mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
146 lines
6.0 KiB
Python
146 lines
6.0 KiB
Python
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn
|
|
from modules.postprocess.swinir_model_arch import SwinIR as net
|
|
from modules.postprocess.swinir_model_arch_v2 import Swin2SR as net2
|
|
from modules import devices, script_callbacks, shared
|
|
from modules.upscaler import Upscaler, compile_upscaler
|
|
|
|
|
|
class UpscalerSwinIR(Upscaler):
|
|
def __init__(self, dirname):
|
|
self.name = "SwinIR"
|
|
self.user_path = dirname
|
|
super().__init__()
|
|
self.scalers = self.find_scalers()
|
|
self.models = {}
|
|
|
|
def load_model(self, path, scale=4):
|
|
info = self.find_model(path)
|
|
if info is None:
|
|
return
|
|
if self.models.get(info.local_data_path, None) is not None:
|
|
shared.log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}")
|
|
return self.models[info.local_data_path]
|
|
pretrained_model = torch.load(info.local_data_path)
|
|
model_v2 = net2(
|
|
upscale=scale,
|
|
in_chans=3,
|
|
img_size=64,
|
|
window_size=8,
|
|
img_range=1.0,
|
|
depths=[6, 6, 6, 6, 6, 6],
|
|
embed_dim=180,
|
|
num_heads=[6, 6, 6, 6, 6, 6],
|
|
mlp_ratio=2,
|
|
upsampler="nearest+conv",
|
|
resi_connection="1conv",
|
|
)
|
|
model_v1 = net(
|
|
upscale=scale,
|
|
in_chans=3,
|
|
img_size=64,
|
|
window_size=8,
|
|
img_range=1.0,
|
|
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
|
embed_dim=240,
|
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
|
mlp_ratio=2,
|
|
upsampler="nearest+conv",
|
|
resi_connection="3conv",
|
|
)
|
|
for model in [model_v1, model_v2]:
|
|
for param in ["params_ema", "params", None]:
|
|
try:
|
|
if param is not None:
|
|
model.load_state_dict(pretrained_model[param], strict=True)
|
|
else:
|
|
model.load_state_dict(pretrained_model, strict=True)
|
|
shared.log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path} param={param}")
|
|
model = compile_upscaler(model)
|
|
self.models[info.local_data_path] = model
|
|
return model
|
|
except Exception as e:
|
|
shared.log.error(f'Upscaler invalid parameters: type={self.name} model={info.local_data_path} {e}')
|
|
return model
|
|
|
|
def do_upscale(self, img, selected_model):
|
|
model = self.load_model(selected_model)
|
|
if model is None:
|
|
return img
|
|
model = model.to(devices.device, dtype=devices.dtype)
|
|
img = upscale(img, model)
|
|
if shared.opts.upscaler_unload and selected_model in self.models:
|
|
del self.models[selected_model]
|
|
shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}")
|
|
devices.torch_gc(force=True)
|
|
return img
|
|
|
|
|
|
def upscale(
|
|
img,
|
|
model,
|
|
tile=None,
|
|
tile_overlap=None,
|
|
window_size=8,
|
|
scale=4,
|
|
):
|
|
tile = tile or shared.opts.upscaler_tile_size
|
|
tile_overlap = tile_overlap or shared.opts.upscaler_tile_overlap
|
|
img = np.array(img)
|
|
img = img[:, :, ::-1]
|
|
img = np.moveaxis(img, 2, 0) / 255
|
|
img = torch.from_numpy(img).float()
|
|
img = img.unsqueeze(0).to(devices.device, dtype=devices.dtype)
|
|
with torch.no_grad(), devices.autocast():
|
|
_, _, h_old, w_old = img.size()
|
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
|
output = inference(img, model, tile, tile_overlap, window_size, scale)
|
|
output = output[..., : h_old * scale, : w_old * scale]
|
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
if output.ndim == 3:
|
|
output = np.transpose(
|
|
output[[2, 1, 0], :, :], (1, 2, 0)
|
|
) # CHW-RGB to HCW-BGR
|
|
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
|
return Image.fromarray(output, "RGB")
|
|
|
|
|
|
def inference(img, model, tile, tile_overlap, window_size, scale):
|
|
# test the image tile by tile
|
|
b, c, h, w = img.size()
|
|
tile = min(tile, h, w)
|
|
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
|
sf = scale
|
|
stride = tile - tile_overlap
|
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=devices.device).type_as(img)
|
|
W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device)
|
|
|
|
with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=shared.console) as progress:
|
|
task = progress.add_task(description="Upscaling Initializing", total=len(h_idx_list) * len(w_idx_list))
|
|
for h_idx in h_idx_list:
|
|
if shared.state.interrupted:
|
|
break
|
|
for w_idx in w_idx_list:
|
|
if shared.state.interrupted or shared.state.skipped:
|
|
break
|
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
out_patch = model(in_patch)
|
|
out_patch_mask = torch.ones_like(out_patch)
|
|
|
|
E[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch)
|
|
W[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch_mask)
|
|
progress.update(task, advance=1, description="Upscaling")
|
|
output = E.div_(W)
|
|
return output
|