1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/sd_models_compile.py
2025-09-03 18:51:21 +03:00

331 lines
15 KiB
Python

import time
import logging
import torch
from modules import shared, devices, sd_models, errors
from installer import setup_logging
#Used by OpenVINO, can be used with TensorRT or Olive
class CompiledModelState:
def __init__(self):
self.is_compiled = False
self.model_hash_str = ""
self.first_pass = True
self.first_pass_refiner = True
self.first_pass_vae = True
self.height = 512
self.width = 512
self.batch_size = 1
self.partition_id = 0
self.cn_model = []
self.lora_model = []
self.compiled_cache = {}
self.req_cache = {}
self.partitioned_modules = {}
deepcache_worker = None
def ipex_optimize(sd_model, apply_to_components=True, op="Model"):
try:
t0 = time.time()
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
def ipex_optimize_model(model, op=None, sd_model=None): # pylint: disable=unused-argument
model.eval()
model.training = False
if model.device.type != "meta":
return_device = model.device
model = ipex.optimize(model.to(devices.device),
dtype=devices.dtype,
inplace=True,
weights_prepack=False
).to(return_device) # pylint: disable=attribute-defined-outside-init
else:
model = ipex.optimize(model,
dtype=devices.dtype,
inplace=True,
weights_prepack=False
) # pylint: disable=attribute-defined-outside-init
devices.torch_gc()
return model
if apply_to_components:
sd_model = sd_models.apply_function_to_model(sd_model, ipex_optimize_model, shared.opts.ipex_optimize, op="ipex")
else:
sd_model = ipex_optimize_model(sd_model, op=op)
t1 = time.time()
shared.log.info(f"{op} IPEX Optimize: time={t1-t0:.2f}")
except Exception as e:
shared.log.warning(f"{op} IPEX Optimize: error: {e}")
return sd_model
def optimize_openvino(sd_model, clear_cache=True):
try:
from modules.intel.openvino import openvino_fx # pylint: disable=unused-import
if clear_cache and shared.compiled_model_state is not None:
shared.compiled_model_state.compiled_cache.clear()
shared.compiled_model_state.req_cache.clear()
shared.compiled_model_state.partitioned_modules.clear()
if clear_cache or shared.compiled_model_state is None:
shared.compiled_model_state = CompiledModelState()
shared.compiled_model_state.is_compiled = True
shared.compiled_model_state.first_pass = 'precompile' not in shared.opts.cuda_compile_options
shared.compiled_model_state.first_pass_vae = 'precompile' not in shared.opts.cuda_compile_options
shared.compiled_model_state.first_pass_refiner = 'precompile' not in shared.opts.cuda_compile_options
sd_models.set_accelerate(sd_model)
except Exception as e:
shared.log.warning(f"Model compile: task=OpenVINO: {e}")
return sd_model
def compile_onediff(sd_model):
try:
from onediff.infer_compiler import oneflow_compile
except Exception as e:
shared.log.warning(f"Model compile: task=onediff {e}")
return sd_model
try:
t0 = time.time()
# For some reason compiling the text_encoder, when it is used by
# the 'compel' package which sdnext uses, it becomes 100 times
# slower as if it is recompiling every time.
#sd_model.text_encoder = oneflow_compile(sd_model.text_encoder)
#if hasattr(sd_model, 'text_endcoder_2'):
# sd_model.text_encoder_2 = oneflow_compile(sd_model.text_encoder_2)
sd_model.unet = oneflow_compile(sd_model.unet)
sd_model.vae.encoder = oneflow_compile(sd_model.vae.encoder)
sd_model.vae.decoder = oneflow_compile(sd_model.vae.decoder)
