1
0
mirror of https://github.com/vladmandic/sdnext.git synced 2026-01-27 15:02:48 +03:00
Files
sdnext/modules/masking.py
vladmandic cc0b0e8e3d cleanup todo
Signed-off-by: vladmandic <mandic00@live.com>
2026-01-19 11:10:05 +01:00

596 lines
25 KiB
Python

from types import SimpleNamespace
from typing import List
import os
import sys
import time
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter, ImageOps
from transformers import SamModel, SamImageProcessor, MaskGenerationPipeline
from modules import shared, errors, devices, paths, sd_models
from modules.memstats import memory_stats
debug = shared.log.trace if os.environ.get('SD_MASK_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: MASK')
def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
x1 = max(crop_left - pad, 0)
y1 = max(crop_top - pad, 0)
x2 = max(w - crop_right + pad, 0)
y2 = max(h - crop_bottom + pad, 0)
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
crop_region = (
int(min(x1, w)),
int(min(y1, h)),
int(min(x2, w)),
int(min(y2, h)),
)
debug(f'Mask crop: mask={w, h} region={crop_region} pad={pad}')
return crop_region
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2-x1))
x1 -= desired_width_diff//2
x2 += desired_width_diff - desired_width_diff//2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
crop_expand = (
int(x1),
int(y1),
int(x2),
int(y2),
)
debug(f'Mask expand: image={image_width, image_height} processing={processing_width, processing_height} region={crop_expand}')
return crop_expand
def fill(image, mask):
"""fills masked regions with colors from image using blur. Not extremely effective."""
image_mod = Image.new('RGBA', (image.width, image.height))
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
image_masked = image_masked.convert('RGBa')
for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
for _ in range(repeats):
image_mod.alpha_composite(blurred)
return image_mod.convert("RGB")
"""
[docs](https://huggingface.co/docs/transformers/v4.36.1/en/model_doc/sam#overview)
TODO: additional masking algorithms
- PerSAM
- REMBG
- https://huggingface.co/docs/transformers/tasks/semantic_segmentation
- transformers.pipeline.MaskGenerationPipeline: https://huggingface.co/models?pipeline_tag=mask-generation
- transformers.pipeline.ImageSegmentationPipeline: https://huggingface.co/models?pipeline_tag=image-segmentation
"""
MODELS = {
'None': None,
'Facebook SAM ViT Base': 'facebook/sam-vit-base',
'Facebook SAM ViT Large': 'facebook/sam-vit-large',
'Facebook SAM ViT Huge': 'facebook/sam-vit-huge',
'SlimSAM Uniform': 'Zigeng/SlimSAM-uniform-50',
'SlimSAM Uniform Tiny': 'Zigeng/SlimSAM-uniform-77',
'Rembg BEN2': 'ben2',
'Rembg Silueta': 'silueta',
'Rembg U2Net': 'u2net',
'Rembg U2Net human': 'u2net_human_seg',
'Rembg ISNet general': 'isnet-general-use',
'Rembg ISNet anime': 'isnet-anime',
}
COLORMAP = ['autumn', 'bone', 'jet', 'winter', 'rainbow', 'ocean', 'summer', 'spring', 'cool', 'hsv', 'pink', 'hot', 'parula', 'magma', 'inferno', 'plasma', 'viridis', 'cividis', 'twilight', 'shifted', 'turbo', 'deepgreen']
TYPES = ['None', 'Opaque', 'Binary', 'Masked', 'Grayscale', 'Color', 'Composite']
cache_dir = 'models/control/segment'
generator: MaskGenerationPipeline = None
busy = False
btn_mask = None
btn_lama = None
lama_model = None
controls = []
opts = SimpleNamespace(**{
'model': None,
'auto_mask': 'None',
'auto_segment': 'None',
'mask_only': False,
'mask_blur': 0,
'mask_erode': 0,
'mask_dilate': 0,
'seg_iou_thresh': 0.5,
'seg_score_thresh': 0.8,
'seg_nms_thresh': 0.5,
'seg_overlap_ratio': 0.3,
'seg_points_per_batch': 64,
'seg_topK': 50,
'seg_colormap': 'pink',
'preview_type': 'Composite',
'seg_live': True,
'weight_original': 0.5,
'weight_mask': 0.5,
'kernel_iterations': 1,
'invert': False
})
def init_model(selected_model: str):
global busy, generator # pylint: disable=global-statement
model_path = MODELS[selected_model]
if model_path is None: # none
if generator is not None:
shared.log.debug('Mask segment unloading model')
