mirror of
https://github.com/vladmandic/sdnext.git
synced 2026-01-27 15:02:48 +03:00
78 lines
4.2 KiB
Python
78 lines
4.2 KiB
Python
import torch
|
|
import diffusers.models.lora as diffusers_lora
|
|
import modules.lora.lyco_helpers as lyco_helpers
|
|
import modules.lora.network as network
|
|
from modules import devices
|
|
|
|
|
|
class ModuleTypeLora(network.ModuleType):
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
|
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
|
|
return NetworkModuleLora(net, weights)
|
|
return None
|
|
|
|
|
|
class NetworkModuleLora(network.NetworkModule):
|
|
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
|
super().__init__(net, weights)
|
|
self.up_model = self.create_module(weights.w, "lora_up.weight")
|
|
self.down_model = self.create_module(weights.w, "lora_down.weight")
|
|
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
|
|
self.dim = weights.w["lora_down.weight"].shape[0]
|
|
|
|
def create_module(self, weights, key, none_ok=False):
|
|
weight = weights.get(key)
|
|
if weight is None and none_ok:
|
|
return None
|
|
linear_modules = [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention, diffusers_lora.LoRACompatibleLinear]
|
|
typ = type(self.sd_module)
|
|
is_linear = typ in linear_modules or self.sd_module.__class__.__name__ in ["SDNQLinear", "QLinear", "Linear4bit"]
|
|
is_conv = (typ in [torch.nn.Conv2d, diffusers_lora.LoRACompatibleConv]) or (self.sd_module.__class__.__name__ in ["SDNQConv2d", "QConv2d"]) or (typ.__name__ in ['downsampler_block', 'upsampler_block'])
|
|
if is_linear:
|
|
weight = weight.reshape(weight.shape[0], -1)
|
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
|
elif is_conv and (key == "lora_down.weight" or key == "dyn_up"):
|
|
if len(weight.shape) == 2:
|
|
weight = weight.reshape(weight.shape[0], -1, 1, 1)
|
|
if weight.shape[2] != 1 or weight.shape[3] != 1:
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
else:
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
elif is_conv and (key == "lora_mid.weight"):
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
|
elif is_conv and (key == "lora_up.weight" or key == "dyn_down"):
|
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
|
else:
|
|
raise AssertionError(f'Lora unsupported: key={key} layer={self.network_key} type={typ.__name__}')
|
|
with torch.no_grad():
|
|
if weight.shape != module.weight.shape:
|
|
weight = weight.reshape(module.weight.shape)
|
|
module.weight.copy_(weight)
|
|
module.weight.requires_grad_(False)
|
|
return module
|
|
|
|
def calc_updown(self, target): # pylint: disable=W0237
|
|
target_dtype = target.dtype if target.dtype != torch.uint8 else self.up_model.weight.dtype
|
|
up = self.up_model.weight.to(target.device, dtype=target_dtype)
|
|
down = self.down_model.weight.to(target.device, dtype=target_dtype)
|
|
output_shape = [up.size(0), down.size(1)]
|
|
if self.mid_model is not None:
|
|
mid = self.mid_model.weight.to(target.device, dtype=target_dtype)
|
|
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid) # cp-decomposition
|
|
output_shape += mid.shape[2:]
|
|
else:
|
|
mid = None
|
|
if len(down.shape) == 4:
|
|
output_shape += down.shape[2:]
|
|
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
|
|
del up, down, mid
|
|
return self.finalize_updown(updown, target, output_shape)
|
|
|
|
def forward(self, x, y):
|
|
self.up_model.to(device=devices.device)
|
|
self.down_model.to(device=devices.device)
|
|
if hasattr(y, "scale"):
|
|
return y(scale=1) + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()
|
|
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()
|