1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sd_samplers_diffusers.py
2025-10-19 14:11:41 -04:00

337 lines
27 KiB
Python

import os
import re
import copy
import inspect
import diffusers
from modules import shared, errors
from modules.sd_samplers_common import SamplerData, flow_models
debug = os.environ.get('SD_SAMPLER_DEBUG', None) is not None
debug_log = shared.log.trace if debug else lambda *args, **kwargs: None
try:
from diffusers import (
CMStochasticIterativeScheduler,
CosineDPMSolverMultistepScheduler,
DDIMScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSDEScheduler,
DPMSolverSinglestepScheduler,
EDMDPMSolverMultistepScheduler,
EDMEulerScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
FlowMatchEulerDiscreteScheduler,
FlowMatchHeunDiscreteScheduler,
FlowMatchLCMScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LCMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
SASolverScheduler,
UniPCMultistepScheduler,
)
except Exception as e:
shared.log.error(f'Sampler import: version={diffusers.__version__} error: {e}')
if os.environ.get('SD_SAMPLER_DEBUG', None) is not None:
errors.display(e, 'Samplers')
try:
from modules.schedulers.scheduler_tcd import TCDScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_tdd import TDDScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_dc import DCSolverMultistepScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_vdm import VDMScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_dpm_flowmatch import FlowMatchDPMSolverMultistepScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_bdia import BDIA_DDIMScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_ufogen import UFOGenScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_unipc_flowmatch import FlowUniPCMultistepScheduler # pylint: disable=ungrouped-imports
from modules.schedulers.scheduler_flashflow import FlashFlowMatchEulerDiscreteScheduler # pylint: disable=ungrouped-imports
from modules.perflow import PeRFlowScheduler # pylint: disable=ungrouped-imports
except Exception as e:
shared.log.error(f'Sampler import: version={diffusers.__version__} error: {e}')
if os.environ.get('SD_SAMPLER_DEBUG', None) is not None:
errors.display(e, 'Samplers')
config = {
# beta_start, beta_end are typically per-scheduler, but we don't want them as they should be taken from the model itself as those are values model was trained on
# prediction_type is ideally set in model as well, but it maybe needed that we do auto-detect of model type in the future
'All': { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'prediction_type': 'epsilon' },
'UniPC': { 'flow_shift': 1, 'predict_x0': True, 'sample_max_value': 1.0, 'solver_order': 2, 'solver_type': 'bh2', 'thresholding': False, 'use_beta_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_karras_sigmas': False, 'lower_order_final': True, 'timestep_spacing': 'linspace', 'final_sigmas_type': 'zero', 'rescale_betas_zero_snr': False },
'DDIM': { 'clip_sample': False, 'set_alpha_to_one': True, 'steps_offset': 0, 'clip_sample_range': 1.0, 'sample_max_value': 1.0, 'timestep_spacing': 'leading', 'rescale_betas_zero_snr': False, 'thresholding': False },
'Euler': { 'steps_offset': 0, 'interpolation_type': "linear", 'rescale_betas_zero_snr': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'use_beta_sigmas': False, 'use_exponential_sigmas': False, 'use_karras_sigmas': False },
'Euler a': { 'steps_offset': 0, 'rescale_betas_zero_snr': False, 'timestep_spacing': 'linspace' },
'Euler SGM': { 'steps_offset': 0, 'interpolation_type': "linear", 'rescale_betas_zero_snr': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'trailing', 'use_beta_sigmas': False, 'use_exponential_sigmas': False, 'use_karras_sigmas': False, 'prediction_type': "sample" },
'Euler EDM': { 'sigma_schedule': "karras" },
'Euler FlowMatch': { 'timestep_spacing': "linspace", 'shift': 1, 'use_dynamic_shifting': False, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM++': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 1 },
'DPM++ 2M': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 2 },
'DPM++ 3M': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 3 },
'DPM++ 1S': { 'solver_order': 2, 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'final_sigmas_type': 'sigma_min' },