opts.model = None
generator = None
devices.torch_gc()
return selected_model
if 'Rembg' in selected_model: # rembg
opts.model = model_path
generator = None
devices.torch_gc()
return selected_model
if opts.model != selected_model or generator is None: # sam pipeline
busy = True
t0 = time.time()
shared.log.debug(f'Mask segment loading: model="{selected_model}" path={model_path}')
model = SamModel.from_pretrained(model_path, cache_dir=cache_dir).to(device=devices.device)
processor = SamImageProcessor.from_pretrained(model_path, cache_dir=cache_dir)
generator = MaskGenerationPipeline(
model=model,
image_processor=processor,
device=devices.device,
# output_bboxes_mask=False,
# output_rle_masks=False,
)
devices.torch_gc()
shared.log.debug(f'Mask segment loaded: model="{selected_model}" path={model_path} time={time.time()-t0:.2f}s')
opts.model = selected_model
busy = False
return selected_model
def run_segment(input_image: gr.Image, input_mask: np.ndarray):
outputs = None
with devices.inference_context():
try:
outputs = generator(
input_image,
points_per_batch=opts.seg_points_per_batch,
pred_iou_thresh=opts.seg_iou_thresh,
stability_score_thresh=opts.seg_score_thresh,
crops_nms_thresh=opts.seg_nms_thresh,
crop_overlap_ratio=opts.seg_overlap_ratio,
crops_n_layers=0,
crop_n_points_downscale_factor=1,
)
except Exception as e:
shared.log.error(f'Mask segment error: {e}')
errors.display(e, 'Mask segment')
return outputs
devices.torch_gc()
i = 1
if input_mask is None:
input_mask = np.zeros((input_image.height, input_image.width), dtype='uint8')
elif isinstance(input_mask, Image.Image):
input_mask = np.array(input_mask)
combined_mask = np.zeros(input_mask.shape, dtype='uint8')
input_mask_size = np.count_nonzero(input_mask)
debug(f'Segment SAM: {vars(opts)}')
for mask, score in zip(outputs['masks'], outputs['scores']):
mask = mask.astype('uint8')
mask_size = np.count_nonzero(mask)
if mask_size == 0:
continue
overlap = 0
if input_mask_size > 0:
if mask.shape != input_mask.shape:
mask = cv2.resize(mask, (input_mask.shape[1], input_mask.shape[0]), interpolation=cv2.INTER_LANCZOS4)
overlap = cv2.bitwise_and(mask, input_mask)
overlap = np.count_nonzero(overlap)
if overlap == 0:
continue
mask = (opts.seg_topK + 1 - i) * mask * (255 // opts.seg_topK) # set grayscale intensity so we can recolor
combined_mask = combined_mask + mask
debug(f'Segment mask: i={i} size={input_image.width}x{input_image.height} masked={mask_size}px overlap={overlap} score={score:.2f}')
i += 1
if i > opts.seg_topK:
break
return combined_mask
def run_rembg(input_image: Image, input_mask: np.ndarray):
try:
import rembg
except Exception as e:
shared.log.error(f'Mask Rembg load failed: {e}')
return input_mask
if "U2NET_HOME" not in os.environ:
os.environ["U2NET_HOME"] = os.path.join(paths.models_path, "Rembg")
if opts.model == 'ben2':
from modules import ben2
args = {
'image': input_image,
'refine': True,
}
mask = ben2.remove(**args)
_r, _g, _b, alpha = mask.split()
mask = alpha
else:
args = {
'data': input_image,
'only_mask': True,
'post_process_mask': False,
'bgcolor': None,
'alpha_matting': False,
'alpha_matting_foreground_threshold': 240,
'alpha_matting_background_threshold': 10,
'alpha_matting_erode_size': int(opts.mask_erode * 40),
'session': rembg.new_session(opts.model),
}
mask = rembg.remove(**args)
mask = np.array(mask)
if input_mask is None:
input_mask = np.zeros(mask.shape, dtype='uint8')
elif isinstance(input_mask, Image.Image):
input_mask = np.array(input_mask)
binary_input = cv2.threshold(input_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
binary_output = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
if binary_input.shape != binary_output.shape:
binary_output = cv2.resize(binary_output, binary_input.shape[:2], interpolation=cv2.INTER_LANCZOS4)
binary_overlap = cv2.bitwise_and(binary_input, binary_output)
input_size = np.count_nonzero(binary_input)
overlap_size = np.count_nonzero(binary_overlap)
debug(f'Segment Rembg: {args} overlap={overlap_size}')
