mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
216 lines
9.9 KiB
Python
216 lines
9.9 KiB
Python
# This file is a modified version of the original file from the HuggingFace/diffusers library.
|
|
|
|
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional, Tuple, Union
|
|
import torch
|
|
from diffusers.configuration_utils import register_to_config
|
|
from diffusers.utils import BaseOutput, logging
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
|
from . import ras_manager
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
@dataclass
|
|
class RASFlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
|
"""
|
|
Output class for the scheduler's `step` function output.
|
|
|
|
Args:
|
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
|
denoising loop.
|
|
"""
|
|
|
|
prev_sample: torch.FloatTensor
|
|
|
|
|
|
class RASFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
|
"""
|
|
RAS Euler scheduler.
|
|
|
|
This model inherits from ['FlowMatchEulerDiscreteScheduler']. Check the superclass documentation for the generic
|
|
methods the library implements for all schedulers such as loading and saving.
|
|
|
|
Args:
|
|
num_train_timesteps (`int`, defaults to 1000):
|
|
The number of diffusion steps to train the model.
|
|
timestep_spacing (`str`, defaults to `"linspace"`):
|
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
|
shift (`float`, defaults to 1.0):
|
|
The shift value for the timestep schedule.
|
|
"""
|
|
|
|
_compatibles = []
|
|
order = 1
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_train_timesteps: int = 1000,
|
|
shift: float = 1.0,
|
|
use_dynamic_shifting=False,
|
|
base_shift: Optional[float] = 0.5,
|
|
max_shift: Optional[float] = 1.15,
|
|
base_image_seq_len: Optional[int] = 256,
|
|
max_image_seq_len: Optional[int] = 4096,
|
|
invert_sigmas: bool = False,
|
|
):
|
|
super().__init__(num_train_timesteps=num_train_timesteps,
|
|
shift=shift,
|
|
use_dynamic_shifting=use_dynamic_shifting,
|
|
base_shift=base_shift,
|
|
max_shift=max_shift,
|
|
base_image_seq_len=base_image_seq_len,
|
|
max_image_seq_len=max_image_seq_len,
|
|
# invert_sigmas=invert_sigmas
|
|
)
|
|
self.drop_cnt = None
|
|
|
|
|
|
def _init_ras_config(self, latents):
|
|
self.drop_cnt = torch.zeros((latents.shape[-2] // ras_manager.MANAGER.patch_size * latents.shape[-1] // ras_manager.MANAGER.patch_size), device=latents.device) - len(self.sigmas)
|
|
|
|
def extract_latents_index_from_patched_latents_index(self, indices, height):
|
|
flattened_indices = indices // (height // ras_manager.MANAGER.patch_size) * ras_manager.MANAGER.patch_size * height + indices % (height // ras_manager.MANAGER.patch_size) *ras_manager.MANAGER.patch_size
|
|
flattened_indices = (flattened_indices[:, None] + torch.tensor([0, height + 1, 1, height], dtype=indices.dtype, device=indices.device)[None, :]).flatten()
|
|
return flattened_indices
|
|
|
|
def ras_selection(self, sample, diff, height, width):
|
|
diff = diff.squeeze(0).permute(1, 2, 0)
|
|
# calculate the metric for each patch
|
|
if ras_manager.MANAGER.metric == "std":
|
|
metric = torch.std(diff, dim=-1).view(height // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size, width // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size).transpose(-2, -3).mean(-1).mean(-1).view(-1)
|
|
elif ras_manager.MANAGER.metric == "l2norm":
|
|
metric = torch.norm(diff, p=2, dim=-1).view(height // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size, width // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size).transpose(-2, -3).mean(-1).mean(-1).view(-1)
|
|
else:
|
|
raise ValueError("Unknown metric")
|
|
|
|
# scale the metric with the drop count to avoid starvation
|
|
metric *= torch.exp(ras_manager.MANAGER.starvation_scale * self.drop_cnt)
|
|
current_skip_num = ras_manager.MANAGER.skip_token_num_list[self._step_index + 1]
|
|
assert ras_manager.MANAGER.high_ratio >= 0 and ras_manager.MANAGER.high_ratio <= 1, "High ratio should be in the range of [0, 1]"
|
|
indices = torch.sort(metric, dim=0, descending=False).indices
|
|
low_bar = int(current_skip_num * (1 - ras_manager.MANAGER.high_ratio))
|
|
high_bar = int(current_skip_num * ras_manager.MANAGER.high_ratio)
|
|
cached_patchified_indices = torch.cat([indices[:low_bar], indices[-high_bar:]])
|
|
other_patchified_indices = indices[low_bar:-high_bar]
|
|
self.drop_cnt[cached_patchified_indices] += 1
|
|
latent_cached_indices = self.extract_latents_index_from_patched_latents_index(cached_patchified_indices, height)
|
|
|
|
return latent_cached_indices, other_patchified_indices
|
|
|
|
|
|
def step(
|
|
self,
|
|
model_output: torch.FloatTensor,
|
|
timestep: Union[float, torch.FloatTensor],
|
|
sample: torch.FloatTensor,
|
|
s_churn: float = 0.0,
|
|
s_tmin: float = 0.0,
|
|
s_tmax: float = float("inf"),
|
|
s_noise: float = 1.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[RASFlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
|
"""
|
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
|
process from the learned model outputs (most often the predicted noise).