'DPM++ SDE': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "sde-dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 1 },
'DPM++ 2M SDE': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "sde-dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 2 },
'DPM++ 2M EDM': { 'solver_order': 2, 'solver_type': 'midpoint', 'final_sigmas_type': 'zero', 'algorithm_type': 'dpmsolver++' },
'DPM++ Cosine': { 'solver_order': 2, 'sigma_schedule': "exponential", 'prediction_type': "v-prediction" },
'DPM SDE': { 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'noise_sampler_seed': None, 'timestep_spacing': 'linspace', 'steps_offset': 0, },
'DPM++ Inverse': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 1 },
'DPM++ 2M Inverse': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 2 },
'DPM++ 3M Inverse': { 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "dpmsolver++", 'solver_type': "midpoint", 'lower_order_final': True, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False, 'use_lu_lambdas': False, 'final_sigmas_type': 'zero', 'timestep_spacing': 'linspace', 'solver_order': 3 },
'UniPC FlowMatch': { 'predict_x0': True, 'sample_max_value': 1.0, 'solver_order': 2, 'solver_type': 'bh2', 'thresholding': False, 'use_beta_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_karras_sigmas': False, 'lower_order_final': True, 'timestep_spacing': 'linspace', 'final_sigmas_type': 'zero', 'rescale_betas_zero_snr': False },
'DPM2 FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver2', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2a FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver2A', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2++ 2M FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver++2M', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2++ 2S FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver++2S', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2++ SDE FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver++sde', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2++ 2M SDE FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 2, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver++2Msde', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'DPM2++ 3M SDE FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'solver_order': 3, 'sigma_schedule': None, 'use_beta_sigmas': False, 'algorithm_type': 'dpmsolver++3Msde', 'use_noise_sampler': True, 'beta_start': 0.00085, 'beta_end': 0.012, 'base_shift': 0.5, 'max_shift': 1.15 },
'Heun': { 'use_beta_sigmas': False, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'timestep_spacing': 'linspace' },
'Heun FlowMatch': { 'timestep_spacing': "linspace", 'shift': 1 },
'LCM FlowMatch': { 'beta_start': 0.00085, 'beta_end': 0.012, 'beta_schedule': "scaled_linear", 'set_alpha_to_one': True, 'rescale_betas_zero_snr': False, 'thresholding': False, 'timestep_spacing': 'linspace', 'base_shift': 0.5, 'max_shift': 1.15 },
'DEIS': { 'solver_order': 2, 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': "deis", 'solver_type': "logrho", 'lower_order_final': True, 'timestep_spacing': 'linspace', 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_flow_sigmas': False, 'use_beta_sigmas': False },
'SA Solver': {'predictor_order': 2, 'corrector_order': 2, 'thresholding': False, 'lower_order_final': True, 'use_karras_sigmas': False, 'use_flow_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'timestep_spacing': 'linspace'},
'DC Solver': { 'beta_start': 0.0001, 'beta_end': 0.02, 'solver_order': 2, 'prediction_type': "epsilon", 'thresholding': False, 'solver_type': 'bh2', 'lower_order_final': True, 'dc_order': 2, 'disable_corrector': [0] },
'VDM Solver': { 'clip_sample_range': 2.0, },
'TCD': { 'set_alpha_to_one': True, 'rescale_betas_zero_snr': False, 'beta_schedule': 'scaled_linear' },
'TDD': { },
'Flash FlowMatch': { 'shift': 1, 'use_dynamic_shifting': False, 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'base_shift': 0.5, 'max_shift': 1.15 },
'PeRFlow': { 'prediction_type': 'ddim_eps' },
'UFOGen': { },
'BDIA DDIM': { 'clip_sample': False, 'set_alpha_to_one': True, 'steps_offset': 0, 'clip_sample_range': 1.0, 'sample_max_value': 1.0, 'timestep_spacing': 'leading', 'rescale_betas_zero_snr': False, 'thresholding': False, 'gamma': 1.0 },
'PNDM': { 'skip_prk_steps': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'timestep_spacing': 'linspace' },