if input_size > 0 and overlap_size == 0:
mask = np.invert(mask)
return mask
def get_mask(input_image: gr.Image, input_mask: gr.Image):
debug('Run auto-mask') # pylint: disable=protected-access
t0 = time.time()
if input_mask is not None:
output_mask = np.array(input_mask)
if len(output_mask.shape) > 2:
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
binary_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
mask_size = np.count_nonzero(binary_mask)
else:
output_mask = None
mask_size = 0
if mask_size == 0 and opts.auto_mask != 'None': # mask_size == 0
output_mask = np.array(input_image)
if opts.auto_mask == 'Threshold':
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
elif opts.auto_mask == 'Edge':
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# output_mask = cv2.Canny(output_mask, 50, 150) # run either canny or threshold before contouring
contours, _hierarchy = cv2.findContours(output_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True) # sort contours by area with largest first
contours = contours[:opts.seg_topK] # limit to top K contours
output_mask = np.zeros(output_mask.shape, dtype='uint8')
largest_size = cv2.contourArea(contours[0]) if len(contours) > 0 else 0
for i, contour in enumerate(contours):
area_size = cv2.contourArea(contour)
luminance = int(255.0 * area_size / largest_size)
if luminance < 1:
break
cv2.drawContours(output_mask, contours, i, (luminance), -1)
elif opts.auto_mask == 'Grayscale':
lab_image = cv2.cvtColor(output_mask, cv2.COLOR_RGB2LAB)
l_channel, a, b = cv2.split(lab_image)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # applying CLAHE to L-channel
cl = clahe.apply(l_channel)
lab_image = cv2.merge((cl, a, b)) # merge the CLAHE enhanced L-channel with the a and b channel
lab_image = cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
output_mask = cv2.cvtColor(lab_image, cv2.COLOR_RGB2GRAY)
t1 = time.time()
debug(f'Segment auto-mask: mode={opts.auto_mask} time={t1-t0:.2f}')
return output_mask
else: # no mask or empty mask and no auto-mask
return output_mask
def outpaint(input_image: Image.Image, outpaint_type: str = 'Edge'):
fn = f'{sys._getframe(2).f_code.co_name}:{sys._getframe(1).f_code.co_name}' # pylint: disable=protected-access
debug(f'Run outpaint: fn={fn}') # pylint: disable=protected-access
image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
h0, w0 = image.shape[:2]
empty = (image == 0).all(axis=2) # pylint: disable=no-member
y0, x0 = np.where(~empty) # non empty
x1, x2 = min(x0), max(x0)
y1, y2 = min(y0), max(y0)
cropped = image[y1:y2, x1:x2]
mask = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_CONSTANT, value=(0, 0, 0))
mask = cv2.resize(mask, (w0, h0))
mask = cv2.cvtColor(np.array(mask), cv2.COLOR_BGR2GRAY)
mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
if outpaint_type == 'Edge':
bordered = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_REPLICATE)
bordered = cv2.resize(bordered, (w0, h0))
image = bordered
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
mask = Image.fromarray(mask)
return image, mask
def run_mask(input_image: Image.Image, input_mask: Image.Image = None, return_type: str = None, mask_blur: int = None, mask_padding: int = None, invert=None):
if isinstance(input_image, list) and len(input_image) > 0:
input_image = input_image[0]
elif isinstance(input_image, dict):
input_mask = input_image.get('mask', None)
input_image = input_image.get('image', None)
elif isinstance(input_image, np.ndarray):
input_image = Image.fromarray(input_image)
elif isinstance(input_image, Image.Image):
pass
else:
return input_mask
fn = f'{sys._getframe(2).f_code.co_name}:{sys._getframe(1).f_code.co_name}' # pylint: disable=protected-access
debug(f'Run mask: fn={fn}') # pylint: disable=protected-access
debug(f'Run mask: opts={opts}') # pylint: disable=protected-access
size = min(input_image.width, input_image.height)
if invert is not None:
opts.invert = invert
# set legacy mask args
if mask_blur is not None or mask_padding is not None:
debug(f'Mask args legacy: blur={mask_blur} padding={mask_padding}')
if mask_blur is not None: # compatibility with old img2img values which uses px values
opts.mask_blur = round(4 * mask_blur / size, 3)
if mask_padding is not None: # compatibility with old img2img values which uses px values
size = min(input_image.width, input_image.height)
opts.mask_dilate = 4 * mask_padding / size
# optional auto-masking and auto-segmentation
mask = input_mask
if opts.auto_mask is not None and opts.auto_mask != 'None':
mask = get_mask(input_image, input_mask) # perform optional auto-masking
elif opts.auto_segment is not None and opts.auto_segment != 'None':
init_model(opts.auto_segment)
if generator is not None:
mask = run_segment(input_image, input_mask)
else:
mask = run_rembg(input_image, input_mask)
elif isinstance(mask, Image.Image):
mask = np.array(mask)
# early exit if no input mask or auto-mask
if mask is None:
return None
mask = cv2.resize(mask, (input_image.width, input_image.height), interpolation=cv2.INTER_LANCZOS4)
if opts.mask_erode > 0:
try:
kernel = np.ones((int(opts.mask_erode * size / 4) + 1, int(opts.mask_erode * size / 4) + 1), np.uint8)
mask = cv2.erode(mask, kernel, iterations=opts.kernel_iterations) # remove noise
debug(f'Mask erode={opts.mask_erode:.3f} kernel={kernel.shape} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask erode: {e}')
if opts.mask_dilate > 0:
try:
kernel = np.ones((int(opts.mask_dilate * size / 4) + 1, int(opts.mask_dilate * size / 4) + 1), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=opts.kernel_iterations) # expand area
debug(f'Mask dilate={opts.mask_dilate:.3f} kernel={kernel.shape} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask dilate: {e}')
if opts.mask_blur > 0:
try:
sigmax, sigmay = 1 + int(opts.mask_blur * size / 4), 1 + int(opts.mask_blur * size / 4)
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=sigmax, sigmaY=sigmay) # blur mask
debug(f'Mask blur={opts.mask_blur:.3f} x={sigmax} y={sigmay} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask blur: {e}')
if opts.invert:
mask = np.invert(mask)
return_type = return_type or opts.preview_type
if return_type == 'None':
return input_mask
elif return_type == 'Opaque':
binary_mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
return Image.fromarray(binary_mask)
elif return_type == 'Binary':
binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # otsu uses mean instead of threshold
return Image.fromarray(binary_mask)
elif return_type == 'Masked':
orig = np.array(input_image)
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
masked_image = cv2.bitwise_and(orig, mask)
return Image.fromarray(masked_image)
elif return_type == 'Grayscale':
return Image.fromarray(mask)
elif return_type == 'Color':
colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
return Image.fromarray(colored_mask)
elif return_type == 'Composite':
colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
orig = np.array(input_image)
combined_image = cv2.addWeighted(orig, opts.weight_original, colored_mask, opts.weight_mask, 0)
return Image.fromarray(combined_image)
else:
shared.log.error(f'Mask unknown return type: {return_type}')
return input_mask
def run_lama(input_image: gr.Image, input_mask: gr.Image = None):
global lama_model # pylint: disable=global-statement
if isinstance(input_image, dict):
input_mask = input_image.get('mask', None)
input_image = input_image.get('image', None)
if input_image is None:
return None
input_mask = run_mask(input_image, input_mask, return_type='Grayscale')
if lama_model is None:
import modules.lama
shared.log.debug(f'Mask LaMa loading: model={modules.lama.LAMA_MODEL_URL}')
lama_model = modules.lama.SimpleLama()
shared.log.debug(f'Mask LaMa loaded: {memory_stats()}')
sd_models.move_model(lama_model.model, devices.device)
result = lama_model(input_image, input_mask)
if shared.opts.control_move_processor:
lama_model.model.to('cpu')
return result
def run_mask_live(input_image: gr.Image):
