1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/postprocess/aurasr_model.py
Vladimir Mandic e8b5ea3847 major refactor: remove backend original
Signed-off-by: Vladimir Mandic <mandic00@live.com>
2025-07-05 13:16:46 -04:00

35 lines
1.2 KiB
Python

import torch
import diffusers
from PIL import Image
from modules import shared, devices
from modules.upscaler import Upscaler, UpscalerData
class UpscalerAuraSR(Upscaler):
def __init__(self, dirname): # pylint: disable=super-init-not-called
self.name = "AuraSR"
self.user_path = dirname
self.model = None
self.scalers = [
UpscalerData(name="Aura SR 4x", path="stabilityai/sd-x2-latent-upscaler", upscaler=self, model=None, scale=4),
]
def callback(self, _step: int, _timestep: int, _latents: torch.FloatTensor):
pass
def do_upscale(self, img: Image.Image, selected_model):
from modules.postprocess.aurasr_arch import AuraSR
if self.model is None:
self.model = AuraSR.from_pretrained("vladmandic/aurasr", use_safetensors=False)
devices.torch_gc()
self.model.upsampler.to(devices.device)
image = self.model.upscale_4x(img)
self.model.upsampler.to(devices.cpu)
if shared.opts.upscaler_unload:
self.model = None
shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}")
devices.torch_gc(force=True)
return image