'IPNDM': { },
'DDPM': { 'variance_type': "fixed_small", 'clip_sample': False, 'thresholding': False, 'clip_sample_range': 1.0, 'sample_max_value': 1.0, 'timestep_spacing': 'linspace', 'rescale_betas_zero_snr': False },
'LMSD': { 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'timestep_spacing': 'linspace', 'steps_offset': 0 },
'KDPM2': { 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'steps_offset': 0, 'timestep_spacing': 'linspace' },
'KDPM2 a': { 'use_karras_sigmas': False, 'use_exponential_sigmas': False, 'use_beta_sigmas': False, 'steps_offset': 0, 'timestep_spacing': 'linspace' },
'CMSI': { },
}
samplers_data_diffusers = [
SamplerData('Default', None, [], {}),
SamplerData('UniPC', lambda model: DiffusionSampler('UniPC', UniPCMultistepScheduler, model), [], {}),
SamplerData('DDIM', lambda model: DiffusionSampler('DDIM', DDIMScheduler, model), [], {}),
SamplerData('Euler', lambda model: DiffusionSampler('Euler', EulerDiscreteScheduler, model), [], {}),
SamplerData('Euler a', lambda model: DiffusionSampler('Euler a', EulerAncestralDiscreteScheduler, model), [], {}),
SamplerData('Euler SGM', lambda model: DiffusionSampler('Euler SGM', EulerDiscreteScheduler, model), [], {}),
SamplerData('Euler EDM', lambda model: DiffusionSampler('Euler EDM', EDMEulerScheduler, model), [], {}),
SamplerData('Euler FlowMatch', lambda model: DiffusionSampler('Euler FlowMatch', FlowMatchEulerDiscreteScheduler, model), [], {}),
SamplerData('DPM++', lambda model: DiffusionSampler('DPM++', DPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ 2M', lambda model: DiffusionSampler('DPM++ 2M', DPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ 3M', lambda model: DiffusionSampler('DPM++ 3M', DPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ 1S', lambda model: DiffusionSampler('DPM++ 1S', DPMSolverSinglestepScheduler, model), [], {}),
SamplerData('DPM++ SDE', lambda model: DiffusionSampler('DPM++ SDE', DPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ 2M SDE', lambda model: DiffusionSampler('DPM++ 2M SDE', DPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ 2M EDM', lambda model: DiffusionSampler('DPM++ 2M EDM', EDMDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM++ Cosine', lambda model: DiffusionSampler('DPM++ 2M EDM', CosineDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM SDE', lambda model: DiffusionSampler('DPM SDE', DPMSolverSDEScheduler, model), [], {}),
SamplerData('DPM++ Inverse', lambda model: DiffusionSampler('DPM++ Inverse', DPMSolverMultistepInverseScheduler, model), [], {}),
SamplerData('DPM++ 2M Inverse', lambda model: DiffusionSampler('DPM++ 2M Inverse', DPMSolverMultistepInverseScheduler, model), [], {}),
SamplerData('DPM++ 3M Inverse', lambda model: DiffusionSampler('DPM++ 3M Inverse', DPMSolverMultistepInverseScheduler, model), [], {}),
SamplerData('UniPC FlowMatch', lambda model: DiffusionSampler('UniPC FlowMatch', FlowUniPCMultistepScheduler, model), [], {}),
SamplerData('DPM2 FlowMatch', lambda model: DiffusionSampler('DPM2 FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2a FlowMatch', lambda model: DiffusionSampler('DPM2a FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2++ 2M FlowMatch', lambda model: DiffusionSampler('DPM2++ 2M FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2++ 2S FlowMatch', lambda model: DiffusionSampler('DPM2++ 2S FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2++ SDE FlowMatch', lambda model: DiffusionSampler('DPM2++ SDE FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2++ 2M SDE FlowMatch', lambda model: DiffusionSampler('DPM2++ 2M SDE FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('DPM2++ 3M SDE FlowMatch', lambda model: DiffusionSampler('DPM2++ 3M SDE FlowMatch', FlowMatchDPMSolverMultistepScheduler, model), [], {}),
SamplerData('Heun', lambda model: DiffusionSampler('Heun', HeunDiscreteScheduler, model), [], {}),
SamplerData('Heun FlowMatch', lambda model: DiffusionSampler('Heun FlowMatch', FlowMatchHeunDiscreteScheduler, model), [], {}),
SamplerData('Flash FlowMatch', lambda model: DiffusionSampler('Flash FlowMatch', FlashFlowMatchEulerDiscreteScheduler, model), [], {}),
SamplerData('DEIS', lambda model: DiffusionSampler('DEIS', DEISMultistepScheduler, model), [], {}),
