1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sd_samplers.py
Vladimir Mandic 4b95d72d45 video tab layout
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-10-18 14:07:52 -04:00

142 lines
6.4 KiB
Python

import os
import copy
from modules import shared
from modules.sd_samplers_common import samples_to_image_grid, sample_to_image # pylint: disable=unused-import
debug = shared.log.trace if os.environ.get('SD_SAMPLER_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: SAMPLER')
all_samplers = []
all_samplers_map = {}
samplers = all_samplers
samplers_for_img2img = all_samplers
samplers_map = {}
loaded_config = None
def find_sampler(name:str):
if name is None or name == 'None':
return all_samplers_map.get("UniPC", None)
for sampler in all_samplers:
if sampler.name.lower() == name.lower() or name in sampler.aliases:
debug(f'Find sampler: name="{name}" found={sampler.name}')
return sampler
debug(f'Find sampler: name="{name}" found=None')
return None
def list_samplers():
global all_samplers # pylint: disable=global-statement
global all_samplers_map # pylint: disable=global-statement
global samplers # pylint: disable=global-statement
global samplers_for_img2img # pylint: disable=global-statement
global samplers_map # pylint: disable=global-statement
from modules import sd_samplers_diffusers
all_samplers = [*sd_samplers_diffusers.samplers_data_diffusers]
all_samplers_map = {x.name: x for x in all_samplers}
samplers = all_samplers
samplers_for_img2img = all_samplers
samplers_map = {}
# shared.log.debug(f'Available samplers: {[x.name for x in all_samplers]}')
def find_sampler_config(name):
if name is not None and name != 'None':
config = all_samplers_map.get(name, None)
else:
config = all_samplers[0]
return config
def restore_default(model):
if model is None:
return None
if getattr(model, "default_scheduler", None) is not None and getattr(model, "scheduler", None) is not None:
model.scheduler = copy.deepcopy(model.default_scheduler)
if hasattr(model, "prior_pipe") and hasattr(model.prior_pipe, "scheduler"):
model.prior_pipe.scheduler = copy.deepcopy(model.default_scheduler)
model.prior_pipe.scheduler.config.clip_sample = False
config = {k: v for k, v in model.scheduler.config.items() if not k.startswith('_')}
if "flow" in model.scheduler.__class__.__name__.lower():
shared.state.prediction_type = "flow_prediction"
elif hasattr(model.scheduler, "config") and hasattr(model.scheduler.config, "prediction_type"):
shared.state.prediction_type = model.scheduler.config.prediction_type
shared.log.debug(f'Sampler: "Default" cls={model.scheduler.__class__.__name__} config={config}')
return model.scheduler
def create_sampler(name, model):
if name is None or name == 'None':
return model.scheduler if model is not None else None
# create default scheduler if it doesnt exist
if model is not None:
if getattr(model, "default_scheduler", None) is None:
model.default_scheduler = copy.deepcopy(model.scheduler)
requires_flow = ('FlowMatch' in model.default_scheduler.__class__.__name__) or (getattr(model.default_scheduler.config, 'prediction_type', None) == 'flow_prediction')
else:
requires_flow = False
# sdxl allows both flow and discrete samplers
is_flexible = (model is not None) and ('XL' in model.__class__.__name__)
# restore default scheduler
if name == 'Default' and hasattr(model, 'scheduler'):
return restore_default(model)
# create sampler
config = find_sampler_config(name)
if config is None or config.constructor is None:
return restore_default(model)
sampler = config.constructor(model)
if sampler.sampler is None:
return restore_default(model)
is_flow = ('FlowMatch' in sampler.sampler.__class__.__name__) or (getattr(sampler.sampler.config, 'prediction_type', None) == 'flow_prediction')
# validate sampler prediction type
if (model is not None) and is_flexible:
pass
elif (model is not None) and (is_flow and not requires_flow):
shared.log.error(f'Sampler: "{sampler.name}" cls={sampler.sampler.__class__.__name__} pipe={model.__class__.__name__} model requires sampler with discrete prediction')
return restore_default(model)
elif (model is not None) and (not is_flow and requires_flow):
shared.log.error(f'Sampler: "{sampler.name}" cls={sampler.sampler.__class__.__name__} pipe={model.__class__.__name__} model requires sampler with flow prediction')
return restore_default(model)
# assign sampler
if model is not None:
if sampler is None or sampler.sampler is None:
model.scheduler = copy.deepcopy(model.default_scheduler)
else:
model.scheduler = sampler.sampler
if not hasattr(model, 'scheduler_config'):
model.scheduler_config = sampler.sampler.config.copy() if hasattr(sampler, 'sampler') and hasattr(sampler.sampler, 'config') else {}
if hasattr(model, "prior_pipe") and hasattr(model.prior_pipe, "scheduler"):
model.prior_pipe.scheduler = sampler.sampler
model.prior_pipe.scheduler.config.clip_sample = False
if "flow" in model.scheduler.__class__.__name__.lower():
shared.state.prediction_type = "flow_prediction"
elif hasattr(model.scheduler, "config") and hasattr(model.scheduler.config, "prediction_type"):
shared.state.prediction_type = model.scheduler.config.prediction_type
clean_config = {k: v for k, v in model.scheduler.config.items() if not k.startswith('_') and v is not None and v is not False}
cls = model.scheduler.__class__.__name__
else:
clean_config = {k: v for k, v in sampler.sampler.config.items() if not k.startswith('_') and v is not None and v is not False}
cls = sampler.sampler.__class__.__name__
name = sampler.name if sampler is not None and sampler.sampler is not None else 'Default'
shared.log.debug(f'Sampler: "{name}" class={cls} config={clean_config}')
return sampler.sampler
def set_samplers():
global samplers # pylint: disable=global-statement
global samplers_for_img2img # pylint: disable=global-statement
samplers = all_samplers
# samplers_for_img2img = [x for x in samplers if x.name != "PLMS"]
samplers_for_img2img = samplers
samplers_map.clear()
for sampler in all_samplers:
samplers_map[sampler.name.lower()] = sampler.name
for alias in sampler.aliases:
samplers_map[alias.lower()] = sampler.name