prevent OOM
model.prior_pipe.text_encoder = prior_text_encoder.to(devices.device, dtype=devices.dtype)
elif any([m in model.__class__.__name__ for m in dit_models]) or hasattr(model, 'transformer'): # noqa: C419 # pylint: disable=use-a-generator
loaded_unet = shared.opts.sd_unet
sd_models.load_diffuser() # TODO model load: force-reloading entire model as loading transformers only leads to massive memory usage
else:
if not hasattr(model, 'unet') or model.unet is None:
shared.log.error('Load module: type=UNET not found in current model')
return
shared.log.info(f'Load module: type=UNet name="{shared.opts.sd_unet}" file="{unet_dict[shared.opts.sd_unet]}" config="{config_file}"')
from diffusers import UNet2DConditionModel
from safetensors.torch import load_file
unet = UNet2DConditionModel.from_config(model.unet.config if config is None else config).to(devices.device, devices.dtype)
state_dict = load_file(unet_dict[shared.opts.sd_unet])
unet.load_state_dict(state_dict)
model.unet = unet.to(devices.device, devices.dtype_unet)
except Exception as e:
shared.log.error(f'Failed to load UNet model: {e}')
if debug:
from modules import errors
errors.display(e, 'UNet load:')
return
devices.torch_gc()
def refresh_unet_list():
unet_dict.clear()
for file in files_cache.list_files(shared.opts.unet_dir, ext_filter=[".safetensors", ".gguf", ".pth"]):
basename = os.path.basename(file)
name = os.path.splitext(basename)[0] if ".safetensors" in basename else basename
unet_dict[name] = file
shared.log.info(f'Available UNets: path="{shared.opts.unet_dir}" items={len(unet_dict)}')