SamplerData('SA Solver', lambda model: DiffusionSampler('SA Solver', SASolverScheduler, model), [], {}),
SamplerData('DC Solver', lambda model: DiffusionSampler('DC Solver', DCSolverMultistepScheduler, model), [], {}),
SamplerData('VDM Solver', lambda model: DiffusionSampler('VDM Solver', VDMScheduler, model), [], {}),
SamplerData('BDIA DDIM', lambda model: DiffusionSampler('BDIA DDIM g=0', BDIA_DDIMScheduler, model), [], {}),
SamplerData('PNDM', lambda model: DiffusionSampler('PNDM', PNDMScheduler, model), [], {}),
SamplerData('IPNDM', lambda model: DiffusionSampler('IPNDM', IPNDMScheduler, model), [], {}),
SamplerData('DDPM', lambda model: DiffusionSampler('DDPM', DDPMScheduler, model), [], {}),
SamplerData('LMSD', lambda model: DiffusionSampler('LMSD', LMSDiscreteScheduler, model), [], {}),
SamplerData('KDPM2', lambda model: DiffusionSampler('KDPM2', KDPM2DiscreteScheduler, model), [], {}),
SamplerData('KDPM2 a', lambda model: DiffusionSampler('KDPM2 a', KDPM2AncestralDiscreteScheduler, model), [], {}),
SamplerData('CMSI', lambda model: DiffusionSampler('CMSI', CMStochasticIterativeScheduler, model), [], {}),
SamplerData('LCM', lambda model: DiffusionSampler('LCM', LCMScheduler, model), [], {}),
SamplerData('LCM FlowMatch', lambda model: DiffusionSampler('LCM FlowMatch', FlowMatchLCMScheduler, model), [], {}),
SamplerData('TCD', lambda model: DiffusionSampler('TCD', TCDScheduler, model), [], {}),
SamplerData('TDD', lambda model: DiffusionSampler('TDD', TDDScheduler, model), [], {}),
SamplerData('PeRFlow', lambda model: DiffusionSampler('PeRFlow', PeRFlowScheduler, model), [], {}),
SamplerData('UFOGen', lambda model: DiffusionSampler('UFOGen', UFOGenScheduler, model), [], {}),
SamplerData('Same as primary', None, [], {}),
]
class DiffusionSampler:
def __init__(self, name, constructor, model, **kwargs):
if name == 'Default':
return
self.name = name
self.config = {}
self.sampler = None
if getattr(model, "default_scheduler", None) is None and (model is not None): # sanity check
model.default_scheduler = copy.deepcopy(model.scheduler)
for key, value in config.get('All', {}).items(): # apply global defaults
self.config[key] = value
debug_log(f'Sampler: all="{self.config}"')
if model is None:
orig_config = {}
elif hasattr(model.default_scheduler, 'scheduler_config'): # find model defaults
orig_config = model.default_scheduler.scheduler_config
else:
orig_config = model.default_scheduler.config
debug_log(f'Sampler: diffusers="{self.config}"')
debug_log(f'Sampler: original="{orig_config}"')
for key, value in orig_config.items(): # apply model defaults
if key in self.config:
self.config[key] = value
debug_log(f'Sampler: default="{self.config}"')
for key, value in config.get(name, {}).items(): # apply diffusers per-scheduler defaults
self.config[key] = value
for key, value in kwargs.items(): # apply user args, if any
if key in self.config:
self.config[key] = value
# finally apply user preferences
if shared.opts.schedulers_prediction_type != 'default':
self.config['prediction_type'] = shared.opts.schedulers_prediction_type
if shared.opts.schedulers_beta_schedule != 'default':
if shared.opts.schedulers_beta_schedule == 'linear':
self.config['beta_schedule'] = 'linear'
elif shared.opts.schedulers_beta_schedule == 'scaled':
self.config['beta_schedule'] = 'scaled_linear'
elif shared.opts.schedulers_beta_schedule == 'cosine':
self.config['beta_schedule'] = 'squaredcos_cap_v2'
elif shared.opts.schedulers_beta_schedule == 'sigmoid':
self.config['beta_schedule'] = 'sigmoid'
timesteps = re.split(',| ', shared.opts.schedulers_timesteps)
timesteps = [int(x) for x in timesteps if x.isdigit()]
if len(timesteps) == 0:
if 'sigma_schedule' in self.config:
self.config['sigma_schedule'] = shared.opts.schedulers_sigma if shared.opts.schedulers_sigma != 'default' else None
if shared.opts.schedulers_sigma == 'default' and shared.sd_model_type in flow_models and 'use_flow_sigmas' in self.config:
self.config['use_flow_sigmas'] = True
elif shared.opts.schedulers_sigma == 'betas' and 'use_beta_sigmas' in self.config:
self.config['use_beta_sigmas'] = True
elif shared.opts.schedulers_sigma == 'karras' and 'use_karras_sigmas' in self.config:
self.config['use_karras_sigmas'] = True
elif shared.opts.schedulers_sigma == 'flowmatch' and 'use_flow_sigmas' in self.config:
self.config['use_flow_sigmas'] = True
