1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/ras/ras_scheduler.py
Vladimir Mandic 6cf445d317 add ras-sd35 experimental
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-02-18 18:47:42 -05:00

216 lines
9.9 KiB
Python

# This file is a modified version of the original file from the HuggingFace/diffusers library.
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from diffusers.configuration_utils import register_to_config
from diffusers.utils import BaseOutput, logging
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from . import ras_manager
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class RASFlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class RASFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
"""
RAS Euler scheduler.
This model inherits from ['FlowMatchEulerDiscreteScheduler']. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,
invert_sigmas: bool = False,
):
super().__init__(num_train_timesteps=num_train_timesteps,
shift=shift,
use_dynamic_shifting=use_dynamic_shifting,
base_shift=base_shift,
max_shift=max_shift,
base_image_seq_len=base_image_seq_len,
max_image_seq_len=max_image_seq_len,
# invert_sigmas=invert_sigmas
)
self.drop_cnt = None
def _init_ras_config(self, latents):
self.drop_cnt = torch.zeros((latents.shape[-2] // ras_manager.MANAGER.patch_size * latents.shape[-1] // ras_manager.MANAGER.patch_size), device=latents.device) - len(self.sigmas)
def extract_latents_index_from_patched_latents_index(self, indices, height):
flattened_indices = indices // (height // ras_manager.MANAGER.patch_size) * ras_manager.MANAGER.patch_size * height + indices % (height // ras_manager.MANAGER.patch_size) *ras_manager.MANAGER.patch_size
flattened_indices = (flattened_indices[:, None] + torch.tensor([0, height + 1, 1, height], dtype=indices.dtype, device=indices.device)[None, :]).flatten()
return flattened_indices
def ras_selection(self, sample, diff, height, width):
diff = diff.squeeze(0).permute(1, 2, 0)
# calculate the metric for each patch
if ras_manager.MANAGER.metric == "std":
metric = torch.std(diff, dim=-1).view(height // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size, width // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size).transpose(-2, -3).mean(-1).mean(-1).view(-1)
elif ras_manager.MANAGER.metric == "l2norm":
metric = torch.norm(diff, p=2, dim=-1).view(height // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size, width // ras_manager.MANAGER.patch_size, ras_manager.MANAGER.patch_size).transpose(-2, -3).mean(-1).mean(-1).view(-1)
else:
raise ValueError("Unknown metric")
# scale the metric with the drop count to avoid starvation
metric *= torch.exp(ras_manager.MANAGER.starvation_scale * self.drop_cnt)
current_skip_num = ras_manager.MANAGER.skip_token_num_list[self._step_index + 1]
assert ras_manager.MANAGER.high_ratio >= 0 and ras_manager.MANAGER.high_ratio <= 1, "High ratio should be in the range of [0, 1]"
indices = torch.sort(metric, dim=0, descending=False).indices
low_bar = int(current_skip_num * (1 - ras_manager.MANAGER.high_ratio))
high_bar = int(current_skip_num * ras_manager.MANAGER.high_ratio)
cached_patchified_indices = torch.cat([indices[:low_bar], indices[-high_bar:]])
other_patchified_indices = indices[low_bar:-high_bar]
self.drop_cnt[cached_patchified_indices] += 1
latent_cached_indices = self.extract_latents_index_from_patched_latents_index(cached_patchified_indices, height)
return latent_cached_indices, other_patchified_indices
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[RASFlowMatchEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
if self.drop_cnt is None or self._step_index == 0:
self._init_ras_config(sample)
if self._step_index == 0:
ras_manager.MANAGER.reset_cache()
latent_dim, height, width = sample.shape[-3:]
assert ras_manager.MANAGER.sample_ratio > 0.0 and ras_manager.MANAGER.sample_ratio <= 1.0
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_RAS_step:
model_output.squeeze(0).view(latent_dim, -1)[:, ras_manager.MANAGER.cached_index] = ras_manager.MANAGER.cached_scaled_noise
model_output = model_output.transpose(0, 1).view(latent_dim, height, width).unsqueeze(0)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
diff = (sigma_next - sigma) * model_output
prev_sample = sample + diff
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
if ras_manager.MANAGER.sample_ratio < 1.0 and ras_manager.MANAGER.is_next_RAS_step:
latent_cached_indices, other_patchified_indices = self.ras_selection(sample, diff, height, width)
ras_manager.MANAGER.cached_scaled_noise = model_output.squeeze(0).view(latent_dim, -1)[:, latent_cached_indices]
ras_manager.MANAGER.cached_index = latent_cached_indices
ras_manager.MANAGER.other_patchified_index = other_patchified_indices
# upon completion increase step index by one
self._step_index += 1
ras_manager.MANAGER.increase_step()
if ras_manager.MANAGER.current_step >= ras_manager.MANAGER.num_steps:
ras_manager.MANAGER.reset_cache()
if not return_dict:
return (prev_sample,)
return RASFlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)