|
|
|
|
Args:
|
|
model_output (`torch.FloatTensor`):
|
|
The direct output from learned diffusion model.
|
|
timestep (`float`):
|
|
The current discrete timestep in the diffusion chain.
|
|
sample (`torch.FloatTensor`):
|
|
A current instance of a sample created by the diffusion process.
|
|
s_churn (`float`):
|
|
s_tmin (`float`):
|
|
s_tmax (`float`):
|
|
s_noise (`float`, defaults to 1.0):
|
|
Scaling factor for noise added to the sample.
|
|
generator (`torch.Generator`, *optional*):
|
|
A random number generator.
|
|
return_dict (`bool`):
|
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
|
tuple.
|
|
|
|
Returns:
|
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
|
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
|
"""
|
|
if (
|
|
isinstance(timestep, int)
|
|
or isinstance(timestep, torch.IntTensor)
|
|
or isinstance(timestep, torch.LongTensor)
|
|
):
|
|
raise ValueError(
|
|
(
|
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
|
" one of the `scheduler.timesteps` as a timestep."
|
|
),
|
|
)
|
|
|
|
if self.step_index is None:
|
|
self._init_step_index(timestep)
|
|
|
|
if self.drop_cnt is None or self._step_index == 0:
|
|
self._init_ras_config(sample)
|
|
|
|
if self._step_index == 0:
|
|
ras_manager.MANAGER.reset_cache()
|
|
|
|
latent_dim, height, width = sample.shape[-3:]
|
|
|
|
assert ras_manager.MANAGER.sample_ratio > 0.0 and ras_manager.MANAGER.sample_ratio <= 1.0
|
|
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
|
|
model_output.squeeze(0).view(latent_dim, -1)[:, ras_manager.MANAGER.cached_index] = ras_manager.MANAGER.cached_scaled_noise
|
|
model_output = model_output.transpose(0, 1).view(latent_dim, height, width).unsqueeze(0)
|
|
|
|
# Upcast to avoid precision issues when computing prev_sample
|
|
sample = sample.to(torch.float32)
|
|
|
|
sigma = self.sigmas[self.step_index]
|
|
sigma_next = self.sigmas[self.step_index + 1]
|
|
|
|
diff = (sigma_next - sigma) * model_output
|
|
|
|
prev_sample = sample + diff
|
|
# Cast sample back to model compatible dtype
|
|
prev_sample = prev_sample.to(model_output.dtype)
|
|
|
|
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_next_RAS_step:
|
|
latent_cached_indices, other_patchified_indices = self.ras_selection(sample, diff, height, width)
|
|
ras_manager.MANAGER.cached_scaled_noise = model_output.squeeze(0).view(latent_dim, -1)[:, latent_cached_indices]
|
|
ras_manager.MANAGER.cached_index = latent_cached_indices
|
|
ras_manager.MANAGER.other_patchified_index = other_patchified_indices
|
|
|
|
# upon completion increase step index by one
|
|
self._step_index += 1
|
|
ras_manager.MANAGER.increase_step()
|
|
if ras_manager.MANAGER.current_step >= ras_manager.MANAGER.num_steps:
|
|
ras_manager.MANAGER.reset_cache()
|
|
|
|
if not return_dict:
|
|
return (prev_sample,)
|
|
|
|
return RASFlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
|