elif shared.opts.schedulers_sigma == 'exponential' and 'use_exponential_sigmas' in self.config:
self.config['use_exponential_sigmas'] = True
elif shared.opts.schedulers_sigma == 'lambdas' and 'use_lu_lambdas' in self.config:
self.config['use_lu_lambdas'] = True
else:
pass # timesteps are set using set_timesteps in set_pipeline_args
if 'thresholding' in self.config:
self.config['thresholding'] = shared.opts.schedulers_use_thresholding
if 'lower_order_final' in self.config:
self.config['lower_order_final'] = shared.opts.schedulers_use_loworder
if 'solver_order' in self.config and int(shared.opts.schedulers_solver_order) > 0:
self.config['solver_order'] = int(shared.opts.schedulers_solver_order)
if 'predict_x0' in self.config:
self.config['solver_type'] = shared.opts.uni_pc_variant
if 'beta_start' in self.config and shared.opts.schedulers_beta_start > 0:
self.config['beta_start'] = shared.opts.schedulers_beta_start
if 'beta_end' in self.config and shared.opts.schedulers_beta_end > 0:
self.config['beta_end'] = shared.opts.schedulers_beta_end
if 'shift' in self.config:
self.config['shift'] = shared.opts.schedulers_shift if shared.opts.schedulers_shift > 0 else 3
if 'flow_shift' in self.config:
self.config['flow_shift'] = shared.opts.schedulers_shift if shared.opts.schedulers_shift > 0 else 3
if 'use_dynamic_shifting' in self.config:
self.config['use_dynamic_shifting'] = True if shared.opts.schedulers_shift == 0 else shared.opts.schedulers_dynamic_shift
if 'base_shift' in self.config:
self.config['base_shift'] = shared.opts.schedulers_base_shift
if 'max_shift' in self.config:
self.config['max_shift'] = shared.opts.schedulers_max_shift
if 'use_beta_sigmas' in self.config and 'sigma_schedule' in self.config:
self.config['use_beta_sigmas'] = 'StableDiffusion3' in model.__class__.__name__
if 'rescale_betas_zero_snr' in self.config:
self.config['rescale_betas_zero_snr'] = shared.opts.schedulers_rescale_betas
if 'timestep_spacing' in self.config and shared.opts.schedulers_timestep_spacing != 'default' and shared.opts.schedulers_timestep_spacing is not None:
self.config['timestep_spacing'] = shared.opts.schedulers_timestep_spacing
if 'num_train_timesteps' in self.config:
self.config['num_train_timesteps'] = shared.opts.schedulers_timesteps_range
if 'EDM' in name:
del self.config['beta_start']
del self.config['beta_end']
del self.config['beta_schedule']
if name in {'IPNDM', 'CMSI', 'VDM Solver'}:
del self.config['beta_start']
del self.config['beta_end']
del self.config['beta_schedule']
del self.config['prediction_type']
if 'prediction_type' in self.config and 'Flow' in name:
self.config['prediction_type'] = 'flow_prediction'
if 'SGM' in name:
self.config['timestep_spacing'] = 'trailing'
# validate all config params
signature = inspect.signature(constructor, follow_wrapped=True)
possible = signature.parameters.keys()
for key in self.config.copy().keys():
if key not in possible:
del self.config[key]
debug_log(f'Sampler: name="{name}"')
debug_log(f'Sampler: config={self.config}')
debug_log(f'Sampler: signature={possible}')
# finally create the new sampler
try:
sampler = constructor(**self.config)
except Exception as e:
shared.log.error(f'Sampler: "{name}" {e}')
if debug:
errors.display(e, 'Samplers')
self.sampler = None
return
if hasattr(sampler, 'set_timesteps'):
accept_sigmas = "sigmas" in set(inspect.signature(sampler.set_timesteps).parameters.keys())
accepts_timesteps = "timesteps" in set(inspect.signature(sampler.set_timesteps).parameters.keys())
accept_scale_noise = hasattr(sampler, "scale_noise")
debug_log(f'Sampler: "{name}" sigmas={accept_sigmas} timesteps={accepts_timesteps}')
if ('Flux' in model.__class__.__name__) and (not accept_sigmas):
shared.log.warning(f'Sampler: "{name}" does not accept sigmas')
self.sampler = None
return
if ('StableDiffusion3' in model.__class__.__name__) and (not accept_scale_noise):
shared.log.warning(f'Sampler: "{name}" does not implement scale noise')
self.sampler = None
return
# monkey-patch to allow sdxl pipeline to execute flowmatch samplers
if not hasattr(sampler, 'scale_model_input'):
sampler.scale_model_input = lambda x, _y: x
if not hasattr(sampler, 'init_noise_sigma'):
sampler.init_noise_sigma = 1.0
self.sampler = sampler
# shared.log.debug_log(f'Sampler: class="{self.sampler.__class__.__name__}" config={self.sampler.config}')
self.sampler.name = name