# How are Loras, Adaptors, and other things compiled
# DW: I'm unclear whether this is also a problem with onediff
# as it was for sfast.
setup_logging() # compile messes with logging so reset is needed
if 'precompile' in shared.opts.cuda_compile_options:
shared.log.debug("Model compile: task=onediff precompile")
sd_model("dummy prompt")
t1 = time.time()
shared.log.info(f"Model compile: task=onediff time={t1-t0:.2f}")
except Exception as e:
shared.log.info(f"Model compile: task=onediff {e}")
return sd_model
def compile_stablefast(sd_model):
try:
import sfast.compilers.stable_diffusion_pipeline_compiler as sf
except Exception as e:
shared.log.warning(f'Model compile: task=stablefast: {e}')
return sd_model
config = sf.CompilationConfig.Default()
try:
import xformers # pylint: disable=unused-import
config.enable_xformers = True
except Exception:
pass
try:
import triton # pylint: disable=unused-import
config.enable_triton = True
except Exception:
pass
import warnings
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
config.enable_cuda_graph = 'fullgraph' in shared.opts.cuda_compile_options
config.enable_jit_freeze = shared.opts.diffusers_eval
config.memory_format = torch.channels_last if shared.opts.opt_channelslast else torch.contiguous_format
# config.trace_scheduler = False
# config.enable_cnn_optimization
# config.prefer_lowp_gemm
try:
t0 = time.time()
sd_model = sf.compile(sd_model, config)
sd_model.sfast = True
setup_logging() # compile messes with logging so reset is needed
if 'precompile' in shared.opts.cuda_compile_options:
shared.log.debug("Model compile: task=stablefast precompile")
sd_model("dummy prompt")
t1 = time.time()
shared.log.info(f"Model compile: task=stablefast config={config.__dict__} time={t1-t0:.2f}")
except Exception as e:
shared.log.info(f"Model compile: task=stablefast {e}")
return sd_model
def compile_torch(sd_model, apply_to_components=True, op="Model"):
try:
t0 = time.time()
import torch._dynamo # pylint: disable=unused-import,redefined-outer-name
torch._dynamo.reset() # pylint: disable=protected-access
shared.log.debug(f"{op} compile: task=torch backends={torch._dynamo.list_backends()}") # pylint: disable=protected-access
def torch_compile_model(model, op=None, sd_model=None): # pylint: disable=unused-argument
if hasattr(model, 'compile_repeated_blocks') and 'repeated' in shared.opts.cuda_compile_options:
model.compile_repeated_blocks(
mode=shared.opts.cuda_compile_mode,
backend=shared.opts.cuda_compile_backend,
fullgraph='fullgraph' in shared.opts.cuda_compile_options,
dynamic='dynamic' in shared.opts.cuda_compile_options,
)
elif hasattr(model, 'device') and model.device.type != "meta":
return_device = model.device
model = torch.compile(model.to(devices.device),
mode=shared.opts.cuda_compile_mode,
backend=shared.opts.cuda_compile_backend,
fullgraph='fullgraph' in shared.opts.cuda_compile_options,
dynamic='dynamic' in shared.opts.cuda_compile_options,
).to(return_device)
else:
model = torch.compile(model,
mode=shared.opts.cuda_compile_mode,
backend=shared.opts.cuda_compile_backend,
fullgraph='fullgraph' in shared.opts.cuda_compile_options,
dynamic='dynamic' in shared.opts.cuda_compile_options,
)
devices.torch_gc()
return model
if shared.opts.cuda_compile_backend == "openvino_fx":
sd_model = optimize_openvino(sd_model, clear_cache=apply_to_components)
elif shared.opts.cuda_compile_backend == "olive-ai":
if shared.compiled_model_state is None:
shared.compiled_model_state = CompiledModelState()
return sd_model
elif shared.opts.cuda_compile_backend == "migraphx":
import torch_migraphx # pylint: disable=unused-import
log_level = logging.WARNING if 'verbose' in shared.opts.cuda_compile_options else logging.CRITICAL # pylint: disable=protected-access
if hasattr(torch, '_logging'):
torch._logging.set_logs(dynamo=log_level, aot=log_level, inductor=log_level) # pylint: disable=protected-access
torch._dynamo.config.verbose = 'verbose' in shared.opts.cuda_compile_options # pylint: disable=protected-access
torch._dynamo.config.suppress_errors = 'verbose' not in shared.opts.cuda_compile_options # pylint: disable=protected-access
try:
torch._inductor.config.conv_1x1_as_mm = True # pylint: disable=protected-access
torch._inductor.config.coordinate_descent_tuning = True # pylint: disable=protected-access
torch._inductor.config.epilogue_fusion = False # pylint: disable=protected-access
torch._inductor.config.coordinate_descent_check_all_directions = True # pylint: disable=protected-access
torch._inductor.config.use_mixed_mm = True # pylint: disable=protected-access
# torch._inductor.config.force_fuse_int_mm_with_mul = True # pylint: disable=protected-access
except Exception as e:
shared.log.error(f"{op} compile: torch inductor config error: {e}")
if apply_to_components:
sd_model = sd_models.apply_function_to_model(sd_model, function=torch_compile_model, options=shared.opts.cuda_compile, op="compile")
else:
sd_model = torch_compile_model(sd_model)
setup_logging() # compile messes with logging so reset is needed
if apply_to_components and 'precompile' in shared.opts.cuda_compile_options:
try:
shared.log.debug(f"{op} compile: task=torch precompile")
sd_model("dummy prompt")
except Exception:
pass
t1 = time.time()
shared.log.info(f"{op} compile: task=torch time={t1-t0:.2f}")
except Exception as e:
shared.log.warning(f"{op} compile: task=torch {e}")
errors.display(e, 'Compile')
return sd_model
def check_deepcache(enable: bool):
if deepcache_worker is not None:
if enable:
deepcache_worker.enable()
else:
deepcache_worker.disable()
def compile_deepcache(sd_model):
global deepcache_worker # pylint: disable=global-statement
if not hasattr(sd_model, 'unet'):
shared.log.warning(f'Model compile: task=deepcache pipeline={sd_model.__class__} not supported')
return sd_model
try:
from DeepCache import DeepCacheSDHelper
except Exception as e:
shared.log.warning(f'Model compile: task=deepcache {e}')
return sd_model
t0 = time.time()
check_deepcache(False)
deepcache_worker = DeepCacheSDHelper(pipe=sd_model)
deepcache_worker.set_params(cache_interval=shared.opts.deep_cache_interval, cache_branch_id=0)
t1 = time.time()
shared.log.info(f"Model compile: task=deepcache config={deepcache_worker.params} time={t1-t0:.2f}")
# config={'cache_interval': 3, 'cache_layer_id': 0, 'cache_block_id': 0, 'skip_mode': 'uniform'} time=0.00
return sd_model
def compile_diffusers(sd_model, apply_to_components=True, op="Model"):
if shared.opts.cuda_compile_backend == 'none':
shared.log.warning(f'{op} compile enabled but no backend specified')
return sd_model
shared.log.info(f"{op} compile: pipeline={sd_model.__class__.__name__} mode={shared.opts.cuda_compile_mode} backend={shared.opts.cuda_compile_backend} options={shared.opts.cuda_compile_options} compile={shared.opts.cuda_compile}")
if shared.opts.cuda_compile_backend == 'onediff':
sd_model = compile_onediff(sd_model)
elif shared.opts.cuda_compile_backend == 'stable-fast':
sd_model = compile_stablefast(sd_model)
elif shared.opts.cuda_compile_backend == 'deep-cache':
sd_model = compile_deepcache(sd_model)
else:
check_deepcache(False)
sd_model = compile_torch(sd_model, apply_to_components=apply_to_components, op=op)
return sd_model
def openvino_recompile_model(p, hires=False, refiner=False): # recompile if a parameter changes # pylint: disable=unused-argument
if shared.opts.cuda_compile_backend == "openvino_fx" and 'Model' in shared.opts.cuda_compile:
compile_height = p.height if not hires and hasattr(p, 'height') else p.hr_upscale_to_y
compile_width = p.width if not hires and hasattr(p, 'width') else p.hr_upscale_to_x
"""
if shared.compiled_model_state is None:
openvino_first_pass = True
else:
if refiner:
openvino_first_pass = shared.compiled_model_state.first_pass_refiner
else:
openvino_first_pass = shared.compiled_model_state.first_pass
if (shared.compiled_model_state is None or
(
not openvino_first_pass
and (
shared.compiled_model_state.height != compile_height
or shared.compiled_model_state.width != compile_width
or shared.compiled_model_state.batch_size != p.batch_size
)
)):
if refiner:
shared.log.info("OpenVINO: Recompiling refiner")
sd_models.unload_model_weights(op='refiner')
sd_models.reload_model_weights(op='refiner')
else:
shared.log.info("OpenVINO: Recompiling base model")
sd_models.unload_model_weights(op='model')
sd_models.reload_model_weights(op='model')
"""
if shared.compiled_model_state is None:
shared.log.warning("OpenVINO: Compile Model State is not found, model is not compiled!")
else:
shared.compiled_model_state.height = compile_height
shared.compiled_model_state.width = compile_width
shared.compiled_model_state.batch_size = p.batch_size
def openvino_post_compile(op="base"): # delete unet after OpenVINO compile
if shared.opts.cuda_compile_backend == "openvino_fx" and 'Model' in shared.opts.cuda_compile:
if shared.compiled_model_state.first_pass and op == "base":
shared.compiled_model_state.first_pass = False
if not shared.opts.openvino_disable_memory_cleanup and hasattr(shared.sd_model, "unet"):
shared.sd_model.unet.apply(sd_models.convert_to_faketensors)
devices.torch_gc(force=True)
if shared.compiled_model_state.first_pass_refiner and op == "refiner":
shared.compiled_model_state.first_pass_refiner = False
if not shared.opts.openvino_disable_memory_cleanup and hasattr(shared.sd_refiner, "unet"):
shared.sd_refiner.unet.apply(sd_models.convert_to_faketensors)
devices.torch_gc(force=True)