global busy # pylint: disable=global-statement
if opts.seg_live:
if not busy:
busy = True
res = run_mask(input_image)
busy = False
return res
return None
def create_segment_ui():
def update_opts(*args):
opts.seg_live = args[0]
opts.mask_only = args[1]
opts.invert = args[2]
opts.mask_dilate = args[3]
opts.mask_erode = args[4]
opts.mask_blur = args[5]
opts.seg_score_thresh = args[6]
opts.auto_segment = args[7]
opts.auto_mask = args[8]
opts.seg_iou_thresh = args[9]
opts.seg_nms_thresh = args[10]
opts.preview_type = args[11]
opts.seg_colormap = args[12]
global btn_mask, btn_lama # pylint: disable=global-statement
with gr.Accordion(open=False, label="Mask", elem_id="control_mask", elem_classes=["small-accordion"]):
controls.clear()
with gr.Row():
controls.append(gr.Checkbox(label="Live update", value=False, visible=False, elem_id="control_mask_live_update"))
with gr.Row():
controls.append(gr.Checkbox(label="Inpaint masked only", value=False, elem_id="control_mask_only", ))
controls.append(gr.Checkbox(label="Invert mask", value=False, elem_id="control_mask_invert"))
with gr.Row():
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Dilate', value=0, elem_id="control_mask_dilate"))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Erode', value=0, elem_id="control_mask_erode"))
with gr.Row():
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Blur', value=0, elem_id="control_mask_blur"))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Auto min score', value=0.8, elem_id="control_mask_score"))
with gr.Row():
controls.append(gr.Dropdown(label="Auto-segment", choices=MODELS.keys(), value='None', elem_id="control_mask_segment"))
controls.append(gr.Dropdown(label="Auto-mask", choices=['None', 'Threshold', 'Edge', 'Grayscale'], value='None', elem_id="control_mask_auto"))
with gr.Row():
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='IOU', value=0.5, visible=False, elem_id="control_mask_iou"))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='NMS', value=0.5, visible=False, elem_id="control_mask_nms"))
with gr.Row():
controls.append(gr.Dropdown(label="Preview", choices=['None', 'Masked', 'Binary', 'Grayscale', 'Color', 'Composite'], value='Composite', elem_id="control_mask_preview"))
controls.append(gr.Dropdown(label="Colormap", choices=COLORMAP, value='pink', elem_id="control_mask_colormap"))
with gr.Row():
btn_mask = gr.Button("Run Preview", elem_id="control_mask_refresh", )
btn_lama = gr.Button("LaMa Remove", elem_id="control_mask_remove")
for control in controls:
control.change(fn=update_opts, inputs=controls, outputs=[])
return controls
def bind_controls(image_controls: List[gr.Image], preview_image: gr.Image, output_image: gr.Image):
for image_control in image_controls:
btn_mask.click(run_mask, inputs=[image_control], outputs=[preview_image])
btn_lama.click(run_lama, inputs=[image_control], outputs=[output_image])
image_control.edit(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])
for control in controls:
control.change(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])
def process_kanvas(kanvas_data):
from modules import ui_control_helpers
if kanvas_data is None or 'kanvas' not in kanvas_data:
return None
input_image, input_mask = ui_control_helpers.process_kanvas(kanvas_data)
shared.log.debug(f'Kanvas mask: opts={vars(opts)}')
output_mask = run_mask(input_image, input_mask)
return output_mask
def process_kanvas_lama(kanvas_data):
from modules import ui_control_helpers
if kanvas_data is None or 'kanvas' not in kanvas_data:
return None
input_image, input_mask = ui_control_helpers.process_kanvas(kanvas_data)
shared.log.debug(f'Kanvas LaMa: opts={vars(opts)}')
output_mask = run_lama(input_image, input_mask)
return output_mask
def bind_kanvas(input_image: Image.Image, output_image: gr.Image):
btn_mask.click(_js='getKanvasData', fn=process_kanvas, inputs=[input_image], outputs=[output_image])
btn_lama.click(_js='getKanvasData', fn=process_kanvas_lama, inputs=[input_image], outputs=[output_image])